Page 335 - Read Online
P. 335
Monks et al. J Cancer Metastasis Treat 2019;5:24 I http://dx.doi.org/10.20517/2394-4722.2018.79 Page 21 of 23
macrophages. Biochem Biophys Res Commun 2004;316:924-9.
132. Kyriazi E, Tsiotra PC, Boutati E, Ikonomidis I, Fountoulaki K, et al. Effects of adiponectin in TNF-alpha, IL-6, and IL-10 cytokine
production from coronary artery disease macrophages. Horm Metab Res 2011;43:537-44.
133. Park PH, McMullen MR, Huang H, Thakur V, Nagy LE. Short-term treatment of RAW264.7 macrophages with adiponectin increases tumor
necrosis factor-alpha (TNF-alpha) expression via ERK1/2 activation and Egr-1 expression: role of TNF-alpha in adiponectin-stimulated
interleukin-10 production. J Biol Chem 2007;282:21695-703.
134. Luo N, Wang X, Chung BH, Lee MH, Klein RL, et al. Effects of macrophage-specific adiponectin expression on lipid metabolism in vivo.
Am J Physiol Endocrinol Metab 2011;301:E180-6.
135. Kumada M, Kihara S, Ouchi N, Kobayashi H, Okamoto Y, et al. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1
through interleukin-10 expression in human macrophages. Circulation 2004;109:2046-9.
136. Kollias A, Tsiotra PC, Ikonomidis I, Maratou E, Mitrou P, et al. Adiponectin levels and expression of adiponectin receptors in isolated
monocytes from overweight patients with coronary artery disease. Cardiovasc Diabetol 2011;10:14.
137. Kamio N, Akifusa S, Yamaguchi N, Nonaka K, Yamashita Y. Anti-inflammatory activity of a globular adiponectin function on RAW 264
cells stimulated by lipopolysaccharide from Aggregatibacter actinomycetemcomitans. FEMS Immunol Med Microbiol 2009;56:241-7.
138. Huang H, Park PH, McMullen MR, Nagy LE. Mechanisms for the anti-inflammatory effects of adiponectin in macrophages. J Gastroenterol
Hepatol 2008;23:S50-3.
139. Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient
mice from atherosclerosis. J Biol Chem 2003;278:2461-8.
140. Zhang C, Liao Y, Li Q, Chen M, Zhao Q, et al. Recombinant adiponectin ameliorates liver ischemia reperfusion injury via activating the
AMPK/eNOS pathway. PLoS One 2013;8:e66382.
141. Okamoto Y, Folco EJ, Minami M, Wara AK, Feinberg MW, et al. Adiponectin inhibits the production of CXC receptor 3 chemokine ligands
in macrophages and reduces T-lymphocyte recruitment in atherogenesis. Circ Res 2008;102:218-25.
142. Summer R, Little FF, Ouchi N, Takemura Y, Aprahamian T, et al. Alveolar macrophage activation and an emphysema-like phenotype in
adiponectin-deficient mice. Am J Physiol Lung Cell Mol Physiol 2008;294:L1035-42.
143. Okamoto Y, Ishii S, Croce K, Katsumata H, Fukushima M, et al. Adiponectin inhibits macrophage tissue factor, a key trigger of thrombosis
in disrupted atherosclerotic plaques. Atherosclerosis 2013;226:373-7.
144. Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, et al. Adiponectin, a new member of the family of soluble defense collagens,
negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 2000;96:1723-32.
145. Tan PH, Tyrrell HE, Gao L, Xu D, Quan J, et al. Adiponectin receptor signaling on dendritic cells blunts anti-tumor immunity. Cancer Res
2014;74:5711-22.
146. Tsang JY, Li D, Ho D, Peng J, Xu A, et al. Novel immunomodulatory effects of adiponectin on dendritic cell functions. Int
Immunopharmacol 2011;11:604-9.
147. Wang Y, Wang X, Lau WB, Yuan Y, Booth D, et al. Adiponectin inhibits tumor necrosis factor-alpha-induced vascular inflammatory
response via caveolin-mediated ceramidase recruitment and activation. Circ Res 2014;114:792-805.
148. van Meurs M, Castro P, Shapiro NI, Lu S, Yano M, et al. Adiponectin diminishes organ-specific microvascular endothelial cell activation
associated with sepsis. Shock 2012;37:392-8.
149. Okamoto Y, Christen T, Shimizu K, Asano K, Kihara S, et al. Adiponectin inhibits allograft rejection in murine cardiac transplantation.
Transplantation 2009;88:879-83.
150. Zhi Z, Pengfei Z, Xiaoyi T, Genshan M. Adiponectin ameliorates angiotensin II-induced vascular endothelial damage. Cell Stress
Chaperones 2014;19:705-13.
151. Yu F, Chen R, Takahashi T, Sumino H, Morimoto S, et al. Candesartan improves myocardial damage in obese mice with viral myocarditis
and induces cardiac adiponectin. Int J Cardiol 2008;129:414-21.
152. Konter JM, Parker JL, Baez E, Li SZ, Ranscht B, et al. Adiponectin attenuates lipopolysaccharide-induced acute lung injury through
suppression of endothelial cell activation. J Immunol 2012;188:854-63.
153. Kobashi C, Urakaze M, Kishida M, Kibayashi E, Kobayashi H, et al. Adiponectin inhibits endothelial synthesis of interleukin-8. Circ Res
2005;97:1245-52.
154. Shibata R, Skurk C, Ouchi N, Galasso G, Kondo K, et al. Adiponectin promotes endothelial progenitor cell number and function. FEBS Lett
2008;582:1607-12.
155. Kim KY, Kim JK, Han SH, Lim JS, Kim KI, et al. Adiponectin is a negative regulator of NK cell cytotoxicity. J Immunol
2006;176:5958-64.
156. Wilk S, Scheibenbogen C, Bauer S, Jenke A, Rother M, et al. Adiponectin is a negative regulator of antigen-activated T cells. Eur J Immunol
2011;41:2323-32.
157. Yokota T, Meka CS, Kouro T, Medina KL, Igarashi H, et al. Adiponectin, a fat cell product, influences the earliest lymphocyte precursors in
bone marrow cultures by activation of the cyclooxygenase-prostaglandin pathway in stromal cells. J Immunol 2003;171:5091-9.
158. Awazawa M, Ueki K, Inabe K, Yamauchi T, Kubota N, et al. Adiponectin enhances insulin sensitivity by increasing hepatic IRS-2
expression via a macrophage-derived IL-6-dependent pathway. Cell Metab 2011;13:401-12.
159. Jung MY, Kim HS, Hong HJ, Youn BS, Kim TS. Adiponectin induces dendritic cell activation via PLCgamma/JNK/NF-kappaB pathways,
leading to Th1 and Th17 polarization. J Immunol 2012;188:2592-601.
160. Cheng X, Folco EJ, Shimizu K, Libby P. Adiponectin induces Pro-inflammatory programs in human macrophages and CD4 + T cells. J Biol
Chem 2012;287:36896-904.
161. Wanninger J, Neumeier M, Weigert J, Bauer S, Weiss TS, et al. Adiponectin-stimulated CXCL8 release in primary human hepatocytes
is regulated by ERK1/ERK2, p38 MAPK, NF-kappaB, and STAT3 signaling pathways. Am J Physiol Gastrointest Liver Physiol
2009;297:G611-8.