Page 98 - Read Online
P. 98
Kouroumalis et al. Hepatoma Res 2018;4:34 I http://dx.doi.org/10.20517/2394-5079.2018.33 Page 15 of 18
48. War SA, Kumar U. Coexpression of human somatostatin receptor-2 (SSTR2) and SSTR3 modulates antiproliferative signaling and
apoptosis. J Mol Signal 2012;7:5.
49. Grant M, Alturaihi H, Jaquet P, Collier B, Kumar U. Cell growth inhibition and functioning of human somatostatin receptor type 2 are
modulated by receptor heterodimerization. Mol Endocrinol 2008;22:2278-92.
50. Teijeiro R, Rios R, Costoja J, Castro R, Bello J, Devesi J, Arce V. Activation of human somatostatin receptor 2 promotes apoptosis
through a mechanism that is independent from induction of p53. Cell Physiol Biochem 2002;12:31-8.
51. Lasfer M, Vadrot N, Schally AV, Nagy A, Halmos G, Pessayre D, Feldmann G, Reyl-Desmars FJ. Potent induction of apoptosis in
human hepatoma cell lines by targeted cytotoxic somatostatin analogue AN-238. J Hepatol 2005;42:230-7.
52. Theodoropoulou M, Zhang J, Laupheimer S, Paez-Pereda M, Florio T Pagotto U, Stalla G. Octreotide, a somatostatin analogue,
mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac1
expression. Cancer Res 2006;66:1576-82.
53. Tsagarakis NJ, Drygiannakis I, Batistakis AG, Kolios G, Kouroumalis EA. Octreotide induces caspase activation and apoptosis in
human hepatoma HepG2 cells. World J Gastroenterol 2011;17:313-21.
54. Ma Q, Meng LQ, Liu JC, Hu JP, Ge J, Wan YL, Jiang S. Octreotide induces apoptosis of human hepatoma cells by the mechanism of
facilitating the Fas/FasL gene expression therein. Zhonghua Yi Xue Za Zhi 2008;88:716-8. (in Chinese)
55. Notas G, Kampa M, Nifli AP, Xidaki C, Papasava D, Thermos K, Kouroumalis E, Castanas E. The inhibitory effect of opioids on
HepG2 cells is mediated via interaction with somatostatin receptors. Eur J Pharmacol 2007;555:1-7.
56. Avella DM, Kimchi ET, Donahue RN, Tagaram RS, McLaughlin PJ, Zagon IS, Staveley-O’Carrol KF. The opioid growth factor-
opioid growth factor receptor axis regulates cell proliferation of human hepatocellular cancer. Am J Physiol Regul Integr Comp Physiol
2010;298:R459-66.
57. Ren SG, Ezzat S, Melmed S, Braunstein GD. Somatostatin analog induces insulin-like growth factor binding protein-1 (IGFBP-1)
expression in human hepatoma cells. Endocrinology 1992;131:2479-81.
58. Scharf JG, Dombrowski F, Ramadori G. The IGF axis and hepatocarcinogenesis. Mol Pathol 2001;54:138-44.
59. Huynh H, Chow P, Ooi L, Soo K. A possible role for insulin-like growth factor binding protein-3 autocrine/paracrine loops in controlling
hepatocellular carcinoma cell proliferation. Cell Growth Differ 2002;13:115-22.
60. Scharf JG, Braulke T. The role of the IGF axis in hepatocarcinogenesis. Horm Metab Res 2003;35:685-93.
61. Alexia C, Fallot G, Lasfer M, Schweizer-Groyer G, Groyer A. An evaluation of the role of insulin-like growth factors (IGF) and of
type-I IGF receptor signalling in hepatocarcinogenesis and in the resistance of hepatocarcinoma cells against drug-induced apoptosis.
Biochem Pharmacol 2004;68:1003-15.
62. Pivonello C, de Martino MC, Negri M, Cuomo G, Cariati F, Izzo F, Colao A, Pivonello R. The GH-IGF-SST system in hepatocellular
carcinoma: biological and molecular pathogenetic mechanisms and therapeutic targets. Infect Agent Cancer 2014;9:27.
63. Hasskarl J, Kaufmann M, Schmid HA. Somatostatin receptors in non-neuroendocrine malignancies: the potential role of somatostatin
analogs in solid tumors. Future Oncol 2011;7:895-913.
64. Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003;3:11-22.
65. Hwang YH, Choi JY, Kim S, Chung ES, Kim T, Koh SS, Lee B, Bae SH, Kim J, Park YM. Over-expression of c-raf-1 protooncogene in
liver cirrhosis and hepatocellular carcinoma. Hepatol Res 2004;29:113-21.
66. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene
2007;26:3291-310.
67. Caraglia M, Tassone P, Marra M, Budillon A, Venuta S, Tagliaferri P. Targeting Raf-kinase: molecular rationales and translational issues.
Ann Oncol 2006;17:124-7.
68. Bousquet C, Guillermet J, Vernejoul F, Lahlou H, Buscail L, Susini C. Somatostatin receptors and regulation of cell proliferation. Dig
Liver Dis 2004;36:S2-7.
69. Adams RL, Adams IP, Lindow SW, Zhong W, Atkin SL. Somatostatin receptors 2 and 5 are preferentially expressed in proliferating
endothelium. Br J Cancer 2005;92:1493-8.
70. Jia WD, Xu GL, Sun HC, Wang L, Xu RN, Xue Q. Effect of octreotide on angiogenesis induced by hepatocellular carcinoma in vivo.
Hepatobiliary Pancreat Dis Int 2003;2:404-9.
71. Jia WD, Xu GL, Xu RN, Sun HC, Wang L, Yu JH, Wang J, Li JS, Zhai ZM, Xue Q. Octreotide acts as an antitumor angiogenesis
compound and suppresses tumor growth in nude mice bearing human hepatocellular carcinoma xenografts. J Cancer Res Clin Oncol
2003;129:327-34.
72. Garcia de la Torre N, Wass JA, Turner HE. Antiangiogenic effects of somatostatin analogues. Clin Endocrinol 2002;57:425-41.
73. Ristori C, Ferretti ME, Pavan B, Cervellati F, Casini G, Catalani E, Dal Monte M, Biondi C. Adenylyl cyclase/cAMP system
involvement in the antiangiogenic effect of somatostatin in the retina. Results from transgenic mice. Neurochem Res 2008;33:1247-55.
74. Gao JH, Wen SL, Feng S, Yang WJ, Lu YY, Tong H, Liu R, Tang SH, Huang ZY, Tang YM, Yang JH, Xie HQ, Tang CW. Celecoxib and
octreotide synergistically ameliorate portal hypertension via inhibition of angiogenesis in cirrhotic rats. Angiogenesis 2016;19:501-11.
75. Lamberts SW, de Herder WW, Hofland LJ. Somatostatin analogs in the diagnosis and treatment of cancer. Trends Endocrinol Metab
2002;13:451-7.
76. Lattuada D, Casnici C, Crotta K, Mastrotto C, Franco P, Schmid HA, Marelli O. Inhibitory effect of pasireotide and octreotide on
lymphocyte activation. J Neuroimmunol 2007;182:153-9.
77. Dalm VASH, Hofland LJ, Lamberts SW. Future clinical prospects in somatostatin/cortistatin/somatostatin receptor field. Mol Cell
Endocrinol 2008;286:262-77.