Page 72 - Read Online
P. 72

Torres et al. J Cancer Metastasis Treat 2018;4:4  I  http://dx.doi.org/10.20517/2394-4722.2017.49                             Page 19 of 25

               72.  Nauts HC. The beneficial effects of bacterial infections on host resistance to cancer end results in 449 cases: a study and abstracts of
                   reports in the world medical literature (1775-1980) and personal communications. Cancer Research Inst 1980;24:212-6.
               73.  Sell S. Cancer immunotherapy: breakthrough or “deja vu, all over again”? Tumor Biol 2017;39:1010428317707764.
               74.  Kienle G. Fever in cancer treatment: Coley’s therapy and epidemiologic observations. Glob Adv Health Med 2012;1:92-100.
               75.  Rosenberg S. IL-2: the first effective immunotherapy for human cancer. J Immunol 2014;192:5451-8.
               76.  Le H, Lee N, Tsung K, Norton J. Pre-existing tumor-sensitized T cells are essential for eradication of established tumors by IL-12 and
                   cyclophosphamide plus IL-12. J Immunol 2001;167:6765-72.
               77.   Kucerova P, Cervinkova M. Spontaneous regression of tumour and the role of microbial infection-possibilities for cancer treatment.
                   Anticancer Drugs 2016;27:269-77.
               78.  Nallar S, Xu D, Kalvakolanu D. Bacteria and genetically modified bacteria as cancer therapeutics: current advances and challenges.
                   Cytokine 2017;89:160-72.
               79.  Chorobik P, Czaplicki D, Ossysek K,Bereta J. Salmonella and cancer: from pathogens to therapeutics. Acta Biochim Pol 2013;60:285-97.
               80.  Balk R. Systemic inflammatory response syndrome (SIRS). Virulence 2013;5:20-6.
               81.  Brown K, Brown G, Lewis S, Beale R, Treacher D. Targeting cytokines as a treatment for patients with sepsis: a lost cause or a strategy
                   still worthy of pursuit? Int Immunopharmacol 2016;36:291-9.
               82.  Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B. Combination bacteriolytic therapy for the treatment of experimental
                   tumors. Proc Natl Acad Sci U S A 2001;98:15155-60
               83.  Gujrati V, Kim S, Kim S, Min J, Choy H, Kim S, Jon S. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery
                   vehicles for cancer therapy. ACS Nano 2014;8:1525-37.
               84.  Piñero-Lambea C, Bodelón G, Fernández-Periáñez R, Cuesta A, Álvarez-Vallina L, Fernández L. Programming controlled adhesion of E.
                   coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synth Biol 2015;4:463-73.
               85.  Lin I, Van T, Smooker P. Live-attenuated bacterial vectors: tools for vaccine and therapeutic agent delivery. Vaccines 2015;3:940-72.
               86.  Kasinskas R, Forbes N. Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis.
                   Cancer Res 2007;67:3201-9.
               87.  Loeffler M, Le’Negrate G, Krajewska M, Reed J. Salmonella typhimurium engineered to produce CCL21 inhibit tumor growth. Cancer
                   Immunol Immunother 2008;58:769-75.
               88.  Sahari A, Traore M, Scharf B, Behkam B. Directed transport of bacteria-based drug delivery vehicles: bacterial chemotaxis dominates
                   particle shape. Biomed Microdevices 2014;16:717-25.
               89.  Zhou S. Synthetic biology: bacteria synchronized for drug delivery. Nature 2016;536:33-4.
               90.  Alphandéry E. Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Front Bioeng Biotechnol 2014;2:5.
               91.  Pyne M, Bruder M, Moo-Young M, Chung D, Chou C. Technical guide for genetic advancement of underdeveloped and intractable
                   Clostridium. Biotechnol Adv 2014;32:623-41.
               92.  Nallar S, Xu D, Kalvakolanu D. Bacteria and genetically modified bacteria as cancer therapeutics: current advances and challenges.
                   Cytokine 2017;89:160-72.
               93.  Claesen J, Fischbach M. Synthetic microbes as drug delivery systems. ACS Synth Biol 2015;4:358-64.
               94.  Abil Z, Xiong X, Zhao H. Synthetic biology for therapeutic applications. Mol Pharm 2014;12:322-31.
               95.  Allen E, Miéville P, Warren CM, Saghafinia S, Li L, Peng MW, Hanahan D. Metabolic symbiosis enables adaptive resistance to anti-
                   angiogenic therapy that is dependent on mTOR signaling. Cell Rep 2016;15:1144-60.
               96.  Green D, Galluzzi L, Kroemer G. Metabolic control of cell death. Science 2014;345:1250256.
               97.  Phillips R. Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemother Pharmacol 2016;77:441-57.
               98.  Hunter F, Wouters B, Wilson W. Hypoxia-activated prodrugs: paths forward in the era of personalised medicine. Br J Cancer
                   2016;114:1071-7.
               99.  Rhim T, Lee D, Lee M. Hypoxia as a target for tissue specific gene therapy. J Control Release 2013;172:484-94.
               100. Dhani N, Fyles A, Hedley D, Milosevic M. The clinical significance of hypoxia in human cancers. Semin Nucl Med 2015;45:110-21.
               101. Heap J, Theys J, Ehsaan M, Kubiak A, Dubois L, Paesmans K, Van Mellaert L, Knox R, Kuehne SA, Lambin P, Minton NP. Spores of
                   Clostridium engineered for clinical efficacy and safety cause regression and cure of tumors in vivo. Oncotarget 2014;5:1761-9.
               102. Hammerich L, Brody JD. Immunomodulation within a single tumor site to induce systemic antitumor immunity: in situ vaccination for
                   cancer. In: Rennert P, editor. Novel Immunotherapeutic Approaches to the Treatment of Cancer. Cham: Springer; 2016. p. 129-62.
               103. Park D, Park S, Cho S, Lee Y, Lee Y, Min J, Park BJ, Ko SY, Park JO, Park S. Motility analysis of bacteria-based microrobot (bacteriobot)
                   using chemical gradient microchamber. Biotechnol Bioeng 2014;111:134-43.
               104. Yu B, Shi L, Zhang BZ, Zhang KE, Peng X, Niu HB, Qu JL. Obligate anaerobic Salmonella typhimurium strain YB1 treatment on
                   xenograft tumor in immunocompetent mouse model. Oncol Lett 2015;10:1069-74.
               105. Thornlow D, Brackett E, Gigas J, Van Dessel N, Forbes N. Persistent enhancement of bacterial motility increases tumor penetration.
                   Biotechnol Bioeng 2015;112:2397-405.
               106. Pylaeva E, Lang S, Jablonska J. The essential role of type I interferons in differentiation and activation of tumor-associated neutrophils.
                   Front Immunol 2016;7:629.
               107. Hiroshima Y, Zhao M, Zhang Y, Zhang N, Maawy A, Murakami T, Mii S, Uehara F, Yamamoto M, Miwa S, Yano S, Momiyama M,
                   Mori R, Matsuyama R, Chishima T, Tanaka K, Ichikawa Y, Bouvet M, Endo I, Hoffman RM. Tumor-targeting salmonella typhimurium
                   A1-R arrests a chemo-resistant patient soft-tissue sarcoma in nude mice. PLoS One 2015;10:e0134324.
   67   68   69   70   71   72   73   74   75   76   77