Page 71 - Read Online
P. 71

Balsano et al. Hepatoma Res 2018;4:38  I  http://dx.doi.org/10.20517/2394-5079.2018.51                                         Page 11 of 12


                   from steatosis to hepatocarcinoma. Biomed Res Int 2014;2014:741465.
               51.  Becker PP, Rau M, Schmitt J, Malsch C, Hammer C, Bantel H, Müllhaupt B, Geier A. Performance of serum microRNAs -122, -192 and
                   -21 as biomarkers in patients with non-alcoholic steatohepatitis. PLoS One 2015;10:e0142661.
               52.  Yamada H, Suzuki K, Ichino N, Ando Y, Sawada A, Osakabe K, Sugimoto K, Ohashi K, Teradaira R, Inoue T, Hamajima N, Hashimoto
                   S. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta
                   2013;424:99-103.
               53.  Wang Y, Zhu K, Yu W, Wang H, Liu L, Wu Q, Li S, Guo J. MiR-181b regulates steatosis in nonalcoholic fatty liver disease via targeting
                   SIRT1. Biochem Biophys Res Commun 2017;493:227-32.
               54.  Jampoka K, Muangpaisarn P, Khongnomnan K, Treeprasertsuk S, Tangkijvanich P, Payungporn S. Serum miR-29a and miR-122 as potential
                   biomarkers for non-alcoholic fatty liver disease (NAFLD). Microrna 2018; doi: 10.2174/2211536607666180531093302.
               55.  Latorre J, Moreno-Navarrete JM, Mercader JM, Sabater M, Rovira Ò, Gironès J, Ricart W, Fernández-Real JM, Ortega FJ. Decreased lipid
                   metabolism but increased FA biosynthesis are coupled with changes in liver microRNAs in obese subjects with NAFLD. Int J Obes (Lond)
                   2017;41:620-30.
               56.  Wang L, Zhang N, Wang Z, Ai DM, Cao ZY, Pan HP. Decreased miR-155 level in the peripheral blood of non-alcoholic fatty liver disease
                   patients may serve as a biomarker and may influence LXR activity. Cell Physiol Biochem 2016;39:2239-48.
               57.  Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, Kellum JM, Min H, Luketic VA, Sanyal AJ. Nonalcoholic steatohepatitis is
                   associated with altered hepatic microRNA expression. Hepatology 2008;48:1810-20.
               58.  Hur W, Lee JH, Kim SW, Kim JH, Bae SH, Kim M, Hwang D, Kim YS, Park T, Um SJ, Song BJ, Yoon SK. Downregulation of
                   microRNA-451 in non-alcoholic steatohepatitis inhibits fatty acid-induced proinflammatory cytokine production through the AMPK/AKT
                   pathway. Int J Biochem Cell Biol 2015;64:265-76.
               59.  Sharma H, Estep M, Birerdinc A, Afendy A, Moazzez A, Elariny H, Goodman Z, Chandhoke V, Baranova A, Younossi ZM. Expression of
                   genes for microRNA-processing enzymes is altered in advanced non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2013;28:1410-5.
               60.  Vega-Badillo J, Gutiérrez-Vidal R, Hernández-Pérez HA, Villamil-Ramírez H, León-Mimila P, Sánchez-Muñoz F, Morán-Ramos S,
                   Larrieta-Carrasco E, Fernández-Silva I, Méndez-Sánchez N, Tovar AR, Campos-Pérez F, Villarreal-Molina T, Hernández-Pando R, Aguilar-
                   Salinas CA, Canizales-Quinteros S. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly
                   obese subjects. Liver Int 2016;36:1383-91.
               61.  Mohamed AA, Ali-Eldin ZA, Elbedewy TA, El-Serafy M, Ali-Eldin FA, AbdelAziz H. MicroRNAs and clinical implications in
                   hepatocellular carcinoma. World J Hepatol 2017;9:1001-7.
               62.  De Conti A, Ortega JF, Tryndyak V, Dreval K, Moreno FS, Rusyn I, Beland FA, Pogribny IP. MicroRNA deregulation in nonalcoholic
                   steatohepatitis-associated liver carcinogenesis. Oncotarget 2017;8:88517-28.
               63.  Ge W, Yu DC, Li QG, Chen X, Zhang CY, Ding YT. Expression of serum miR-16, let-7f, and miR-21 in patients with hepatocellular
                   carcinoma and their clinical significances. Clin Lab 2014;60:427-34.
