Page 58 - Read Online
P. 58
Page 16 of 16 Kościuszko et al. Hepatoma Res 2021;7:51 https://dx.doi.org/10.20517/2394-5079.2021.17
hepatoblastoma. Surg Oncol 2016;25:236-43. DOI PubMed
58. Janek J, Bician P, Kenderessy P, et al. [Experience with hepatoblastoma treatment in small children - the use of preoperative 3D virtual
analysis MeVis for liver resections]. Rozhl Chir 2017;96:25-33. PubMed
59. Zhao J, Zhou XJ, Zhu CZ, et al. 3D simulation assisted resection of giant hepatic mesenchymal hamartoma in children. Comput Assist
Surg (Abingdon) 2017;22:54-9. DOI PubMed
60. Wang P, Que W, Zhang M, et al. Application of 3-dimensional printing in pediatric living donor liver transplantation: a single-center
experience. Liver Transpl 2019;25:831-40. DOI PubMed
61. Esaki T, Furukawa R. [Volume measurements of post-transplanted liver of pediatric recipients using workstations and deep learning].
Nihon Hoshasen Gijutsu Gakkai Zasshi 2020;76:1133-42. DOI PubMed
62. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. Cham: Springer; 2015.
63. Ishii T, Fukumitsu K, Ogawa E, Okamoto T, Uemoto S. Living donor liver transplantation in situs inversus totalis with a patient-
specific three-dimensional printed liver model. Pediatr Transplant 2020;24:e13675. DOI PubMed
64. Czauderna P, Lopez-Terrada D, Hiyama E, Häberle B, Malogolowkin MH, Meyers RL. Hepatoblastoma state of the art: pathology,
genetics, risk stratification, and chemotherapy. Curr Opin Pediatr 2014;26:19-28. DOI PubMed
65. Meyers RL, Czauderna P, Otte JB. Surgical treatment of hepatoblastoma. Pediatr Blood Cancer 2012;59:800-8. DOI PubMed
66. Murawski M, Łosin M, Gołębiewski A, et al. Laparoscopic resection of liver tumors in children. J Pediatr Surg 2021;56:420-3. DOI
PubMed
67. Cai X. Laparoscopic liver resection: the current status and the future. Hepatobiliary Surg Nutr 2018;7:98-104. DOI PubMed PMC
68. Marescaux J, Rubino F, Arenas M, Mutter D, Soler L. Augmented-reality-assisted laparoscopic adrenalectomy. JAMA 2004;292:2214-
5. DOI PubMed
69. Haouchine N, Dequidt J, Berger M-O, Cotin S. Deformation-based augmented reality for hepatic surgery. Stud Health Technol Inform
2013;184:182-8. PubMed
70. Abdalla EK, Barnett CC, Doherty D, Curley SA, Vauthey JN. Extended hepatectomy in patients with hepatobiliary malignancies with
and without preoperative portal vein embolization. Arch Surg 2002;137:675-80; discussion 680. DOI PubMed
71. Vauthey JN, Chaoui A, Do KA, et al. Standardized measurement of the future liver remnant prior to extended liver resection:
methodology and clinical associations. Surgery 2000;127:512-9. DOI PubMed
72. Shoup M. Volumetric analysis predicts hepatic dysfunction in patients undergoing major liver resection. J Gastrointest Surg
2003;7:325-30. DOI PubMed
73. Ripley B, Levin D, Kelil T, et al. 3D printing from MRI Data: Harnessing strengths and minimizing weaknesses. J Magn Reson
Imaging 2017;45:635-45. DOI PubMed
74. van der Vorst JR, van Dam RM, van Stiphout RS, et al. Virtual liver resection and volumetric analysis of the future liver remnant using
open source image processing software. World J Surg 2010;34:2426-33. DOI PubMed PMC
75. Dello SA, Stoot JH, van Stiphout RS, et al. Prospective volumetric assessment of the liver on a personal computer by nonradiologists
prior to partial hepatectomy. World J Surg 2011;35:386-92. DOI PubMed PMC
76. Dello SA, van Dam RM, Slangen JJ, et al. Liver volumetry plug and play: do it yourself with ImageJ. World J Surg 2007;31:2215-21.
DOI PubMed PMC
77. Lodewick TM, Arnoldussen CW, Lahaye MJ, et al. Fast and accurate liver volumetry prior to hepatectomy. HPB (Oxford)
2016;18:764-72. DOI PubMed PMC
78. Ibtehaz N, Rahman MS. MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural
Netw 2020;121:74-87. DOI PubMed
79. Heimann T, van Ginneken B, Styner MA, et al. Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE
Trans Med Imaging 2009;28:1251-65. DOI PubMed
80. Tian Y, Xue F, Lambo R, et al. Fully-automated functional region annotation of liver via a 2.5D class-aware deep neural network with
spatial adaptation. Comput Methods Programs Biomed 2021;200:105818. DOI PubMed
81. Winkel DJ, Weikert TJ, Breit HC, et al. Validation of a fully automated liver segmentation algorithm using multi-scale deep
reinforcement learning and comparison versus manual segmentation. Eur J Radiol 2020;126:108918. DOI PubMed
82. Witowski JS, Coles-Black J, Zuzak TZ, et al. 3D Printing in liver surgery: a systematic review. Telemed J E Health 2017;23:943-7.
DOI PubMed
83. Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng
Online 2016;15:115. DOI PubMed PMC
84. Chen H, He Y, Jia W. Precise hepatectomy in the intelligent digital era. Int J Biol Sci 2020;16:365-73. DOI PubMed PMC
85. Gotra A, Sivakumaran L, Chartrand G, et al. Liver segmentation: indications, techniques and future directions. Insights Imaging
2017;8:377-92. DOI PubMed PMC
86. Saito Y, Sugimoto M, Imura S, et al. Intraoperative 3D hologram support with mixed reality techniques in liver surgery. Ann Surg
2020;271:e4-7. DOI PubMed
87. Elshafei M, Binder J, Baecker J, et al. Comparison of cinematic rendering and computed tomography for speed and comprehension of
surgical anatomy. JAMA Surg 2019;154:738-44. DOI PubMed PMC
88. Binder JS, Scholz M, Ellmann S, et al. Cinematic rendering in anatomy: a crossover study comparing a novel 3D reconstruction
technique to conventional computed tomography. Anat Sci Educ 2021;14:22-31. DOI PubMed
89. Chu LC, Rowe SP, Fishman EK. Cinematic rendering of focal liver masses. Diagn Interv Imaging 2019;100:467-76. DOI PubMed