Page 264 - Read Online
P. 264
Page 16 of 17 Mooney et al. J Cancer Metastasis Treat 2019;5:19 I http://dx.doi.org/10.20517/2394-4722.2018.93
Copyright
© The Author(s) 2019.
REFERENCES
1. Lebert JM, Lester R, Powell E, Seal M, McCarthy J. Advances in the systemic treatment of triple-negative breast cancer. 2018 2018;25:9.
2. Abbott DE, Bailey CM, Postovit LM, Seftor EA, Margaryan N, et al. The epigenetic influence of tumor and embryonic microenvironments:
how different are they? Cancer Microenvironment 2008;1:13-21.
3. Quail DF, Siegers GM, Jewer M, Postovit LM. Nodal signalling in embryogenesis and tumourigenesis. Int J Biochem Cell Biol
2013;45:885-98.
4. Mooney BM, Raof NA, Li Y, Xie Y. Convergent mechanisms in pluripotent stem cells and cancer: implications for stem cell engineering.
Biotechnol J 2013;8:408-19.
5. Dong W, Qiu C, Shen H, Liu Q, Du J. Antitumor effect of embryonic stem cells in a non-small cell lung cancer model: antitumor factors and
immune responses. Int J Med Sci 2013;10:1314-20.
6. Zhang Z, Chen X, Chang X, Ye X, Li Y, et al. Human embryonic stem cells--a potential vaccine for ovarian cancer. Asian Pac J Cancer Prev
2012;13:4295-300.
7. Tzukerman M, Rosenberg T, Reiter I, Ben-Eliezer S, Denkberg G, et al. The influence of a human embryonic stem cell-derived
microenvironment on targeting of human solid tumor xenografts. Cancer Res 2006;66:3792-801.
8. Abdul Raof N, Mooney BM, Xie Y. Bioengineering embryonic stem cell microenvironments for the study of breast cancer. Int J Mol Sci
2011;12:7662-91.
9. Raof N, Raja W, Castracane J, Xie Y. Bioengineering embryonic stem cell microenvironments for exploring inhibitory effects on metastatic
breast cancer cells. Biomaterials 2011;32:4130-9.
10. Mooney B, Abdul-Raof N, Tian YI, Xie Y. Restriction of cancer metastatic potential using embryonic stem cells encapsulated in alginate
hydrogel microstrands. ACS Biomater Sci Eng 2017;3:1769-79.
11. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res 2006;12:5268-72.
12. Sheeba CJ, Marslin G, Revina AM, Franklin G. Signaling pathways influencing tumor microenvironment and their exploitation for targeted
drug delivery. Nanotechnol Rev 2013; doi: 10.1515/ntrev-2013-0032.
13. Merla A, Goel S. Novel drugs targeting the epidermal growth factor receptor and its downstream pathways in the treatment of colorectal
cancer: a systematic review. Chemother Res Pract 2012;2012:11.
14. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010;141:1117-34.
15. Lu Y, Brush J, Stewart TA. NSP1 defines a novel family of adaptor proteins linking integrin and tyrosine kinase receptors to the c-Jun
N-terminal Kinase/Stress-activated protein kinase signaling pathway. J Biol Chem 1999;274:10047-52.
16. Ahmad A. Pathways to breast cancer recurrence. ISRN Oncol 2013;2013:16.
17. Clevers H. Wnt/β-catenin signaling in development and disease. Cell 2006;127:469-80.
18. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell 2012;149:1192-205.
19. Green JL, La J, Yum KW, Desai P, Rodewald LW, et al. Paracrine Wnt signaling both promotes and inhibits human breast tumor growth.
Proc Natl Acad Sci U S A 2013;110:6991-6.
20. Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, et al. Transactivation of vimentin by β-catenin in human breast cancer cells.
Cancer Res 2003;63:2658-64.
21. Bremm A, Walch A, Fuchs M, Mages J, Duyster J, et al. Enhanced activation of epidermal growth factor receptor caused by tumor-derived
E-cadherin mutations. Cancer Res 2008;68:707-14.
22. Lu Z, Ghosh S, Wang Z, Hunter T. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional
activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell 2003;4:499-515.
23. Nejak-Bowen KN, Monga SPS. Beta-catenin signaling, liver regeneration and hepatocellular cancer: sorting the good from the bad. Semin
Cancer Biol 2011;21:44-58.
24. Wilding J, Vousden KH, Soutter WP, McCrea PD, Del Buono R, et al. E-Cadherin transfection down-regulates the epidermal growth factor
receptor and reverses the invasive phenotype of human papilloma virus-transfected keratinocytes. Cancer Res 1996;56:5285-92.
25. Lee EYHP, Muller WJ. Oncogenes and tumor suppressor genes. Cold Spring Harb Perspect Biol 2010;2:a003236.
26. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006;7:131.
27. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene
2006;366:2-16.
28. Schlange T, Matsuda Y, Lienhard S, Huber A, Hynes NE. Autocrine WNT signaling contributes to breast cancer cell proliferation via the
canonical WNT pathway and EGFR transactivation. Breast Cancer Res 2007;9:R63.
29. Hu T, Li C. Convergence between Wnt-β-catenin and EGFR signaling in cancer. Molecular Cancer 2010;9:236.
30. Yue X, Lan F, Yang W, Yang Y, Han L, et al. Interruption of β-catenin suppresses the EGFR pathway by blocking multiple oncogenic targets
in human glioma cells. Brain Res 2010;1366:27-37.
31. Rübsam M, Mertz AF, Kubo A, Marg S, Jüngst C, et al. E-cadherin integrates mechanotransduction and EGFR signaling to control
junctional tissue polarization and tight junction positioning. Nat Commun 2017;8:1250.
32. Dong Y, Cao B, Zhang M, Han W, Herman JG, et al. Epigenetic silencing of NKD2, a major component of wnt signaling, promotes breast
cancer growth. Oncotarget 2015;6:22126-38.
33. Zhao S, Kurenbekova L, Gao Y, Roos A, Creighton CJ, et al. NKD2, a negative regulator of Wnt signaling, suppresses tumor growth and
metastasis in osteosarcoma. Oncogene 2015;34:5069.
34. Li C, Franklin JL, Graves-Deal R, Jerome WG, Cao Z, et al. Myristoylated Naked2 escorts transforming growth factor α to the basolateral