Page 318 - Read Online
P. 318

Page 10 of 10                                               Ramadori. Hepatoma Res 2020;6:28  I  http://dx.doi.org/10.20517/2394-5079.2020.43


                   Inappetence. mBio 2020;11:e03236-19.
               49.  Ramadori G, Sipe JD, Dinarello CA, Mizel SB, Colten HR. Pretranslational modulation of acute phase hepatic protein synthesis by
                   murine recombinant interleukin 1 (IL-1) and purified human IL-1. J Exp Med 1985;162:930-42.
               50.  Ahmad G, Sial GZ, Ramadori P, Dudas J, Batusic DS, et al. Changes of hepatic lactoferrin gene expression in two mouse models of the
                   acute phase reaction. Int J Biochem Cell Biol 2011;43:1822-32.
               51.  Sultan S, Pascucci M, Ahmad S, Malik IA, Bianchi A, et al. LIPOCALIN-2 is a major acute-phase protein in a rat and mouse model of
                   sterile abscess. Shock 2012;37:191-6.
               52.  Sheikh N, Dudas J, Ramadori G. Changes of gene-expression of iron regulatory proteins during turpentin-oil induced acute-phase
                   response in the rat. Lab Invest 2007;87:713-25.
               53.  Sheikh N, Batusic DS, Dudas J, Tron K, Neubauer K, et al. Hepcidin and hemojuvelin gene expression in rat liver damage: in vivo and in
                   vitro studies. Am J Physiol Gastrointest Liver Physiol 2006;291:G482-90.
               54.  Christiansen H, Sheikh N, Saile B, Reuter F, Rave-Fränk M, et al. x-Irradiation in rat liver: consequent upregulation of hepcidin and
                   downregulation of hemojuvelin and ferroportin-1 gene expression. Radiology 2007;242:189-97.
               55.  Moriconi F, Ahmad G, Ramadori P, Malik I, Sheikh N, et al. Phagocytosis of gadolinium chloride or zymosan induces simultaneous
                   upregulation of hepcidin- and downregulation of hemojuvelin- and Fpn-1-gene expression in murine liver. Lab Invest 2009;89:1252-60.
               56.  Sheikh N, Tron K, Dudas J, Ramadori G. Cytokine-induced neutrophil chemoattractant-1 is released by the noninjured liver in a rat acute-
                   phase model. Lab Invest 2006;86:800-14.
               57.  Ramadori P, Sheikh N, Ahmad G, Dudas J, Ramadori G. Hepatic changes of erythropoietin gene expression in a rat model of acute-phase
                   response. Liver Int 2010;30:55-64.
               58.  Tron K, Novosyadlyy R, Dudas J, Samoylenko A, Kietzmann T, et al. Upregulation of heme oxygenase-1 gene by turpentine oil-induced
                   localized inflammation: involvement of interleukin-6. Lab Invest 2005;85:376-87.
               59.  Krause A, Neitz S, Mägert HJ, Schulz A, Forssmann WG, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits
                   antimicrobial activity. FEBS Lett 2000;480:147-50.
               60.  Ruot B, Breuillé D, Rambourdin F, Bayle G, Capitan P, et al. Synthesis rate of plasma albumin is a good indicator of liver albumin
                   synthesis in sepsis. Am J Physiol Endocrinol Metab 2000;279:E244-51.
               61.  Flaim KE, Liao WS, Peavy DE, Taylor JM, Jefferson LS. The role of amino acids in the regulation of protein synthesis in perfused rat
                   liver. II. Effects of amino acid deficiency on peptide chain initiation, polysomal aggregation, and distribution of albumin mRNA. J Biol
                   Chem 1982;257:2939-46.
               62.  Lee JL, Oh ES, Lee RW, Finucane TE. Serum albumin and prealbumin in calorically restricted, nondiseased individuals: a systematic
                   review. Am J Med 2015;128:1023.e1-22.
               63.  Ramadori G, Sipe JD, Colten HR. Expression and regulation of the murine serum amyloid A (SAA) gene in extrahepatic sites. J Immunol
                   1985;135:3645-7.
               64.  Perez L. Acute phase protein response to viral infection and vaccination. Arch Biochem Biophys 2019;671:196-202.
               65.  Zhou Y, Zhang Z, Tian J, Xiong S. Risk factors associated with disease progression in a cohort of patients infected with the 2019 novel
                   coronavirus. Ann Palliat Med 2020;9:428-36.
               66.  Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020;20:398-400.
               67.  Shen C, Wang Z, Zhao F, Yang Y, Li J, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA
                   2020;323:1582-9.
               68.  Duan K, Liu B, Li C, Zhang H, Yu T, et al. Effectivness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci
                   2020;117:9490-6.
               69.  Zhang B, Liu S, Tan T, Huang W, Dong Y, et al. Treatment with convalescent plasma for critically ill patients with SARS-CoV-2 infection.
                   Chest 2020; Epub ahead of print. doi: 10.1016/j.chest.2020.03.039.
               70.  Bloch EM, Shoham S, Casadevall A, Sachais BS, Shaz B, et al. Deployment of convalescent plasma fro prevention and treatment of
                   COVID-19. J Clin Invest 2020; Epub ahead of print. doi: 10.1172/JCI138745.
               71.  Roback JD, Guarner J. Convalescent plasma to treat COVID-19: possibilities and challenges. JAMA. 2020; Epub ahead of print. doi:
                   10.1001/jama.2020.4940.
   313   314   315   316   317   318   319   320   321   322   323