Page 350 - Read Online
P. 350

Page 28 of 31                                     Paul J Cancer Metastasis Treat 2020;6:29  I  http://dx.doi.org/10.20517/2394-4722.2020.63

               111.  Whiteside TL. Exosomes and tumor-mediated immune suppression. J Clin Invest 2016;126:1216-23.
               112.  Yin Y, Cai X, Chen X, Liang H, Zhang Y, et al. Tumor-secreted miR-214 induces regulatory T cells: a major link between immune
                   evasion and tumor growth. Cell Res 2014;24:1164-80.
               113.  Berchem G, Noman MZ, Bosseler M, Paggetti J, Baconnais S, et al. Hypoxic tumor-derived microvesicles negatively regulate NK cell
                   function by a mechanism involving TGF-beta and miR23a transfer. Oncoimmunology 2016;5:e1062968.
               114.  Belkaid Y, Harrison OJ. Homeostatic Immunity and the Microbiota. Immunity 2017;46:562-76.
               115.  Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature 2016;535:75-84.
               116.  Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic
                   melanoma patients. Science 2018;359:104-8.
               117.  Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy
                   against epithelial tumors. Science 2018;359:91-7.
               118.  Tamura R, Tanaka T, Yamamoto Y, Akasaki Y, Sasaki H. Dual role of macrophage in tumor immunity. Immunotherapy 2018;10:899-909.
               119.  Shitara K, Nishikawa H. Regulatory T cells: a potential target in cancer immunotherapy. Ann N Y Acad Sci 2018;1417:104-15.
               120. Whiteside TL. The role of regulatory T cells in cancer immunology. Immunotargets Ther 2015;4:159-71.
               121. Zamarron BF, Chen W. Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 2011;7:651-8.
               122. Shalapour S, Karin M. Immunity, inflammation, and cancer: an eternal fight between good and evil. J Clin Invest 2015;125:3347-55.
               123. Labelle M, Begum S, Hynes RO. Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci U S A 2014;111:E3053-61.
               124. Ocana A, Nieto-Jimenez C, Pandiella A, Templeton AJ. Neutrophils in cancer: prognostic role and therapeutic strategies. Mol Cancer
                   2017;16:137.
               125. Mouchemore KA, Anderson RL, Hamilton JA. Neutrophils, G-CSF and their contribution to breast cancer metastasis. FEBS J
                   2018;285:665-79.
               126. Cools-Lartigue J, Spicer J, Najmeh S, Ferri L. Neutrophil extracellular traps in cancer progression. Cell Mol Life Sci 2014;71:4179-94.
               127. Park J, Wysocki RW, Amoozgar Z, Maiorino L, Fein MR, et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA
                   traps. Sci Transl Med 2016;8:361ra138.
               128. Lieffers JR, Mourtzakis M, Hall KD, McCargar LJ, Prado CM, et al. A viscerally driven cachexia syndrome in patients with advanced
                   colorectal cancer: contributions of organ and tumor mass to whole-body energy demands. Am J Clin Nutr 2009;89:1173-9.
               129. Warburg O. On the origin of cancer cells. Science 1956;123:309-14.
               130. Vaupel P, Mayer A. Availability, not respiratory capacity governs oxygen consumption of solid tumors. Int J Biochem Cell Biol
                   2012;44:1477-81.
               131. Davidson SM, Papagiannakopoulos T, Olenchock BA, Heyman JE, Keibler MA, et al. Environment impacts the metabolic dependencies
                   of ras-driven non-small cell lung cancer. Cell Metab 2016;23:517-28.
               132. Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev 2009;89:381-410.
               133. Fearon KC, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 2012;16:153-66.
               134. Porporato PE. Understanding cachexia as a cancer metabolism syndrome. Oncogenesis 2016;5:e200.
               135. Vander Heiden MG, DeBerardinis RJ. Understanding the Intersections between Metabolism and Cancer Biology. Cell 2017;168:657-69.
               136. Alam MM, Lal S, FitzGerald KE, Zhang L. A holistic view of cancer bioenergetics: mitochondrial function and respiration play
                   fundamental roles in the development and progression of diverse tumors. Clin Transl Med 2016;5:3.
               137. Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Tanowitz HB, et al. Stromal-epithelial metabolic coupling in cancer:
                   integrating autophagy and metabolism in the tumor microenvironment. Int J Biochem Cell Biol 2011;43:1045-51.
               138. Pavlides S, Tsirigos A, Migneco G, Whitaker-Menezes D, Chiavarina B, et al. The autophagic tumor stroma model of cancer: role of
                   oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle 2010;9:3485-505.
               139. Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, et al. Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and
                   drives inflammation in the tumor microenvironment, conferring the “reverse Warburg effect”: a transcriptional informatics analysis with
                   validation. Cell Cycle 2010;9:2201-19.
               140. Tsoli M, Robertson G. Cancer cachexia: malignant inflammation, tumorkines, and metabolic mayhem. Trends Endocrinol Metab
                   2013;24:174-83.
               141. Flint TR, Janowitz T, Connell CM, Roberts EW, Denton AE, et al. Tumor-induced IL-6 reprograms host metabolism to suppress anti-
                   tumor immunity. Cell Metab 2016;24:672-84.
               142. Lee YM, Chang WC, Ma WL. Hypothesis: solid tumours behave as systemic metabolic dictators. J Cell Mol Med 2016;20:1076-85.
               143. Argiles JM, Stemmler B, Lopez-Soriano FJ, Busquets S. Inter-tissue communication in cancer cachexia. Nat Rev Endocrinol 2018;15:9-20.
               144. Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer
                   2014;14:754-62.
               145. George J, Cannon T, Lai V, Richey L, Zanation A, et al. Cancer cachexia syndrome in head and neck cancer patients: Part II.
                   pathophysiology. Head Neck 2007;29:497-507.
               146. Roxburgh CS, McMillan DC. Cancer and systemic inflammation: treat the tumour and treat the host. Br J Cancer 2014;110:1409-12.
               147. Payen VL, Porporato PE, Baselet B, Sonveaux P. Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and
                   the pentose phosphate pathway. Cell Mol Life Sci 2016;73:1333-48.
               148. Porporato PE, Payen VL, Baselet B, Sonveaux P. Metabolic changes associated with tumor metastasis, part 2: Mitochondria, lipid and
                   amino acid metabolism. Cell Mol Life Sci 2016;73:1349-63.
               149. Chasen M, Bhargava R, Hirschman S. Immunomodulatory agents for the treatment of cachexia. Curr Opin Support Palliat Care
                   2014;8:328-33.
   345   346   347   348   349   350   351   352   353   354   355