Page 973 - Read Online
P. 973

Tulotta et al. J Cancer Metastasis Treat 2019;5:74  I  http://dx.doi.org/10.20517/2394-4722.2019.022                          Page 9 of 11

               7.   Karnoub AE, Weinberg RA. Chemokine networks and breast cancer metastasis. Breast Dis 2006;26:75-85.
               8.   Kiefer F, Siekmann AF. The role of chemokines and their receptors in angiogenesis. Cell Mol Life Sci 2011;68:2811-30.
               9.   Boldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H, et al. Control of chemokine-guided cell migration by
                   ligand sequestration. Cell 2008;132:463-73.
               10.  Dona E, Barry JD, Valentin G, Quirin C, Khmelinskii A, et al. Directional tissue migration through a self-generated chemokine
                   gradient. Nature 2013;503:285-9.
               11.  Venkiteswaran G, Lewellis SW, Wang J, Reynolds E, Nicholson C, et al. Generation and dynamics of an endogenous, self-generated
                   signaling gradient across a migrating tissue. Cell 2013;155:674-87.
               12.  Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. Diversity and inter-connections in the CXCR4 chemokine receptor/ligand family:
                   molecular perspectives. Front Immunol 2015;6:429.
               13.  Scala S. Molecular pathways: targeting the CXCR4-CXCL12 axis-untapped potential in the tumor microenvironment. Clin Cancer
                   Res 2015;21:4278-85.
               14.  Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 2009;9:274-84.
               15.  Xue LJ, Mao XB, Ren LL, Chu XY. Inhibition of CXCL12/CXCR4 axis as a potential targeted therapy of advanced gastric carcinoma.
                   Cancer Med 2017;6:1424-36.
               16.  Mitchell B, Mahalingam M. The CXCR4/CXCL12 axis in cutaneous malignancies with an emphasis on melanoma. Histol Histopathol
                   2014;29:1539-46.
               17.  Xu CZ, Wang PH, Yan XJ, Wang T, Chen D, et al. Expression of CXCR4 is associated with progression and invasion in patients with
                   nasal-surface basal cell carcinoma. ORL J Otorhinolaryngol Relat Spec 2013;75:332-41.
               18.  Knopf A, Bahadori L, Fritsche K, Piontek G, Becker CC, et al. Primary tumor-associated expression of CXCR4 predicts formation of
                   local and systemic recurrency in head and neck squamous cell carcinoma. Oncotarget 2017;8:112739-47.
               19.  Wald O. CXCR4 based therapeutics for non-small cell lung cancer (NSCLC). J Clin Med 2018;7:E303.
               20.  Xu C, Zhao H, Chen H, Yao Q. CXCR4 in breast cancer: oncogenic role and therapeutic targeting. Drug Des Devel Ther 2015;9:4953-64.
               21.  Figueras A, Alsina-Sanchis E, Lahiguera A, Abreu M, Muinelo-Romay L, et al. A role for CXCR4 in peritoneal and hematogenous
                   ovarian cancer dissemination. Mol Cancer Ther 2018;17:532-43.
               22.  Bao Y, Wang Z, Liu B, Lu X, Xiong Y, et al. A feed-forward loop between nuclear translocation of CXCR4 and HIF-1alpha promotes
                   renal cell carcinoma metastasis. Oncogene 2019;38:881-95.
               23.  Zhu WB, Zhao ZF, Zhou X. AMD3100 inhibits epithelial-mesenchymal transition, cell invasion, and metastasis in the liver and the
                   lung through blocking the SDF-1alpha/CXCR4 signaling pathway in prostate cancer. J Cell Physiol 2019;234:11746-59.
               24.  Richardson PJ. CXCR4 and glioblastoma. Anticancer Agents Med Chem 2016;16:59-74.
               25.  Sand LG, Scotlandi K, Berghuis D, Snaar-Jagalska BE, Picci P, et al. CXCL14, CXCR7 expression and CXCR4 splice variant ratio
                   associate with survival and metastases in Ewing sarcoma patients. Eur J Cancer 2015;51:2624-33.
               26.  Du W, Lu C, Zhu X, Hu D, Chen X, et al. Prognostic significance of CXCR4 expression in acute myeloid leukemia. Cancer Med 2019;
                   doi: 10.1002/cam4.2535.
               27.  Choi WT, Yang Y, Xu Y, An J. Targeting chemokine receptor CXCR4 for treatment of HIV-1 infection, tumor progression, and
                   metastasis. Curr Top Med Chem 2014;14:1574-89.
               28.  Guo F, Wang Y, Liu J, Mok SC, Xue F, et al. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in
                   oncogenic communication networks. Oncogene 2016;35:816-26.
               29.  Sugihara H, Ishimoto T, Yasuda T, Izumi D, Eto K, et al. Cancer-associated fibroblast-derived CXCL12 causes tumor progression in
                   adenocarcinoma of the esophagogastric junction. Med Oncol 2015;32:618.
               30.  Fearon DT. The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer
                   Immunol Res 2014;2:187-93.
               31.  Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts
                   synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A 2013;110:20212-7.
               32.  Brandau S, Trellakis S, Bruderek K, Schmaltz D, Steller G, et al. Myeloid-derived suppressor cells in the peripheral blood of cancer
                   patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol 2011;89:311-7.
               33.  Contento RL, Molon B, Boularan C, Pozzan T, Manes S, et al. CXCR4-CCR5: a couple modulating T cell functions. Proc Natl Acad
                   Sci U S A 2008;105:10101-6.
               34.  Strydom N, Rankin SM. Regulation of circulating neutrophil numbers under homeostasis and in disease. J Innate Immun 2013;5:304-14.
               35.  Zou L, Barnett B, Safah H, Larussa VF, Evdemon-Hogan M, et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that
                   traffic through CXCL12/CXCR4 signals. Cancer Res 2004;64:8451-5.
               36.  Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S. Neutrophils responsive to endogenous IFN-beta regulate tumor
                   angiogenesis and growth in a mouse tumor model. J Clin Invest 2010;120:1151-64.
               37.  Hughes R, Qian BZ, Rowan C, Muthana M, Keklikoglou I, et al. Perivascular M2 macrophages stimulate tumor relapse after
                   chemotherapy. Cancer Res 2015;75:3479-91.
               38.  Ping YF, Yao XH, Jiang JY, Zhao LT, Yu SC, et al. The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-
                   mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling. J Pathol 2011;224:344-54.
               39.  Beider K, Bitner H, Leiba M, Gutwein O, Koren-Michowitz M, et al. Multiple myeloma cells recruit tumor-supportive macrophages
                   through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype. Oncotarget 2014;5:11283-96.
               40.  Gil M, Komorowski MP, Seshadri M, Rokita H, McGray AJ, et al. CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits
   968   969   970   971   972   973   974   975   976   977   978