Page 116 - Read Online
P. 116

Page 10 of 11                         Miller et al. J Cancer Metastasis Treat 2019;5:68  I  http://dx.doi.org/10.20517/2394-4722.2019.001

               39.   Deans DAC, Wigmore SJ, Gilmour H, Paterson-Brown S, Ross JA, et al. Elevated tumour interleukin-1β is associated with systemic
                   inflammation: a marker of reduced survival in gastro-oesophageal cancer. Br J Cancer 2006;95:1568-75.
               40.   Wellenstein M, Coffelt S, Duits D, Miltenburg M, Slagter M, et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive
                   breast cancer metastasis. Nature 2019;572:538-42.
               41.   Scheede-Bergdahl C, Watt H, Trutschnigg B, Kilgour R, Haggarty A, et al. Is IL-6 the best pro-inflammatory biomarker of clinical outcomes
                   of cancer cachexia? Clin Nutr 2012;31:85-8.
               42.   Zhang D, Zheng H, Zhou Y, Tang X, Yu B, et al. Association of IL-1beta gene polymorphism with cachexia from locally advanced gastric
                   cancer. BMC Cancer 2007;7:45.
               43.   Miller A, McLeod L, Alhayyani S, Szczepny A, Watkins D, et al. Blockade of the IL-6 trans-signalling/STAT3 axis suppresses cachexia in
                   Kras-induced lung adenocarcinoma. Oncogene 2017;36:3059-66.
               44.   White J. IL-6, cancer and cachexia: metabolic dysfunction creates the perfect storm. Translational cancer research. Transl Cancer Res
                   2017;6:280-5.
               45.   Pettersen K, Andersen S, Degen S, Tadini V, Grosjean J, et al. Cancer cachexia associates with a systemic autophagy-inducing activity
                   mimicked by cancer cell-derived IL-6 trans-signalling. Sci Rep 2017;7:2046.
               46.   Rupert J, Bonetto A, Narasimhan, Koniaris L. IL-6 trans signaling among tumour, muscle and fat mediates pancreatic cancer cachexia. J
                   Cachexia Sarcopenia Muscle 2018;9:1121-84.
               47.   O’Riordain M, Falconer J, Maingay J, Fearon K, Ross J. Peripheral blood cells from weight-losing cancer patients control the hepatic acute
                   phase response by a primarily interleukin-6 dependent mechanism. Int J Oncol 1999;15:823-7.
               48.   Hishida A, Okugawa Y, Morimoto Y, Shirai Y, Okamoto K, et al. Genetic influence of cytokine polymorphisms on the clinical outcome of
                   Japanese gastrointestinal cancer patients in palliative care. Oncol Lett 2019;17:623-9.
               49.   Johns N, Stretch C, Tan BHL, Solheim TS, Sørhaug S, et al. New genetic signatures associated with cancer cachexia as defined by low
                   skeletal muscle index and weight loss. J Cachexia Sarcopenia Muscle 2017;8:122-30.
               50.   Marvel D, Gabrilovich D. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest
                   2015;125:3356-64.
               51.   Gajewski T, Schreiber H, Fu Y. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 2013;14:1014-22.
               52.   Guo C, Buranych A, Sarkar D, Fisher P, Wang X. The role of tumor-associated macrophages in tumor vascularization. Vasc Cell 2013;5:20.
               53.   Cuenca A, Cuenca A, Winfield R, Joiner D, Gentile L, et al. Novel role for tumor-induced expansion of myeloid derived cells in cancer
                   cachexia. J Immunol 2015;192:6111-9.
               54.   Erdem M, Moeckel S, Jumpertz S, John C, Fragoulis A, et al. Macrophages protect against loss of adipose tissue during cancer cachexia. J
                   Cachexia Sarcopenia Muscle 2019; doi: 10.1002/jcsm.12450.
