Page 119 - Read Online
P. 119
Page 16 of 16 Offin et al. J Cancer Metastasis Treat 2023;9:21 https://dx.doi.org/10.20517/2394-4722.2022.140
stratified pleural mesothelioma: COMMAND-A double-blind, randomized, phase II study. J Clin Oncol 2019;37:790-8. DOI
111. Ou SH, Moon J, Garland LL, et al. SWOG S0722: phase II study of mTOR inhibitor everolimus (RAD001) in advanced malignant
pleural mesothelioma (MPM). J Thorac Oncol 2015;10:387-91. DOI PubMed PMC
112. Kulkarni NS, Gupta V. Repurposing therapeutics for malignant pleural mesothelioma (MPM) - Updates on clinical translations and
future outlook. Life Sci 2022;304:120716. DOI PubMed
113. Cheng YY, Yuen ML, Rath EM, et al. CDKN2A and MTAP are useful biomarkers detectable by droplet digital PCR in malignant
pleural mesothelioma: a potential alternative method in diagnosis compared to fluorescence in situ hybridisation. Front Oncol
2020;10:579327. DOI PubMed PMC
114. Ladanyi M. Implications of P16/CDKN2A deletion in pleural mesotheliomas. Lung Cancer 2005;49 Suppl 1:S95-8. DOI PubMed
115. Olopade OI, Pomykala HM, Hagos F, et al. Construction of a 2.8-megabase yeast artificial chromosome contig and cloning of the
human methylthioadenosine phosphorylase gene from the tumor suppressor region on 9p21. Proc Natl Acad Sci USA 1995;92:6489-
93. DOI PubMed PMC
116. Hustinx SR, Leoni LM, Yeo CJ, et al. Concordant loss of MTAP and p16/CDKN2A expression in pancreatic intraepithelial
neoplasia: evidence of homozygous deletion in a noninvasive precursor lesion. Mod Pathol 2005;18:959-63. DOI
117. Perera ND, Mansfield AS. The evolving therapeutic landscape for malignant pleural mesothelioma. Curr Oncol Rep 2022;24:1413-
23. DOI PubMed PMC
118. Guo G, Chmielecki J, Goparaju C, et al. Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and
CUL1 in malignant pleural mesothelioma. Cancer Res 2015;75:264-9. DOI
119. Sherr CJ. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2001;2:731-7. DOI PubMed
120. Fennell DA, King A, Mohammed S, et al. Abemaciclib in patients with p16ink4A-deficient mesothelioma (MiST2): a single-arm,
open-label, phase 2 trial. Lancet Oncol 2022;23:374-81. DOI
121. Barbarino M, Cesari D, Bottaro M, et al. PRMT5 silencing selectively affects MTAP-deleted mesothelioma: In vitro evidence of a
novel promising approach. J Cell Mol Med 2020;24:5565-77. DOI PubMed PMC
122. Bonelli MA, Digiacomo G, Fumarola C, et al. Combined Inhibition of CDK4/6 and PI3K/AKT/mTOR pathways induces a
synergistic anti-tumor effect in malignant pleural mesothelioma cells. Neoplasia 2017;19:637-48. DOI PubMed PMC
123. Frizelle SP, Grim J, Zhou J, et al. Re-expression of p16INK4a in mesothelioma cells results in cell cycle arrest, cell death, tumor
suppression and tumor regression. Oncogene 1998;16:3087-95. DOI
124. Nardone V, Porta C, Giannicola R, Correale P, Mutti L. Abemaciclib for malignant pleural mesothelioma. Lancet Oncol
2022;23:e237. DOI PubMed
125. Fennell DA, Nusrat N. Abemaciclib for malignant pleural mesothelioma - Authors’ reply. Lancet Oncol 2022;23:e238. DOI
PubMed
126. Chung YS, Kim M, Cha YJ, Kim KA, Shim HS. Expression of V-set immunoregulatory receptor in malignant mesothelioma. Mod
Pathol 2020;33:263-70. DOI PubMed
127. Sasikumar PG, Sudarshan NS, Adurthi S, et al. PD-1 derived CA-170 is an oral immune checkpoint inhibitor that exhibits preclinical
anti-tumor efficacy. Commun Biol 2021;4:699. DOI PubMed PMC
128. Bang Y, Sosman J, Daud A, et al. Phase 1 study of CA-170, a first-in-class, orally available, small molecule immune checkpoint
inhibitor (ICI) dually targeting VISTA and PD-L1, in patients with advanced solid tumors or lymphomas. J Immunother Cancer
2018;6:114.
129. Rabinovich S, Adler L, Yizhak K, et al. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis.
Nature 2015;527:379-83. DOI PubMed PMC
130. Delage B, Fennell DA, Nicholson L, et al. Arginine deprivation and argininosuccinate synthetase expression in the treatment of
cancer. Int J Cancer 2010;126:2762-72. DOI
131. Szlosarek PW, Klabatsa A, Pallaska A, et al. In vivo loss of expression of argininosuccinate synthetase in malignant pleural
mesothelioma is a biomarker for susceptibility to arginine depletion. Clin Cancer Res 2006;12:7126-31. DOI
132. Szlosarek PW, Phillips MM, Pavlyk I, et al. Expansion phase 1 study of pegargiminase plus pemetrexed and cisplatin in patients with
argininosuccinate synthetase 1-deficient mesothelioma: safety, efficacy, and resistance mechanisms. JTO Clin Res Rep
2020;1:100093. DOI PubMed PMC
133. Polaris. Polaris group announces positive top-line results from phase 2/3 atomic study in patients with malignant pleural
mesothelioma to assess adi-peg 20 with pemetrexed and cisplatin. Available from: https://polarispharma.com/2022/09/21/
20220921001/?lang=en [Last accessed on 31 May 2023].
134. Offin M, Sauter JL, Tischfield SE, et al. Genomic and transcriptomic analysis of a diffuse pleural mesothelioma patient-derived
xenograft library. Genome Med 2022;14:127. DOI PubMed PMC
135. El Bezawy R, Percio S, Ciniselli CM, et al. miR-550a-3p is a prognostic biomarker and exerts tumor-suppressive functions by
targeting HSP90AA1 in diffuse malignant peritoneal mesothelioma. Cancer Gene Ther 2022;29:1394-404. DOI PubMed PMC
136. Tsao AS, Lindwasser OW, Adjei AA, et al. Current and future management of malignant mesothelioma: a consensus report from the
national cancer institute thoracic malignancy steering committee, international association for the study of lung cancer, and
mesothelioma applied research foundation. J Thorac Oncol 2018;13:1655-67. DOI