Page 59 - Read Online
P. 59

Qin et al. Hepatoma Res 2020;6:24  I  http://dx.doi.org/10.20517/2394-5079.2020.04                                                Page 17 of 18


                   prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology 2012;56:1342-51.
               109. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate
                   T-cell function to promote tumoral immune escape. Cancer Res 2012;72:917-27.
               110. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med
                   1995;182:459-65.
               111.  van der Merwe PA, Bodian DL, Daenke S, Linsley P, Davis SJ. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and
                   very fast kinetics. J Exp Med 1997;185:393-403.
               112. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the
                   cell-extrinsic function of CTLA-4. Science 2011;332:600-3.
               113. Duffy AG, Ulahannan SV, Makorova-Rusher O, Rahma O, Wedemeyer H, et al. Tremelimumab in combination with ablation in
                   patients with advanced hepatocellular carcinoma. J Hepatol 2017;66:545-51.
               114. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008;26:677-704.
               115. Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 2007;19:813-24.
               116. Bardhan K, Anagnostou T, Boussiotis VA. The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation. Front Immunol
                   2016;7:550.
               117. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system
                   and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 2002;99:12293-7.
               118. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, et al. Nivolumab in patients with advanced hepatocellular carcinoma
                   (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017;389:2492-502.
               119. Kudo M, Matilla A, Santoro A, Melero I, Gracian AC, et al. Checkmate-040: Nivolumab (NIVO) in patients (pts) with advanced
                   hepatocellular carcinoma (aHCC) and Child-Pugh B (CPB) status. J Clin Oncol 2019;37:327-2.
               120. Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma
                   previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018;19:940-52.
               121. Finn RS, Ryoo BY, Merle P, Kudo M, Bouattour M, et al. Pembrolizumab as second-line therapy in patients with advanced
                   hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J Clin Oncol 2020;38:193-202.
               122. Stein S, Pishvaian MJ, Lee MS, Lee KH, Hernandez S, et al. Safety and clinical activity of 1L atezolizumab + bevacizumab in a phase
                   Ib study in hepatocellular carcinoma (HCC). J Clin Oncol 2018;36:4074-74.
               123. Xiang J, Zhang N, Sun H, Su L, Zhang C, et al. Disruption of SIRT7 Increases the Efficacy of Checkpoint Inhibitor via MEF2D
                   Regulation of PD-L1 in Hepatocellular Carcinoma Cells. Gastroenterology 2020;158:664-78.e24.
               124. Nakamoto N, Cho H, Shaked A, Olthoff K, Valiga ME, et al. Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion
                   by combined PD-1/CTLA-4 blockade. PLoS Pathog 2009;5:e1000313.
               125. Aregay A, Owusu Sekyere S, Deterding K, Port K, Dietz J, et al. Elimination of hepatitis C virus has limited impact on the functional
                   and mitochondrial impairment of HCV-specific CD8  T cell responses. J Hepatol 2019;71:889-99.
                                                     +
               126. Stein S, Pishvaian MJ, Lee MS, Lee KH, Hernandez S, et al. Safety and clinical activity of 1L atezolizumab plus bevacizumab in a
                   phase Ib study in hepatocellular carcinoma (HCC). J Clin Oncol 2018;36.
               127. Baxi S, Yang A, Gennarelli RL, Khan N, Wang Z, et al. Immune-related adverse events for anti-PD-1 and anti-PD-L1 drugs:
                   systematic review and meta-analysis. BMJ 2018;360:k793.
               128. Moslehi JJ, Salem JE, Sosman JA, Lebrun-Vignes B, Johnson DB. Increased reporting of fatal immune checkpoint inhibitor-associated
                   myocarditis. Lancet 2018;391:933.
               129. Chmielewski M, Hombach AA, Abken H. Antigen-specific T-cell activation independently of the MHC: chimeric antigen receptor-
                   redirected T cells. Front Immunol 2013;4:371.
               130. Ramos CA, Dotti G. Chimeric antigen receptor (CAR)-engineered lymphocytes for cancer therapy. Expert Opin Biol Ther
                   2011;11:855-73.
               131. Gao HP, Li KS, Tu H, Pan XR, Jiang H, et al. Development of T cells redirected to glypican-3 for the treatment of hepatocellular
                   carcinoma. Clin Cancer Res 2014;20:6418-28.
               132. Liu Y, Di S, Shi B, Zhang H, Wang Y, et al. Armored inducible expression of IL-12 enhances antitumor activity of glypican-3-targeted
                   chimeric antigen receptor-engineered T cells in hepatocellular carcinoma. J Immunol 2019;203:198-207.
               133. Chen C, Li K, Jiang H, Song F, Gao H, et al. Development of T cells carrying two complementary chimeric antigen receptors
                   against glypican-3 and asialoglycoprotein receptor 1 for the treatment of hepatocellular carcinoma. Cancer Immunol Immunother
                   2017;66:475-89.
               134. Zhai B, Shi D, Gao H, Qi X, Jiang H, et al. A phase I study of anti-GPC3 chimeric antigen receptor modified T cells (GPC3 CAR-T)
                                                     +
                                                                             +
                   in Chinese patients with refractory or relapsed GPC3  hepatocellular carcinoma (r/r GPC3  HCC). J Clin Oncol 2017;35:3049-49.
               135. MacKay M, Afshinnekoo E, Rub J, Hassan C, Khunte M, et al. The therapeutic landscape for cells engineered with chimeric antigen
                   receptors. Nat Biotechnol 2020;38:233-44.
               136. Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin
                   Oncol 2020;17:147-67.
               137. Gao XC, Mi YJ, Guo N, Xu H, Xu LX, et al. Cytokine-induced killer cells as pharmacological tools for cancer immunotherapy. Front
                   Immunol 2017;8:774.
               138. Mata-Molanes JJ, Gonzalez MS, Jimenez BV, Navarro EMM, Masllorens AB. Cancer immunotherapy with cytokine-induced killer
                   cells. Target Oncol 2017;12:289-99.
               139. Pan QZ, Wang QJ, Dan JQ, Pan K, Li YQ, et al. A nomogram for predicting the benefit of adjuvant cytokine-induced killer cell
                   immunotherapy in patients with hepatocellular carcinoma. Sci Rep 2015;5:9202.
               140. Lee JH, Lee JH, Lim YS, Yeon JE, Song TJ, et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for
   54   55   56   57   58   59   60   61   62   63   64