               55.   Tang X, Mo C, Wang Y, Wei D, Xiao H. Anti-tumour strategies aiming to target tumour-associated macrophages. Immunology 2013;138:93-
                   104.
               56.   Lindau D, Gielen P, Kroesen M, Wesseling P, Adema G. The immunosuppressive tumour network: myeloid-derived suppressor cells,
                   regulatory T cells and natural killer T cells. Immunology 2013;138:105-15.
               57.   Noy R, Pollard J. Tumor-associated macrophages: from mechanisms to therapy. Immunity 2015;41:49-61.
               58.   Laine A, Lyengar P, Pandita T. The role of inflammatory pathways in cancer-associated cachexia and radiation resistance. Mol Cancer Res
                   2013;11:967-72.
               59.   Deshmane S, Kremlev S, Amini S, Sawaya B. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res
                   2009;29:313-26.
               60.   Gooden M, de Bock G, Leffers N, Daemen T, Nijman H. The prognostic influence of tumour inflitrating lymphocytes in cancer: a systematic
                   review with meta analysis. Br J Cancer 2011;105:93-103.
               61.   Albini A, Bruno A, Noonan DM, Mortara L. Contribution to tumour angiogenesis from innate immune cells withing the tumour
                   microenvironment: implications for Immunotherapy. Front Immunol 2018;9:527.
               62.   Singel KL, Segal B. Neutrophils in the tumour microenvironment: trying to heal the wound that cannot heal. Immunol Rev 2016;273:329-43.
               63.   Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol 2018;9:754.
               64.   Laird BJ, Kaasa S, McMillan DC, Fallon MT, Hjermstad MJ, et al. Prognostic factors in patients with advanced cancer: a comparison of
                   clinicopathological factors and the development of an inflammation-based prognostic system. Am Assoc Cancer Res 2013;19:5456-64.
               65.   Siebert S, Tsoukas A, Robertson J, McInnes I. Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases.
                   Pharmacol Rev 2015;67:280-309.
               66.   Maini R, Breedveld F, Kalden J, Smolen J, Furst D, et al. Sustained improvement over two years in physical function, structural damage, and
                   signs and symptoms among patients with rheumatoid arthritis treated with infliximab and methotrexate. Arthritis Rheum 2004;50:1051-65.
               67.   Marcora S, Chester K, Mittal G, Lemmey A, Maddison P. Randomized phase 2 trial of anti-tumor necrosis factor therapy for cachexia in
                   patients with early rheumatoid arthritis. Am J Clin Nutr 2006;84:1463-72.
               68.   Wu C, Fernandez S, Criswell T, Chidiac T, Guttridge D, et al. Disrupting cytokine signaling in pancreatic cancer: a phase I/II study of
                   etanercept in combination with gemcitabine in patients with advanced disease. Pancreas 2013;42:813-8.
               69.   Jatoi A, Dakhil S, Nguyen P, Sloan J, Kugler J, et al. A placebo-controlled double blind trial of etanercept for the cancer anorexia/weight
                   loss syndrome: results from N00C1 from the North Central Cancer Treatment Group. Cancer 2007;110:1396-403.
               70.   Wiedenmann B, Malfertheiner P, Friess H, Ritch P, Arseneau J, et al. A multicenter, phase II study of infliximab plus gemcitabine in
                   pancreatic cancer cachexia. J Support Oncol 2008;6:18-25.
               71.   Chasen M, Hirschman S, Bhargava R. Phase II study of the novel peptide-nucleic acid OHR118 in the management of cancer-related
                   anorexia/cachexia. J Am Med Dir Assoc 2011;12:62-7.
               72.   Tracey K. TNF and other cytokines in the metabolism of septic shock and cachexia. Clin Nutr 1992;11:1-11.
               73.   Hong D, Hui D, Bruera E, Janku F, Naing A, et al. MABp1, a first-in-class true human antibody targeting interleukin-1α in refractory
   111   112   113   114   115   116   117   118   119   120   121