Page 106 - Read Online
P. 106

https://github.com/bulletphysics/bullet3/tree/master/examples/pybullet/gym/pybullet_envs/minitaur/envs
                                                                                                      https://github.com/OpenQuadruped/spot_mini_mini
                                                                                 /
                                                                      /
                                                                                                                                              /
                                                                                           /
                                                                                                                            /
                                                                                                                 /
                                                                                                                                     /
                                                                                                               Randomisa-
                          Iner-
                                                                                                                 Size,
                       Latency),
                                                                                          Bodies
                                                                                                    Foot
                             and
                                                                                             State.
                             bias
                                                                                                                 and
                          Strength,
                                                                                                    Masses,
                                                                                          Randomised
                                                                                             Initial
                             IMU
                                                                                                                 Mass
                       Model, Page 294  /  Additive  Model,  /  /  /  Zhang et al. Intell Robot 2022;2(3):275­97  I http://dx.doi.org/10.20517/ir.2022.20
                                                                                                               Domain
                                                                                                    Link
                          Motor
                                                                                                                 Link
                                                                                             and
                       (Actuator  (Mass,  Friction,  Forces.  Actuator                    Training,  Command  Leg  ,  Mass  and  Scaling,  Time).
                       Fidelity  Randomization  Battery,  Latency,  Virtual  Properties,  Curriculum  Random  (Base  Magnitude).  Actions,  and  Torque  Step
                       Simulation  Step,  Directional  Physical  Observation.             Model,  Position),  Randomization  Mesh  XYZ  Observations  Actuator  and  Damping,
                       Improving  Dynamics  and  Control  tia,  noise.  Random  Randomized  the  to  Noise  /  /  /  /  tra-  Actuator  and  (Size  Domain  Gait  Friction,  Noisy  (Gravity,  tion  Actuator  /  /  Si-  /
                           Controller.  Generator.  Generators.     Recorded Data (Joint Angles and  steps).  4800  for  foot  generating  actuator  the  train  curve  Bezier  model-based  Planning), (High-Level  Low-Level  (TG,  Policy
                           Open-loop  Trajectory  /  Trajectory  PMTG [49]  Orientation  CROC [110]  controller  A  to  jectories  model.  Open-loop  Generator.  /  simple  A  method [45] .  PMTG  MPC  nusoidal  Controller).




                         Agile  Quadruped  Trajectory  Deep  Robots [99]  Quadruped  Quadruped  through  Primi-  Con-  us-  Gaits  Learn-  mo-  Legged  Policy  Dynamic  Locomo-  Efficient  Generaliza-  Locomotion  Locomo-  Re-

                         Learning  For  Modulating  RobustRecovery Controller fora  using  Robot  Learning [48]  Reinforcement  Legged  Reinforcement  for  Learned  Behaviors  Motion  and  Planning  Quadrupedal  Reinforcement  dynamic  and  robots [6]  legged  DynamicsandDomainRandom- izedGaitModulationwithBezier  Sim-to-Real  Constrained  for  Robot  Contact-Adaptive  Robust,  Locomotion [101]  Terrain  Visual  Generalizable  Hierarchical  Learning [47]




                         Sim-to-Real:  Locomotion  Robots [39]  Policies  Generators [49]  Quadrupedal  Reinforcement  Efficient  Data  for  Learning  Hierarchical  Learning  Locomotion [46]  Realizing  Locomotion  Kinematic  tives [55]  DeepGait:  of  trol  Deep  ing  ing [100]  agile  Learning  for  skills  tor  for  Curves  Locomotion [50]  Guided  Optimization  Quadrupedal  tion [28]  a  Learning  for  Controller  Legged  Zero-Shot  for  tion  Policies [103]  Learning  with  Skills  tion  inforcement
   101   102   103   104   105   106   107   108   109   110   111