               64.  Karakatsanis A, Papaconstantinou I, Gazouli M, Lyberopoulou A, Polymeneas G, Voros D. Expression of microRNAs, miR-21, miR-
                   31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic
                   cholangiocarcinoma and its prognostic significance. Mol Carcinog 2013;52:297-303.
               65.  Ashmawy AM, Elgeshy KM, Abdel Salam ET, Ghareeb M, Kobaisi MH, Amin HAA, Sharawy SK, Abdel Wahab AHA. Crosstalk between
                   liver-related microRNAs and Wnt/β-catenin pathway in hepatocellular carcinoma patients. Arab J Gastroenterol 2017;18:144-50.
               66.  Wang F, Dai M, Chen H, Li Y, Zhang J, Zou Z, Yang H. Prognostic value of hsa-mir-299 and hsa-mir-7706 in hepatocellular carcinoma.
                   Oncol Lett 2018;16:815-20.
               67.  An Y, Gao S, Zhao WC, Qiu BA, Xia NX, Zhang PJ, Fan ZP. Novel serum microRNAs panel on the diagnostic and prognostic implications
                   of hepatocellular carcinoma. World J Gastroenterol 2018;24:2596-604.
               68.  Porcu C, Antonucci L, Barbaro B, Illi B, Nasi S, Martini M, Licata A, Miele L, Grieco A, Balsano C. Copper/MYC/CTR1 interplay: a
                   dangerous relationship in hepatocellular carcinoma. Oncotarget 2018;9:9325-43.
               69.  Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV. Iron and cancer: recent insights. Ann N Y Acad Sci 2016;1368:149-61.
               70.  Tirnitz-Parker JE, Glanfield A, Olynyk JK, Ramm GA. Iron and hepatic carcinogenesis. Crit Rev Oncog 2013;18:391-407.
               71.  Antonucci L, Porcu C, Iannucci G, Balsano C, Barbaro B. Non-alcoholic fatty liver disease and nutritional implications: special focus on
                   Copper. Nutrients 2017;9:E1137.
               72.  Tarantino G, Porcu C, Arciello M, Andreozzi P, Balsano C. Prediction of carotid intima-media thickness in obese patients with low
                   prevalence of comorbidities by serum copper bioavailability. J Gastroenterol Hepatol 2018;33:1511-7.
               73.  Marshall KM, Laval M, Estacio O, Hudson DF, Kalitsis P, Shulkes A, Baldwin GS, Patel O. Activation by zinc of the human gastrin gene
                   promoter in colon cancer cells in vitro and in vivo. Metallomics 2015;7:1390-8.
               74.  Ranasinghe WK, Baldwin GS, Bolton D, Shulkes A, Ischia J, Patel O. HIF1alpha expression under normoxia in prostate cancer--which
                   pathways to target? J Urol 2015;193:763-70.
               75.  Alam S, Kelleher SL. Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the
                   development and progression of breast cancer. Nutrients 2012;4:875-903.
               76.  Sorrentino P, D’Angelo S, Ferbo U, Micheli P, Bracigliano A, Vecchione R. Liver iron excess in patients with hepatocellular carcinoma
                   developed on non-alcoholic steato-hepatitis. J Hepatol 2009;50:351-7.
               77.  Fargion S, Valenti L, Fracanzani AL. Role of iron in hepatocellular carcinoma. Clin Liv Dis 2014;3:108-10.
               78.  Ye Q, Qian BX, Yin WL, Wang FM, Han T. Association between the HFE C282Y, H63D polymorphisms and the risks of non-alcoholic
                   fatty liver disease, liver cirrhosis and hepatocellular carcinoma: an updated systematic review and meta-analysis of 5,758 cases and 14,741
                   controls. PLoS One 2016;11:e0163423.
               79.  Yao M, Wang L, Leung PSC, Li Y, Liu S, Wang L, Guo X, Zhou G, Yan Y, Guan G, Chen X, Bowlus CL, Liu T, Jia J, Gershwin ME, Ma X,
                   Zhao J, Lu F. The clinical significance of GP73 in immunologically mediated chronic liver diseases: experimental data and literature review.
                   Clin Rev Allergy Immunol 2018;54:282-94.
   66   67   68   69   70   71   72   73   74   75   76