Page 69 - Read Online
P. 69
Page 12 of 14 Diab et al. J Cancer Metastasis Treat 2022;8:42 https://dx.doi.org/10.20517/2394-4722.2022.60
pancreatic ductal adenocarcinoma. Cancer Discov 2019;9:282-301. DOI PubMed PMC
27. Van Cutsem E, Tempero MA, Sigal D, et al. Randomized phase III trial of pegvorhyaluronidase alfa with nab-paclitaxel plus
gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. J Clin Oncol 2020;38:3185-94. DOI PubMed
PMC
28. Ramanathan RK, McDonough SL, Philip PA, et al. Phase IB/II randomized study of FOLFIRINOX plus pegylated recombinant
human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. J Clin
Oncol 2019;37:1062-9. DOI PubMed PMC
29. Kemp SB, Pasca di Magliano M, Crawford HC. Myeloid cell mediated immune suppression in pancreatic cancer. Cell Mol
Gastroenterol Hepatol 2021;12:1531-42. DOI PubMed PMC
30. Sharma V, Aggarwal A, Jacob J, Sahni D. Myeloid-derived suppressor cells: bridging the gap between inflammation and pancreatic
adenocarcinoma. Scand J Immunol 2021;93:e13021. DOI PubMed
31. Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization
standards. Nat Commun 2016;7:12150. DOI PubMed PMC
32. Vanhaver C, van der Bruggen P, Bruger AM. MDSC in mice and men: mechanisms of immunosuppression in cancer. J Clin Med
2021;10:2872. DOI PubMed PMC
33. Trovato R, Fiore A, Sartori S, et al. Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic
ductal carcinoma is orchestrated by STAT3. J Immunother Cancer 2019;7:255. DOI PubMed PMC
34. Ugel S, De Sanctis F, Mandruzzato S, Bronte V. Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet
tumor-associated macrophages. J Clin Invest 2015;125:3365-76. DOI PubMed PMC
35. Huang B, Pan PY, Li Q, et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T
regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 2006;66:1123-31. DOI PubMed
36. Zhang Y, Velez-Delgado A, Mathew E, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment
of an immunosuppressive environment in pancreatic cancer. Gut 2017;66:124-36. DOI PubMed PMC
37. Chao T, Furth EE, Vonderheide RH. CXCR2-dependent accumulation of tumor-associated neutrophils regulates T-cell immunity in
pancreatic ductal adenocarcinoma. Cancer Immunol Res 2016;4:968-82. DOI PubMed PMC
38. Bayne LJ, Beatty GL, Jhala N, et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid
inflammation and T cell immunity in pancreatic cancer. Cancer Cell 2012;21:822-35. DOI PubMed PMC
39. Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D. Oncogenic kras-induced GM-CSF production promotes the
development of pancreatic neoplasia. Cancer Cell 2012;21:836-47. DOI PubMed PMC
40. Stromnes IM, Brockenbrough JS, Izeradjene K, et al. Targeted depletion of an MDSC subset unmasks pancreatic ductal
adenocarcinoma to adaptive immunity. Gut 2014;63:1769-81. DOI PubMed PMC
41. Steele CW, Karim SA, Leach JDG, et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in
pancreatic ductal adenocarcinoma. Cancer Cell 2016;29:832-45. DOI PubMed PMC
42. Yang S, Liu Q, Liao Q. Tumor-associated macrophages in pancreatic ductal adenocarcinoma: origin, polarization, function, and
reprogramming. Front Cell Dev Biol 2020;8:607209. DOI PubMed PMC
43. Sanford DE, Belt BA, Panni RZ, et al. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for
targeting the CCL2/CCR2 axis. Clin Cancer Res 2013;19:3404-15. DOI PubMed PMC
44. Zhu Y, Herndon JM, Sojka DK, et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic
hematopoiesis and promote tumor progression. Immunity 2017;47:323-338.e6. DOI
45. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH. Dynamics of the immune reaction to pancreatic cancer
from inception to invasion. Cancer Res 2007;67:9518-27. DOI PubMed
46. Ziske C, Etzrodt PE, Eliu AS, et al. Increase of in vivo antitumoral activity by CD40L (CD154) gene transfer into pancreatic tumor
cell-dendritic cell hybrids. Pancreas 2009;38:758-65. DOI PubMed
47. Liu Q, Li Y, Niu Z, et al. Atorvastatin (Lipitor) attenuates the effects of aspirin on pancreatic cancerogenesis and the
chemotherapeutic efficacy of gemcitabine on pancreatic cancer by promoting M2 polarized tumor associated macrophages. J Exp
Clin Cancer Res 2016;35:33. DOI PubMed PMC
48. Poh AR, Ernst M. Tumor-associated macrophages in pancreatic ductal adenocarcinoma: therapeutic opportunities and clinical
challenges. Cancers 2021;13:2860. DOI PubMed PMC
+
49. Candido JB, Morton JP, Bailey P, et al. CSF1R macrophages sustain pancreatic tumor growth through T Cell suppression and
maintenance of key gene programs that define the squamous subtype. Cell Rep 2018;23:1448-60. DOI PubMed PMC
50. Zhu Y, Knolhoff BL, Meyer MA, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to
T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 2014;74:5057-69. DOI PubMed PMC
51. Wang-gillam A, O’reilly EM, Bendell JC, et al. A randomized phase II study of cabiralizumab (cabira) + nivolumab (nivo) ±
chemotherapy (chemo) in advanced pancreatic ductal adenocarcinoma (PDAC). JCO 2019;37:TPS465. DOI
52. Nywening TM, Wang-gillam A, Sanford DE, et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination
with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-
finding, non-randomised, phase 1b trial. Lancet Oncol 2016;17:651-62. DOI PubMed PMC
53. Noel M, O’Reilly EM, Wolpin BM, et al. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2
(PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma.