Page 69 - Read Online
P. 69

Page 12 of 14        Diab et al. J Cancer Metastasis Treat 2022;8:42  https://dx.doi.org/10.20517/2394-4722.2022.60

                    pancreatic ductal adenocarcinoma. Cancer Discov 2019;9:282-301.  DOI  PubMed  PMC
               27.       Van Cutsem E, Tempero MA, Sigal D, et al. Randomized phase III trial of pegvorhyaluronidase alfa with nab-paclitaxel plus
                    gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. J Clin Oncol 2020;38:3185-94.  DOI  PubMed
                    PMC
               28.       Ramanathan RK, McDonough SL, Philip PA, et al. Phase IB/II randomized study of FOLFIRINOX plus pegylated recombinant
                    human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. J Clin
                    Oncol 2019;37:1062-9.  DOI  PubMed  PMC
               29.       Kemp SB, Pasca di Magliano M, Crawford HC. Myeloid cell mediated immune suppression in pancreatic cancer. Cell Mol
                    Gastroenterol Hepatol 2021;12:1531-42.  DOI  PubMed  PMC
               30.       Sharma V, Aggarwal A, Jacob J, Sahni D. Myeloid-derived suppressor cells: bridging the gap between inflammation and pancreatic
                    adenocarcinoma. Scand J Immunol 2021;93:e13021.  DOI  PubMed
               31.       Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization
                    standards. Nat Commun 2016;7:12150.  DOI  PubMed  PMC
               32.       Vanhaver C, van der Bruggen P, Bruger AM. MDSC in mice and men: mechanisms of immunosuppression in cancer. J Clin Med
                    2021;10:2872.  DOI  PubMed  PMC
               33.       Trovato R, Fiore A, Sartori S, et al. Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic
                    ductal carcinoma is orchestrated by STAT3. J Immunother Cancer 2019;7:255.  DOI  PubMed  PMC
               34.       Ugel S, De Sanctis F, Mandruzzato S, Bronte V. Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet
                    tumor-associated macrophages. J Clin Invest 2015;125:3365-76.  DOI  PubMed  PMC
               35.       Huang B, Pan PY, Li Q, et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T
                    regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 2006;66:1123-31.  DOI  PubMed
               36.       Zhang Y, Velez-Delgado A, Mathew E, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment
                    of an immunosuppressive environment in pancreatic cancer. Gut 2017;66:124-36.  DOI  PubMed  PMC
               37.       Chao T, Furth EE, Vonderheide RH. CXCR2-dependent accumulation of tumor-associated neutrophils regulates T-cell immunity in
                    pancreatic ductal adenocarcinoma. Cancer Immunol Res 2016;4:968-82.  DOI  PubMed  PMC
               38.       Bayne LJ, Beatty GL, Jhala N, et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid
                    inflammation and T cell immunity in pancreatic cancer. Cancer Cell 2012;21:822-35.  DOI  PubMed  PMC
               39.       Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D. Oncogenic kras-induced GM-CSF production promotes the
                    development of pancreatic neoplasia. Cancer Cell 2012;21:836-47.  DOI  PubMed  PMC
               40.       Stromnes IM, Brockenbrough JS, Izeradjene K, et al. Targeted depletion of an MDSC subset unmasks pancreatic ductal
                    adenocarcinoma to adaptive immunity. Gut 2014;63:1769-81.  DOI  PubMed  PMC
               41.       Steele CW, Karim SA, Leach JDG, et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in
                    pancreatic ductal adenocarcinoma. Cancer Cell 2016;29:832-45.  DOI  PubMed  PMC
               42.       Yang S, Liu Q, Liao Q. Tumor-associated macrophages in pancreatic ductal adenocarcinoma: origin, polarization, function, and
                    reprogramming. Front Cell Dev Biol 2020;8:607209.  DOI  PubMed  PMC
               43.       Sanford DE, Belt BA, Panni RZ, et al. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for
                    targeting the CCL2/CCR2 axis. Clin Cancer Res 2013;19:3404-15.  DOI  PubMed  PMC
               44.       Zhu Y, Herndon JM, Sojka DK, et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic
                    hematopoiesis and promote tumor progression. Immunity 2017;47:323-338.e6.  DOI
               45.       Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH. Dynamics of the immune reaction to pancreatic cancer
                    from inception to invasion. Cancer Res 2007;67:9518-27.  DOI  PubMed
               46.       Ziske C, Etzrodt PE, Eliu AS, et al. Increase of in vivo antitumoral activity by CD40L (CD154) gene transfer into pancreatic tumor
                    cell-dendritic cell hybrids. Pancreas 2009;38:758-65.  DOI  PubMed
               47.       Liu  Q,  Li  Y,  Niu  Z,  et  al.  Atorvastatin  (Lipitor)  attenuates  the  effects  of  aspirin  on  pancreatic  cancerogenesis  and  the
                    chemotherapeutic efficacy of gemcitabine on pancreatic cancer by promoting M2 polarized tumor associated macrophages. J Exp
                    Clin Cancer Res 2016;35:33.  DOI  PubMed  PMC
               48.       Poh AR, Ernst M. Tumor-associated macrophages in pancreatic ductal adenocarcinoma: therapeutic opportunities and clinical
                    challenges. Cancers 2021;13:2860.  DOI  PubMed  PMC
                                                    +
               49.       Candido JB, Morton JP, Bailey P, et al. CSF1R  macrophages sustain pancreatic tumor growth through T Cell suppression and
                    maintenance of key gene programs that define the squamous subtype. Cell Rep 2018;23:1448-60.  DOI  PubMed  PMC
               50.       Zhu Y, Knolhoff BL, Meyer MA, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to
                    T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 2014;74:5057-69.  DOI  PubMed  PMC
               51.       Wang-gillam A, O’reilly EM, Bendell JC, et al. A randomized phase II study of cabiralizumab (cabira) + nivolumab (nivo) ±
                    chemotherapy (chemo) in advanced pancreatic ductal adenocarcinoma (PDAC). JCO 2019;37:TPS465.  DOI
               52.       Nywening TM, Wang-gillam A, Sanford DE, et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination
                    with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-
                    finding, non-randomised, phase 1b trial. Lancet Oncol 2016;17:651-62.  DOI  PubMed  PMC
               53.  Noel M, O’Reilly EM, Wolpin BM, et al. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2
                    (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma.
   64   65   66   67   68   69   70   71   72   73   74