Page 99 - Read Online
P. 99

Wang et al. Intell Robot 2022;2(4):391-406  https://dx.doi.org/10.20517/ir.2022.25                                                       Page 405

                   and multiple packet losses. Int J Syst Sci 2016;47:1495-513.  DOI
               40.      Liu L, Wang Z, Zhang H. Adaptive NN fault-tolerant control for discrete-time systems in triangular forms with actuator fault.
                   Neurocomputing 2015;152:209-221.  DOI
               41.      Mao W-L, Chu C-T. Modeless magnetic bearing system tracking using an adaptive fuzzy hermite neural network method. IEEE Sens J
                   2019;19:5904-15.  DOI
               42.      Na J, Huang Y, Wu X, Su S-F, Li G. Adaptive finite-time fuzzy control of nonlinear active suspension systems with input delay. IEEE
                   Trans Cybern 2020;50:2639-50.  DOI  PubMed
               43.      Bilir T, Gencel O, Topcu IB. Prediction of restrained shrinkage crack widths of slag mortar composites by Takagi and Sugeno ANFIS
                   models. Neural Comput Appl 2016;27:2523-36.  DOI
               44.      Sharma M, Anotaipaiboon W, Chaiyasarn K. Concrete crack detection using the integration of convolutional neural network and
                   support vector machine. Sci Technol Asia 2018;23:19-28.  DOI
               45.      Wang D, Dong Y, Pan Y, Ma R. Machine vision-based monitoring methodology for the fatigue cracks in U-Rib-to-Deck weld seams.
                   IEEE Access 2020;8:94204-19.  DOI
               46.      Zheng M, Lei Z, Zhang K. Intelligent detection of building cracks based on deep learning. Image Vis Comput 2020;103:1-10.  DOI
               47.      Xu H, Su X, Wang Y, Cai H, Cui K, Chen X. Automatic bridge crack detection using a convolutional neural network. Appl Sci
                   2019;9:2867.  DOI
               48.      Teng S, Liu Z, Chen G, Cheng L. Concrete crack detection based on well-known feature extractor model and the YOLO_v2 network.
                   Appl Sci 2021;11:1-13.  DOI
               49.      Pan Y, Zhang G, Zhang L. A spatial-channel hierarchical deep learning network for pixel-level automated crack detection. Autom
                   Constr 2020;119:103357.  DOI
               50.      Zhao J, Hu F, Qiao W, Zhai W, Xu Y, Bao Y, et al. A modified U-net for crack segmentation by self-attention-self-adaption neuron
                   and random elastic deformation. Smart Struct Syst 2022;29:1-16.  DOI
               51.      Yang Y, Sun H, Xue J, et al. Correction to: estimating evapotranspiration by coupling bayesian model averaging methods with
                   machine learning algorithms. Environ Monit Assess 2021;193:207.  DOI  PubMed
               52.      Zhao X, Wang R, Gu H, Song G, Mo YL. Innovative data fusion enabled structural health monitoring approach. Math Probl Eng
                   2014;2014:1-10.  DOI
               53.      Guo T, Xu Z. Data fusion of multi-scale representations for structural damage detection. Mech Syst Signal Process 2018;98:1020-33.
                   DOI
               54.      Zhang Y, Ding SX, Yang Y, Li L. Data driven design of two degree of freedom controllers using reinforcement learning
                   techniques. IIET Control Theory Appl 2015;9:1011-21.  DOI
               55.      Palanisamy RP, Cho S, Kim H, Sim S. Experimental validation of Kalman filter-based strain estimation in structures subjected to non-
                   zero mean input. Smart Struct Syst 2015;15:489-503.  DOI
               56.      Xu Y, Bao Y, Chen J, Zuo W, Li H. Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional
                   neural network based on consumer-grade camera images. Struct Health Monit 2019;18:653-74.  DOI
               57.      Li G, Li X, Zhou J, Liu D, Ren W. Pixel-level bridge crack detection using a deep fusion about recurrent residual convolution and
                   context encoder network. Measurement 2021;176:109171.  DOI
               58.      Chen F, Jahanshahi MR. NB-CNN: Deep learning-based crack detection using convolutional neural network and naïve bayes data
                   fusion. IEEE Trans Ind Electron 2018;65:4392-400.  DOI
               59.      Yang J, Li H, Zou J, Jiang S, Li R, Liu X. Concrete crack segmentation based on UAV-enabled edge computing. Neurocomputing
                   2022;485:233-41.  DOI
               60.      Li X, Zhou J, Pedrycz W. Linking granular computing, big data and decision making: a case study in urban path planning. Soft Comput
                   2020;24:7435-50.  DOI
               61.      Wang B, Zhao W, Gao P, Zhang Y, Wang Z. Crack damage detection method via multiple visual features and efficient multi-task
                   learning model. Sensors (Basel) 2018;18:1796.  DOI  PubMed  PMC
               62.      Yan B, Cui Y, Zhang L, et al. Beam structure damage identification based on BP neural network and support vector machine. Math
                   Probl Eng 2014;2014:1-8.  DOI
               63.      Liu M, Li L, Zhao X, Liu H. The crack injury detection based CMR and Natural frequency with BP neutral network. 2nd International
                   Conference on Future Networks (ICFN 2010); 2010 Jan. 22-24; Sanya, Chin: IEEE; 2010. p. 314-17.  DOI
               64.      Chen CLP, Liu Z. Broad learning system: a new learning paradigm and system without going deep. 32nd Youth Academic Annual
                   Conference of Chinese Association of Automation (YAC); 2017 May 19-21; Hefei, China: IEEE; 2017. p. 17009788.  DOI
               65.      Chen CLP, Liu Z. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture.
                   IEEE Trans Neural Netw Learn Syst 2018;29:10-24.  DOI  PubMed
               66.      Guo L, Li R, Jiang B, Shen X. Automatic crack distress classification from concrete surface images using a novel deep-width network
                   architecture. Neurocomputing 2020;397:383-92.  DOI
               67.      Chen CLP, Liu Z, Feng S. Universal approximation capability of broad learning system and its structural variations. IEEE Trans
                   Neural Netw Learn Syst 2019;30:1191-204.  DOI  PubMed
               68.      Xu M, Han M, Chen CLP, Qiu T. Recurrent broad learning systems for time series prediction. IEEE Trans Cybern 2020;50:1405-17.
                   DOI  PubMed
               69.      Li C, Cheng D, Li Y. Research on bridge crack detection algorithm based on deep learning. J Lab Autom 2019;45:16.  DOI
   94   95   96   97   98   99   100   101   102   103   104