Page 81 - Read Online
P. 81

Tucker et al. Cancer Drug Resist 2019;2:803-12  I  http://dx.doi.org/10.20517/cdr.2019.09                                                 Page 811

                   tumors or leukemia: children’s oncology group phase I and pilot consortium (ADVL0921). Clin Cancer Res 2019;25:3229-38.
               17.  Moreno L, Marshall LV, Pearson AD, Morland B, Elliott M, et al. A phase I trial of AT9283 (a selective inhibitor of aurora kinases) in
                   children and adolescents with solid tumors: a Cancer Research UK study. Clin Cancer Res 2015;21:267-73.
               18.  Durbin AD, Zimmerman MW, Dharia NV, Abraham BJ, Iniguez AB, et al. Selective gene dependencies in MYCN-amplified
                   neuroblastoma include the core transcriptional regulatory circuitry. Nat Genet 2018;50:1240-46.
               19.  Puissant A, Frumm SM, Alexe G, Bassil CF, Qi J, et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer
                   Discov 2013;3:308-23.
               20.  Yang Z, He N, Zhou Q. Brd4 recruits P-TEFb to chromosomes at late mitosis to promote G1 gene expression and cell cycle
                   progression. Mol Cell Biol, 2008;28:967-76.
               21.  Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell
                   2013;153:320-34.
               22.  Henssen A, Althoff K, Odersky A, Beckers A, Koche R, et al. Targeting MYCN-driven transcription by BET-bromodomain inhibition.
                   Clin Cancer Res 2016;22:2470-81.
               23.  Chipumuro E, Marco E, Christensen CL, N. Kwiatkowski N, Zhang T, et al. CDK7 inhibition suppresses super-enhancer-linked
                   oncogenic transcription in MYCN-driven cancer. Cell 2014;159:1126-39.
               24.  Lucking U, Scholz A, Lienau P, Siemeister G, Kosemund D, et al. Identification of atuveciclib (BAY 1143572), the first highly
                   selective, clinical PTEFb/CDK9 inhibitor for the treatment of cancer. ChemMedChem, 2017;12:1776-93.
               25.  Walton MI, Eve PD, Hayes A, Valenti MR, De Haven Brandon AK, et al. CCT244747 is a novel potent and selective CHK1 inhibitor
                   with oral efficacy alone and in combination with genotoxic anticancer drugs. Clin Cancer Res 2012;18:5650-61.
               26.  Dolman ME, Poon E, Ebus ME, den Hartog IJ, van Noesel CJ, et al. Cyclin-dependent kinase inhibitor AT7519 as a potential drug for
                   MYCN-dependent neuroblastoma. Clin Cancer Res, 2015;21:5100-9.
               27.  Ham J, Costa C, Sano R, Lochmann TL, Sennott EM, et al. Exploitation of the apoptosis-primed state of MYCN-amplified
                   neuroblastoma to develop a potent and specific targeted therapy combination. Cancer Cell 2016;29:159-72.
               28.  Wang H, Hong B, Li X, Deng K, Li H, et al. JQ1 synergizes with the Bcl-2 inhibitor ABT-263 against MYCN-amplified small cell lung
                   cancer. Oncotarget 2017;8:86312-24.
               29.  Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, et al. Identification of ALK as a major familial neuroblastoma predisposition
                   gene. Nature 2008;455:930-5.
               30.  Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, et al. Somatic and germline activating mutations of the ALK
                   kinase receptor in neuroblastoma. Nature 2008;455:967-70.
               31.  Mosse YP, Lim MS, Voss SD, Wilner K, Ruffner K, et al. Safety and activity of crizotinib for paediatric patients with refractory solid
                   tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol 2013;14:472-80.
               32.  Chen Y, Takita J, Choi YL, Kato M, Ohira M, et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 2008;455:971-4.
               33.  George RE, Sanda T, Hanna M, Frohling S, Luther W 2nd, et al. Activating mutations in ALK provide a therapeutic target in
                   neuroblastoma. Nature 2008;455:975-8.
               34.  Berry T, Luther W, Bhatnagar N, Jamin, Poon E, et al. The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in
                   neuroblastoma. Cancer Cell 2012;22:117-30.
               35.  Zhu S, Lee JS, Guo F, Shin J, Perez-Atayde AR, et al. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis.
                   Cancer Cell 2012;21:362-73.
               36.  Umapathy G, El Wakil A, Witek B, Chesler L, Danielson L, et al. The kinase ALK stimulates the kinase ERK5 to promote the
                   expression of the oncogene MYCN in neuroblastoma. Sci Signal 2014;7:ra102.
               37.  Tucker ER, Tall JR, Danielson LS, Gowan S, Jamin Y, et al. Immunoassays for the quantification of ALK and phosphorylated ALK
                   support the evaluation of on-target ALK inhibitors in neuroblastoma. Mol Oncol 2017;11:996-1006.
               38.  Guan J, Fransson S, Siaw JT, Treis D, Van den Eynden J, et al. Clinical response of the novel activating ALK-I1171T mutation in
                   neuroblastoma to the ALK inhibitor ceritinib. Cold Spring Harb Mol Case Stud 2018;4.
               39.  Bresler SC, Wood AC, Haglund EA, Courtright J, Belcastro LT, et al. Differential inhibitor sensitivity of anaplastic lymphoma kinase
                   variants found in neuroblastoma. Sci Transl Med, 2011;3: 108ra114.
               40.  Guan J, Tucker ER, Wan H, Chand D, Danielson LS, et al. The ALK inhibitor PF-06463922 is effective as a single agent in
                   neuroblastoma driven by expression of ALK and MYCN. Dis Model Mech 2016;9:941-52.
               41.  Infarinato NR, Park JH, Krytska K, Ryles HT, Sano R, et al. The ALK/ROS1 inhibitor PF-06463922 overcomes primary resistance to
                   crizotinib in ALK-driven neuroblastoma. Cancer Discov 2016;6:96-107.
               42.  Johnson TW, Richardson PF, Bailey S, Brooun A, Burke BJ, et al. Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-
                   10,15,16,17-tetrahydro-2H-8,4-(m etheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a
                   macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain exposure and broad-
                   spectrum potency against ALK-resistant mutations. J Med Chem 2014;57:4720-44.
               43.  Heath JA, Campbel MA, Thomas A Solomon B. Good clinical response to alectinib, a second generation ALK inhibitor, in refractory
                   neuroblastoma. Pediatr Blood Cancer 2018;65:e27055.
               44.  Pacenta HL, Macy ME. Entrectinib and other ALK/TRK inhibitors for the treatment of neuroblastoma. Drug Des Devel Ther
                   2018;12:3549-61.
               45.  Lambertz I, Kumps C, Claeys S, Lindner S, Beckers A, et al. Upregulation of MAPK negative feedback regulators and RET in mutant
                   ALK neuroblastoma: implications for targeted treatment. Clin Cancer Res 2015;21:3327-39.
   76   77   78   79   80   81   82   83   84   85   86