Page 73 - Read Online
P. 73
Chi et al. J Cancer Metastasis Treat 2020;6:43 I http://dx.doi.org/10.20517/2394-4722.2020.90 Page 15 of 17
20. Löhr M, Schmidt C, Ringel J, et al. Transforming growth factor-beta1 induces desmoplasia in an experimental model of human pancreatic
carcinoma. Cancer Res 2001;61:550-5.
21. Hessmann E, Patzak MS, Klein L, et al. Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas
cancer. Gut 2018;67:497-507.
22. Hartmann N, Giese NA, Giese T, et al. Prevailing role of contact guidance in intrastromal T-cell trapping in human pancreatic cancer. Clin
Cancer Res 2014;20:3422-33.
23. Armstrong T, Packham G, Murphy LB, et al. Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma.
Clin Cancer Res 2004;10:7427-37.
24. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers
to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 2012 20;21:418-29.
25. Jacobetz MA, Chan DS, Neesse A, et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer.
Gut 2013;62:112-20.
26. Erkan M, Kurtoglu M, Kleeff J. The role of hypoxia in pancreatic cancer: a potential therapeutic target? Expert Rev Gastroenterol Hepatol
2016;10:301-16.
27. Halozyme Announces HALO-301 Phase 3 Study Fails To Meet Primary Endpoint. Available from: https://www.halozyme.com/investors/
news-releases/news-release-details/2019/Halozyme-Announces-HALO-301-Phase-3-Study-Fails-To-Meet-Primary-Endpoint/default.
aspx. [Last accessed on 30 Oct 2020]
28. Öhlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J
Exp Med 2017;214:579-96.
29. Neesse A, Algül H, Tuveson DA, Gress TM. Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut 2015;64:1476-84.
30. Mace TA, Bloomston M, Lesinski GB. Pancreatic cancer-associated stellate cells: a viable target for reducing immunosuppression in the
tumor microenvironment. Oncoimmunology 2013;2:e24891.
31. Nagathihalli NS, Castellanos JA, VanSaun MN, et al. Pancreatic stellate cell secreted IL-6 stimulates STAT3 dependent invasiveness of
pancreatic intraepithelial neoplasia and cancer cells. Oncotarget 2016;7:65982-92.
32. Ugel S, De Sanctis F, Mandruzzato S, Bronte V. Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-
associated macrophages. J Clin Invest 2015;125:3365-76.
33. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 2015;348:69-74.
34. Brown SD, Warren RL, Gibb EA, et al. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival.
Genome Res 2014;24:743-50.
35. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic
activity. Cell 2015;160:48-61.
36. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 2017;377:2500-1.
37. Evans A, Costello E. The role of inflammatory cells in fostering pancreatic cancer cell growth and invasion. Front Physiol 2012;3:270.
38. Ryschich E, Nötzel T, Hinz U, et al. Control of T-cell-mediated immune response by HLA class I in human pancreatic carcinoma. Clin
Cancer Res 2005;11:498-504.
39. Tewari N, Zaitoun AM, Arora A, Madhusudan S, Ilyas M, Lobo DN. The presence of tumour-associated lymphocytes confers a good
prognosis in pancreatic ductal adenocarcinoma: an immunohistochemical study of tissue microarrays. BMC Cancer 2013;13:436.
40. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004;10:909-15.
41. Ito A, Kondo S, Tada K, Kitano S. Clinical development of immune checkpoint inhibitors. Biomed Res Int 2015;2015:605478.
42. Brunet JF, Denizot F, Luciani MF, et al. A new member of the immunoglobulin superfamily--CTLA-4. Nature 1987;328:267-70.
43. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon
programmed cell death. EMBO J 1992;11:3887-95.
44. Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment
with response to anti-PD-1 therapy. Clin Cancer Res 2014;20:5064-74.
45. Royal RE, Levy C, Turner K, et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic
adenocarcinoma. J Immunother Hagerstown Md 1997 2010;33:828-33.
46. Brahmer JR, Tykodi SS, Chow LQM, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med
2012;366:2455-65.
47. Patnaik A, Kang SP, Rasco D, et al. Phase I study of Pembrolizumab (MK-3475; Anti-PD-1 Monoclonal Antibody) in patients with
advanced solid tumors. Clin Cancer Res 2015;21:4286-93.
48. Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science
2017;357:409-13.
49. Hu ZI, Shia J, Stadler ZK, et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: challenges and recommendations.
Clin Cancer Res 2018;24:1326-36.
50. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:2509-20.
51. Chen M, Yang S, Fan L, et al. Combined antiangiogenic therapy and immunotherapy is effective for pancreatic cancer with mismatch
repair proficiency but high tumor mutation burden: a case report. Pancreas 2019;48:1232-6.
52. Mohindra N, Kircher S, Nimeiri H, et al. Results of the phase Ib study of ipilimumab and gemcitabine for advanced pancreas cancer. J
Clin Oncol 2015;33:e15281.
53. Kalyan A, Kircher SM, Mohindra NA, et al. Ipilimumab and gemcitabine for advanced pancreas cancer: a phase Ib study. J Clin Oncol