Page 99 - Read Online
P. 99
Wang et al. Intell Robot 2022;2(4):391-406 https://dx.doi.org/10.20517/ir.2022.25 Page 405
and multiple packet losses. Int J Syst Sci 2016;47:1495-513. DOI
40. Liu L, Wang Z, Zhang H. Adaptive NN fault-tolerant control for discrete-time systems in triangular forms with actuator fault.
Neurocomputing 2015;152:209-221. DOI
41. Mao W-L, Chu C-T. Modeless magnetic bearing system tracking using an adaptive fuzzy hermite neural network method. IEEE Sens J
2019;19:5904-15. DOI
42. Na J, Huang Y, Wu X, Su S-F, Li G. Adaptive finite-time fuzzy control of nonlinear active suspension systems with input delay. IEEE
Trans Cybern 2020;50:2639-50. DOI PubMed
43. Bilir T, Gencel O, Topcu IB. Prediction of restrained shrinkage crack widths of slag mortar composites by Takagi and Sugeno ANFIS
models. Neural Comput Appl 2016;27:2523-36. DOI
44. Sharma M, Anotaipaiboon W, Chaiyasarn K. Concrete crack detection using the integration of convolutional neural network and
support vector machine. Sci Technol Asia 2018;23:19-28. DOI
45. Wang D, Dong Y, Pan Y, Ma R. Machine vision-based monitoring methodology for the fatigue cracks in U-Rib-to-Deck weld seams.
IEEE Access 2020;8:94204-19. DOI
46. Zheng M, Lei Z, Zhang K. Intelligent detection of building cracks based on deep learning. Image Vis Comput 2020;103:1-10. DOI
47. Xu H, Su X, Wang Y, Cai H, Cui K, Chen X. Automatic bridge crack detection using a convolutional neural network. Appl Sci
2019;9:2867. DOI
48. Teng S, Liu Z, Chen G, Cheng L. Concrete crack detection based on well-known feature extractor model and the YOLO_v2 network.
Appl Sci 2021;11:1-13. DOI
49. Pan Y, Zhang G, Zhang L. A spatial-channel hierarchical deep learning network for pixel-level automated crack detection. Autom
Constr 2020;119:103357. DOI
50. Zhao J, Hu F, Qiao W, Zhai W, Xu Y, Bao Y, et al. A modified U-net for crack segmentation by self-attention-self-adaption neuron
and random elastic deformation. Smart Struct Syst 2022;29:1-16. DOI
51. Yang Y, Sun H, Xue J, et al. Correction to: estimating evapotranspiration by coupling bayesian model averaging methods with
machine learning algorithms. Environ Monit Assess 2021;193:207. DOI PubMed
52. Zhao X, Wang R, Gu H, Song G, Mo YL. Innovative data fusion enabled structural health monitoring approach. Math Probl Eng
2014;2014:1-10. DOI
53. Guo T, Xu Z. Data fusion of multi-scale representations for structural damage detection. Mech Syst Signal Process 2018;98:1020-33.
DOI
54. Zhang Y, Ding SX, Yang Y, Li L. Data driven design of two degree of freedom controllers using reinforcement learning
techniques. IIET Control Theory Appl 2015;9:1011-21. DOI
55. Palanisamy RP, Cho S, Kim H, Sim S. Experimental validation of Kalman filter-based strain estimation in structures subjected to non-
zero mean input. Smart Struct Syst 2015;15:489-503. DOI
56. Xu Y, Bao Y, Chen J, Zuo W, Li H. Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional
neural network based on consumer-grade camera images. Struct Health Monit 2019;18:653-74. DOI
57. Li G, Li X, Zhou J, Liu D, Ren W. Pixel-level bridge crack detection using a deep fusion about recurrent residual convolution and
context encoder network. Measurement 2021;176:109171. DOI
58. Chen F, Jahanshahi MR. NB-CNN: Deep learning-based crack detection using convolutional neural network and naïve bayes data
fusion. IEEE Trans Ind Electron 2018;65:4392-400. DOI
59. Yang J, Li H, Zou J, Jiang S, Li R, Liu X. Concrete crack segmentation based on UAV-enabled edge computing. Neurocomputing
2022;485:233-41. DOI
60. Li X, Zhou J, Pedrycz W. Linking granular computing, big data and decision making: a case study in urban path planning. Soft Comput
2020;24:7435-50. DOI
61. Wang B, Zhao W, Gao P, Zhang Y, Wang Z. Crack damage detection method via multiple visual features and efficient multi-task
learning model. Sensors (Basel) 2018;18:1796. DOI PubMed PMC
62. Yan B, Cui Y, Zhang L, et al. Beam structure damage identification based on BP neural network and support vector machine. Math
Probl Eng 2014;2014:1-8. DOI
63. Liu M, Li L, Zhao X, Liu H. The crack injury detection based CMR and Natural frequency with BP neutral network. 2nd International
Conference on Future Networks (ICFN 2010); 2010 Jan. 22-24; Sanya, Chin: IEEE; 2010. p. 314-17. DOI
64. Chen CLP, Liu Z. Broad learning system: a new learning paradigm and system without going deep. 32nd Youth Academic Annual
Conference of Chinese Association of Automation (YAC); 2017 May 19-21; Hefei, China: IEEE; 2017. p. 17009788. DOI
65. Chen CLP, Liu Z. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture.
IEEE Trans Neural Netw Learn Syst 2018;29:10-24. DOI PubMed
66. Guo L, Li R, Jiang B, Shen X. Automatic crack distress classification from concrete surface images using a novel deep-width network
architecture. Neurocomputing 2020;397:383-92. DOI
67. Chen CLP, Liu Z, Feng S. Universal approximation capability of broad learning system and its structural variations. IEEE Trans
Neural Netw Learn Syst 2019;30:1191-204. DOI PubMed
68. Xu M, Han M, Chen CLP, Qiu T. Recurrent broad learning systems for time series prediction. IEEE Trans Cybern 2020;50:1405-17.
DOI PubMed
69. Li C, Cheng D, Li Y. Research on bridge crack detection algorithm based on deep learning. J Lab Autom 2019;45:16. DOI