Page 81 - Read Online
P. 81

Page 8 of 10       Chidambaranathan-Reghupaty et al. Hepatoma Res 2018;4:32  I  http://dx.doi.org/10.20517/2394-5079.2018.34


               Conflicts of interest
               All authors declare that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2018.


               REFERENCES
               1.   Sanyal AJ, Yoon SK, Lencioni R. The etiology of hepatocellular carcinoma and consequences for treatment. Oncologist 2010;15 Suppl
                   4:14-22.
               2.   El-Serag HB, Kanwal F. Epidemiology of hepatocellular carcinoma in the United States: where are we? Where do we go? Hepatology
                   2014;60:1767-75.
               3.   Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C,
                   Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J;
                   SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378-90.
               4.   Tovoli F, Granito A, De Lorenzo S, Bolondi L. Regorafenib for the treatment of hepatocellular carcinoma. Drugs Today (Barc) 2018;54:5-
                   13.
               5.   Sun W, Cabrera R. Systemic treatment of patients with advanced, unresectable hepatocellular carcinoma: emergence of therapies. J
                   Gastrointest Cancer 2018;49:107-15.
               6.   Di Costanzo GG, Casadei Gardini A, Marisi G, Foschi FG, Scartozzi M, Granata R, Faloppi L, Cascinu S, Silvestris N, Brunetti O,
                   Palmieri VO, Ercolani G, Tortora R. Validation of a simple scoring system to predict sorafenib effectiveness in patients with hepatocellular
                   carcinoma. Target Oncol 2017;12:795-803.
               7.   El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling THR, Meyer T, Kang YK, Yeo W,
                   Chopra A, Anderson J, Dela Cruz C, Lang L, Neely J, Tang H, Dastani HB, Melero I. Nivolumab in patients with advanced hepatocellular
                   carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017;389:2492-502.
               8.   Tong X, Drapkin R, Yalamanchili R, Mosialos G, Kieff E. The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a
                   novel cellular coactivator that can interact with TFIIE. Mol Cell Biol 1995;15:4735-44.
               9.   Callebaut I, Mornon JP. The human EBNA-2 coactivator p100: multidomain organization and relationship to the staphylococcal nuclease
                   fold and to the tudor protein involved in Drosophila melanogaster development. Biochem J 1997;321:125-32.
               10.  Broadhurst MK, Lee RS, Hawkins S, Wheeler TT. The p100 EBNA-2 coactivator: a highly conserved protein found in a range of exocrine
                   and endocrine cells and tissues in cattle. Biochim Biophys Acta 2005;1681:126-33.
               11.  Abe S, Wang PL, Takahashi F, Sasaki E. Structural analysis of cDNAs coding for 4SNc-Tudor domain protein from fish and their expression
                   in yellowtail organs. Mar Biotechnol (NY) 2005;7:677-86.
               12.  Howard-Till RA, Yao MC. Tudor nuclease genes and programmed DNA rearrangements in Tetrahymena thermophila. Eukaryot Cell
                   2007;6:1795-804.
               13.  Armengol S, Arretxe E, Rodriguez L, Ochoa B, Chico Y, Martinez MJ. NF-kappaB, Sp1 and NF-Y as transcriptional regulators of human
                   SND1 gene. Biochimie 2013;95:735-42.
               14.  Rodriguez L, Bartolome N, Ochoa B, Martinez MJ. Isolation and characterization of the rat SND p102 gene promoter: putative role for
                   nuclear factor-Y in regulation of transcription. Ann N Y Acad Sci 2006;1091:282-95.
               15.  Rodriguez L, Ochoa B, Martinez MJ. NF-Y and Sp1 are involved in transcriptional regulation of rat SND p102 gene. Biochem Biophys Res
                   Commun 2007;356:226-32.
               16.  Armengol S, Arretxe E, Enzunza L, Llorente I, Mendibil U, Navarro-Imaz H, Ochoa B, Chico Y, Martinez MJ. SREBP-2-driven
                   transcriptional activation of human SND1 oncogene. Oncotarget 2017;8:108181-94.
               17.  Yu L, Liu X, Cui K, Di Y, Xin L, Sun X, Zhang W, Yang X, Wei M, Yao Z, Yang J. SND1 acts downstream of TGFbeta1 and upstream of
                   Smurf1 to promote breast cancer metastasis. Cancer Res 2015;75:1275-86.
               18.  Yang J, Aittomaki S, Pesu M, Carter K, Saarinen J, Kalkkinen N, Kieff E, Silvennoinen O. Identification of p100 as a coactivator for STAT6
                   that bridges STAT6 with RNA polymerase II. EMBO J 2002;21:4950-8.
               19.  Paukku K, Yang J, Silvennoinen O. Tudor and nuclease-like domains containing protein p100 function as coactivators for signal transducer
                   and activator of transcription 5. Mol Endocrinol 2003;17:1805-14.
               20.  Leverson JD, Koskinen PJ, Orrico FC, Rainio EM, Jalkanen KJ, Dash AB, Eisenman RN, Ness SA. Pim-1 kinase and p100 cooperate to
                   enhance c-Myb activity. Mol Cell 1998;2:417-25.
               21.  Yang J, Valineva T, Hong J, Bu T, Yao Z, Jensen ON, Frilander MJ, Silvennoinen O. Transcriptional co-activator protein p100 interacts with
                   snRNP proteins and facilitates the assembly of the spliceosome. Nucleic Acids Res 2007;35:4485-94.
               22.  Paukku K, Kalkkinen N, Silvennoinen O, Kontula KK, Lehtonen JY. p100 increases AT1R expression through interaction with AT1R 3’-UTR.
                   Nucleic Acids Res 2008;36:4474-87.
   76   77   78   79   80   81   82   83   84   85   86