Page 94 - Read Online
P. 94
Schwarzenbach et al. Cancer Drug Resist 2019;2:271-96 I http://dx.doi.org/10.20517/cdr.2019.010 Page 293
68. Salome M, Campos J, Keeshan K. TRIB2 and the ubiquitin proteasome system in cancer. Biochem Soc Trans 2015;43:1089-94.
69. Zhang S, Xie C. The role of OXCT1 in the pathogenesis of cancer as a rate-limiting enzyme of ketone body metabolism. Life Sci
2017;183:110-5.
70. Berchuck A, Iversen ES, Luo J, Clarke JP, Horne H, et al. Microarray analysis of early stage serous ovarian cancers shows profiles
predictive of favorable outcome. Clin Cancer Res 2009;15:2448-55.
71. Lee PS, Teaberry VS, Bland AE, Huang Z, Whitaker RS, et al. Elevated MAL expression is accompanied by promoter hypomethylation
and platinum resistance in epithelial ovarian cancer. Int J Cancer 2010;126:1378-89.
72. Yamamoto N, Naraparaju VR, Moore M, Brent LH. Deglycosylation of serum vitamin D3-binding protein by alpha-N-
acetylgalactosaminidase detected in the plasma of patients with systemic lupus erythematosus. Clin Immunol Immunopathol
1997;82:290-8.
73. Fang Y, Shen X. Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications. Cancer Metastasis
Rev 2017;36:669-82.
74. Garcia MJ, Benitez J. The Fanconi anaemia/BRCA pathway and cancer susceptibility. Searching for new therapeutic targets. Clin Transl
Oncol 2008;10:78-84.
75. Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 2009;15:1126-32.
76. Karaca B, Atmaca H, Bozkurt E, Kisim A, Uzunoglu S, et al. Combination of AT-101/cisplatin overcomes chemoresistance by inducing
apoptosis and modulating epigenetics in human ovarian cancer cells. Mol Biol Rep 2013;40:3925-33.
77. Geisler JP, Hatterman-Zogg MA, Rathe JA, Buller RE. Frequency of BRCA1 dysfunction in ovarian cancer. J Natl Cancer Inst
2002;94:61-7.
78. Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, et al. Whole-genome characterization of chemoresistant ovarian
cancer. Nature 2015;521:489-94.
79. Fang F, Balch C, Schilder J, Breen T, Zhang S, et al. A phase 1 and pharmacodynamic study of decitabine in combination with carboplatin
in patients with recurrent, platinum-resistant, epithelial ovarian cancer. Cancer 2010;116:4043-53.
80. Fu S, Hu W, Iyer R, Kavanagh JJ, Coleman RL, et al. Phase 1b-2a study to reverse platinum resistance through use of a hypomethylating
agent, azacitidine, in patients with platinum-resistant or platinum-refractory epithelial ovarian cancer. Cancer 2011;117:1661-9.
81. Li S, Wei X, He J, Tian X, Yuan S, et al. Plasminogen activator inhibitor-1 in cancer research. Biomed Pharmacother 2018;105:83-94.
82. Pan JX, Qu F, Wang FF, Xu J, Mu LS, et al. Aberrant SERPINE1 DNA methylation is involved in carboplatin induced epithelial-
mesenchymal transition in epithelial ovarian cancer. Arch Gynecol Obstet 2017;296:1145-52.
83. Glasspool RM, Brown R, Gore ME, Rustin GJ, McNeish IA, et al. A randomised, phase II trial of the DNA-hypomethylating agent
5-aza-2'-deoxycytidine (decitabine) in combination with carboplatin vs carboplatin alone in patients with recurrent, partially platinum-
sensitive ovarian cancer. Br J Cancer 2014;110:1923-9.
84. Morris SM, Jr. Enzymes of arginine metabolism. J Nutr 2004;134:2743S-7; discussion 2765S-7.
85. Delage B, Fennell DA, Nicholson L, McNeish I, Lemoine NR, et al. Arginine deprivation and argininosuccinate synthetase expression
in the treatment of cancer. Int J Cancer 2010;126:2762-72.
86. Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB. Metals and breast cancer. J Mammary Gland Biol Neoplasia 2013;18:63-73.
87. Aebi S, Christen R, Naredi P, Cenni B, Fink D, et al. Synergy between cisplatin and an inhibitor of S-adenosylmethionine dependent
transmethylation in human ovarian adenocarcinoma cells. Int J Oncol 1997;11:869-74.
88. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41-5.
89. Maradeo ME, Cairns P. Translational application of epigenetic alterations: ovarian cancer as a model. FEBS Lett 2011;585:2112-20.
90. Nguyen HT, Tian G, Murph MM. Molecular epigenetics in the management of ovarian cancer: are we investigating a rational clinical
promise? Front Oncol 2014;4:71.
91. Wischnewski F, Pantel K, Schwarzenbach H. Promoter demethylation and histone acetylation mediate gene expression of MAGE-A1,
-A2, -A3, and -A12 in human cancer cells. Mol Cancer Res 2006;4:339-49.
92. Cacan E, Ali MW, Boyd NH, Hooks SB, Greer SF. Inhibition of HDAC1 and DNMT1 modulate RGS10 expression and decrease ovarian
cancer chemoresistance. PLoS One 2014;9:e87455.
93. Steele N, Finn P, Brown R, Plumb JA. Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression
and drug sensitivity in vivo. Br J Cancer 2009;100:758-63.
94. Liu X, Yu Y, Zhang J, Lu C, Wang L, et al. HDAC1 silencing in ovarian cancer enhances the chemotherapy response. Cell Physiol
Biochem 2018;48:1505-18.
95. Cacan E. Histone Deacetylase-1-mediated Suppression of FAS in Chemoresistant Ovarian Cancer Cells. Anticancer Res 2016;36:2819-26.
96. Hulin-Curtis SL, Davies JA, Jones R, Hudson E, Hanna L, et al. Histone deacetylase inhibitor trichostatin A sensitises cisplatin-
resistant ovarian cancer cells to oncolytic adenovirus. Oncotarget 2018;9:26328-41.
97. Falchook GS, Fu S, Naing A, Hong DS, Hu W, et al. Methylation and histone deacetylase inhibition in combination with platinum
treatment in patients with advanced malignancies. Invest New Drugs 2013;31:1192-200.
98. Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell 2016;29:452-63.
99. Piletic K, Kunej T. MicroRNA epigenetic signatures in human disease. Arch Toxicol 2016;90:2405-19.
100. Calin GA, Croce CM. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 2006;66:7390-4.
101. Moreno-Moya JM, Vilella F, Simon C. MicroRNA: key gene expression regulators. Fertil Steril 2014;101:1516-23.
102. Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell 2006;11:441-50.
103. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting