Page 17 - Read Online
P. 17
Ma et al. Complex Eng Syst 2023;3:10 I http://dx.doi.org/10.20517/ces.2023.14 Page 13 of 14
Data result analysis: Ge C
Supervision and modification: Liu H
Availability of data and materials
Not applicable.
Financial support and sponsorship
This work was supported in part by the National Natural Science Foundation of China (62073212), Natu-
ral Science Foundation of Shanghai (23ZR1426600), and Innovation Fund of Chinese Universities Industry-
University-Research (2021ZYB05004).
Conflicts of interest
All authors declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2023.
REFERENCES
1. Panahandeh P, Alipour K, Tarvirdizadeh B, Hadi A. A kinematic Lyapunov-based controller to posture stabilization of wheeled mobile
robots. Mech Syst Signal Pr 2019;134:1–19. DOI
2. Huang H, Li Y, Bai Q. An improved a star algorithm for wheeled robots path planning with jump points search and pruning method.
Complex Eng Syst 2022;2:11. DOI
3. Kanayama Y, Kimura Y, Miyazaki F, Noguchi T. A stable tracking control method for an autonomous mobile robot. In: Proceedings.,
IEEE International Conference on Robotics and Automation; 1990;1. pp. 384–89. DOI
4. Fierro R, Lewis F. Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. In: Proceedings of 1995 34th IEEE
Conference on Decision and Control; 1995;4. pp. 3805–10. DOI
5. Bloch A. Nonholonomic mechanics and control. Interdisciplinary Applied Mathematics. New York, NY: Springer; 2003. DOI
6. Murray R, Sastry S. Nonholonomic motion planning: steering using sinusoids. IEEE Trans Automat Contr 1993;38:700–16. DOI
7. Tayebi A, Tadjine M, Rachid A. Invariant manifold approach for the stabilization of nonholonomic chained systems: Application to a
mobile robot. Nonlinear Dynam 2001;24:167–81. DOI
8. Wang X, Zhang G, Neri F, et al. Design and implementation of membrane controllers for trajectory tracking of nonholonomic wheeled
mobile robots. Integr Comput-Aid E 2016;23:15–30. DOI
9. Zhai J, Song Z. Adaptive sliding mode trajectory tracking control for wheeled mobile robots. Int J Control 2019;92:2255–62. DOI
10. Ou M, Sun H, Zhang Z, Li L. Fixed-time trajectory tracking control for multiple nonholonomic mobile robots. T I Meas Control
2021;43:1596–608. DOI
11. Li B, Zhang H, Xiao B, Wang C, Yang Y. Fixed-time integral sliding mode control of a high-order nonlinear system. Nonlinear Dynam
2022;107:909–20. DOI
12. Liu Q, Cai Z, Chen J, Jiang B. Observer-based integral sliding mode control of nonlinear systems with application to single-link flexible
joint robotics. Complex Eng Syst 2021;1:8. DOI
13. Zhang Z, Leibold M, Wollherr D. Integral sliding-mode observer-based disturbance estimation for euler–lagrangian systems. IEEE Trans
Contr Syst T 2020;28:2377–89. DOI
14. Li B, Hu Q, Yang Y. Continuous finite-time extended state observer based fault tolerant control for attitude stabilization. Aerosp Sci
Technol 2019;84:204–13. DOI
15. Zhang H, Li B, Xiao B, Yang Y, Ling J. Nonsingular recursive-structure sliding mode control for high-order nonlinear systems and an
application in a wheeled mobile robot. ISA T 2022;130:553–64. DOI
16. Chevillard S. The functions erf and erfc computed with arbitrary precision and explicit error bounds. Inform Comput 2012;216:72–95.
DOI
17. Eltayeb A, Rahmat M, Basri MAM, Mahmoud MS. An improved design of integral sliding mode controller for chattering attenuation and
trajectory tracking of the quadrotor UAV. Arab J Sci Eng 2020;45:6949–61. DOI