Page 505 - Read Online
P. 505
Page 16 of 18 Huang et al. J Cancer Metastasis Treat 2019;5:34 I http://dx.doi.org/10.20517/2394-4722.2018.94
47. Bai M, Zou B, Wang Z, Li P, Wang H, et al. Comparison of two detection systems for circulating tumor cells among patients with renal
cell carcinoma. Int Urol Nephrol 2018;50:1801-9.
48. Chen F, Wang S, Fang Y, Zheng L, Zhi X,et al. Feasibility of a novel one-stop ISET device to capture CTCs and its clinical application.
Oncotarget 2017;8:3029-41.
49. Obermayr E, Maritschnegg E, Agreiter C, Pecha N, Speiser P, et al. Efficient leukocyte depletion by a novel microfluidic platform enables
the molecular detection and characterization of circulating tumor cells. Oncotarget 2018;9:812-23.
50. Lee Y, Guan G, Bhagat AA. ClearCell(R) FX, a label-free microfluidics technology for enrichment of viable circulating tumor cells.
Cytometry A 2018;93:1251-4.
51. Yanagita M, Luke JJ, Hodi FS, Janne PA, Paweletz CP. Isolation and characterization of circulating melanoma cells by size filtration and
fluorescent in-situ hybridization. Melanoma Res 2018;28:89-95.
52. Qin L, Zhou W, Zhang S, Cheng B, Wang S, et al. Highly efficient isolation of circulating tumor cells using a simple wedge-shaped
microfluicdic device. IEEE Trans Biomed Eng 201810.1109/tbme.2018.2875361.
53. Liu F, Wang S, Lu Z, Sun Y, Yang C, et al. A simple pyramid-shaped microchamber towards highly efficient isolation of circulating tumor
cells from breast cancer patients. Biomed Microdevices 2018;20:83.
54. Sollier-Christen E, Renier C, Kaplan T, Kfir E, Crouse SC. VTX-1 Liquid Biopsy System for Fully-Automated and Label-Free Isolation
of Circulating Tumor Cells with Automated Enumeration by BioView Platform. Cytometry A 2018;93:1240-5.
55. Wardlaw SC, Levine RA. Quantitative buffy coat analysis. A new laboratory tool functioning as a screening complete blood cell count.
JAMA 1983;249:617-20.
56. Kaldjian EP, Ramirez AB, Sun Y, Campton DE, Werbin JL, et al. The RareCyte(R) platform for next-generation analysis of circulating
tumor cells. Cytometry A 2018;93:1220-5.10.
57. Nguyen NV, Jen CP. Impedance detection integrated with dielectrophoresis enrichment platform for lung circulating tumor cells in a
microfluidic channel. Biosens Bioelectron 2018;121:10-8.
58. Chalopin A, Tellez-Gabriel M, Brown HK, Vallette F, Heymann MF, et al. Isolation of circulating tumor cells in a preclinical model of
osteosarcoma: effect of chemotherapy. J Bone Oncol 2018;12:83-90.
59. Bahnassy AA, Saber MM, Mahmoud MG, Abdellateif MS, Abd El-Mooti Samra M, et al. The role of circulating tumor cells in metastatic
breast cancer: prognostic and predictive value. Mol Biol Rep 2018;45:2025-35.
60. Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N
Engl J Med 2008;359:366-77.
61. Alama A, Truini A, Coco S, Genova C, Grossi F. Prognostic and predictive relevance of circulating tumor cells in patients with non-small-
cell lung cancer. Drug Discov Today 2014;19:1671-6.
62. Ding C, Zhou X, Xu C, Chen J, Ju S, et al. Circulating tumor cell levels and carcinoembryonic antigen: An improved diagnostic method
for lung adenocarcinoma. Thorac Cancer 2018;9:1413-20.
63. Zhu Y, Piehowski PD, Zhao R, Chen J, Shen Y, et al. Nanodroplet processing platform for deep and quantitative proteome profiling of 10-
100 mammalian cells. Nat Commun 2018;9:882.
64. Zhu Y, Podolak J, Zhao R, Shukla AK, Moore RJ, et al. Proteome Profiling of 1 to 5 Spiked Circulating Tumor Cells Isolated from Whole
Blood Using Immunodensity Enrichment, Laser Capture Microdissection, Nanodroplet Sample Processing, and Ultrasensitive nanoLC-
MS. Anal Chem 2018;90:11756-9.
65. Dhar M, Lam JN, Walser T, Dubinett SM, Rettig MB, et al. Functional profiling of circulating tumor cells with an integrated vortex
capture and single-cell protease activity assay. Proc Natl Acad Sci U S A 2018;115:9986-91.
66. Ortega FG, Lorente JA, Garcia Puche JL, Ruiz MP, Sanchez-Martin RM, et al. miRNA in situ hybridization in circulating tumor cells--
MishCTC. Sci Rep 2015;5:9207.
67. Frithiof H, Aaltonen K, Ryden L. A FISH-based method for assessment of HER-2 amplification status in breast cancer circulating tumor
cells following CellSearch isolation. Onco Targets Ther 2016;9:7095-103.
68. Smirnov DA, Zweitzig DR, Foulk BW, Miller MC, Doyle GV,et al. Global gene expression profiling of circulating tumor cells. Cancer
Res 2005;65:4993-7.
69. Kasimir-Bauer S, Hoffmann O, Wallwiener D, Kimmig R, Fehm T. Expression of stem cell and epithelial-mesenchymal transition
markers in primary breast cancer patients with circulating tumor cells. Breast Cancer Res 2012;14:R15.
70. Mostert B, Sieuwerts AM, Bolt-de Vries J, Kraan J, Lalmahomed Z, et al. mRNA expression profiles in circulating tumor cells of
metastatic colorectal cancer patients. Mol Oncol 2015;9:920-32.
71. Campton DE, Ramirez AB, Nordberg JJ, Drovetto N, Clein AC,et al. High-recovery visual identification and single-cell retrieval of
circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining.
Bmc Cancer 2015;15:360.
72. Kaveh F, Baumbusch LO, Nebdal D, Borresen-Dale AL, Lingjaerde OC, et al. A systematic comparison of copy number alterations in
four types of female cancer. BMC Cancer 2016;16:913.
73. Van Beers EH, Nederlof PM. Array-CGH and breast cancer. Breast Cancer Res 2006;8:210.
74. Bertucci F, Finetti P, Guille A, Adelaide J, Garnier S, et al. Comparative genomic analysis of primary tumors and metastases in breast
cancer. Oncotarget 2016;7:27208-19.
75. Ting DT, Wittner BS, Ligorio M, Vincent Jordan N, Shah AM, et al. Single-cell RNA sequencing identifies extracellular matrix gene
expression by pancreatic circulating tumor cells. Cell Rep 2014;8:1905-18.
76. Ni X, Zhuo M, Su Z, Duan J, Gao Y, et al. Reproducible copy number variation patterns among single circulating tumor cells of lung