Page 174 - Read Online
P. 174
Page 538 Belizario et al. Cancer Drug Resist 2019;2:527-38 I http://dx.doi.org/10.20517/cdr.2018.009
47. Liu MC, Pitcher BN, Mardis ER, Davies SR, Friedman PN, et al. PAM50 gene signatures and breast cancer prognosis with adjuvant
anthracycline- and taxane-based chemotherapy: correlative analysis of C9741 (Alliance). NPJ Breast Cancer 2016;2:15023.
48. Li WX, He K, Tang L, Dai SX, Li GH, et al. Comprehensive tissue-specific gene set enrichment analysis and transcription factor
analysis of breast cancer by integrating 14 gene expression datasets. Oncotarget 2017;8:6775-86.
49. Bancovik J, Moreira D, Porter D, Carrasco D, Yao J, et al. Dermcidin exerts its oncogenic effects in breast cancer via modulation
ERBB signaling. BMC Cancer 2015;15:70.
50. Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, et al. Mass-spectrometry-based draft of the human proteome. Nature
2014;509:582-7.
51. Scaltriti M, Nuciforo P, Bradbury I, Sperinde J, Agbor-Tarh D, et al. High HER2 expression correlates with response to the
combination of lapatinib and trastuzumab. J. Clin Cancer Res 2015;21:569-76.
52. Kirouac DC, Du J, Lahdenranta J, Onsum MD, Nielsen UB, et al. HER2+ cancer cell dependence on PI3K vs. MAPK signaling axes
is determined by expression of EGFR, ERBB3 and CDKN1B. PLoS Comput Biol 2016;12:e1004827.
53. Osmanbeyoglu HU, Pelossof R, Bromberg JF, Leslie CS. Linking signaling pathways to transcriptional programs in breast cancer.
Genome Res 2014;24:1869-80.
54. Osmanbeyoglu HU, Toska E, Chan C, Baselga J, Leslie CS. Pancancer modelling predicts the context-specific impact of somatic
mutations on transcriptional programs. Nature Commun 2017;8:14249.
55. Fackler MJ, Umbricht CB, Williams D, Argani P, Cruz LA, et al. Genome-wide methylation analysis identifies genes specific to breast
cancer hormone receptor status and risk of recurrence. Cancer Res 2011;71:6195-207.
56. Su Y, Subedee A, Bloushtain-Qimron N, Savova V, Krzystanek M, et al. Somatic cell fusions reveal extensive heterogeneity in basal-
like breast cancer. Cell Rep 2015;11:1549-63.
57. Droog M, Mensink M, Zwart W. The estrogen receptor α-cistrome beyond breast cancer. Mol Endocrinol 2016;30:1046-58.
58. Mei S, Meyer CA, Zheng R, Qin Q, Wu Q, et al. Cistrome Cancer: a web resource for integrative gene regulation modeling in cancer.
Cancer Res 2017;77:19-22.
59. Fleischer T, Tekpli X, Mathelier A, Wang S, Nebdal D, et al. DNA methylation at enhancers identifies distinct breast cancer lineages.
Nat Commun 2017;8:1379.
60. Garrido-Castro AC, Goel S. CDK4/6 Inhibition in breast cancer: mechanisms of response and treatment failure. Curr Breast Cancer
Rep 2017;9:26-33.
61. Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature
2017;548:471-5.
62. Fiegl H, Millinger S, Goebel G, Müller-Holzner E, Marth C, et al. Breast cancer DNA methylation profiles in cancer cells and tumor
stroma: association with HER-2/neu status in primary breast cancer. Cancer Res 2006;66:29-33.
63. Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, et al. Fibroblast heterogeneity and immunosuppressive environment in
human breast cancer. Cancer Cell 2018;33:463-79.
64. Force J, Leal JHS, McArthur HL. Checkpoint blockade strategies in the treatment of breast cancer: where we are and where we are
heading. Curr Treat Options Oncol 2019;20:35.
65. Mori H, Kubo M, Yamaguchi R, Nishimura R, Osako T, et al. The combination of PD-L1 expression and decreased tumor-infiltrating
lymphocytes is associated with a poor prognosis in triple-negative breast cancer. Oncotarget 2017;8:15584-92.
66. Yeong J, Lim JCT, Lee B, Li H, Ong CCH, et al. Prognostic value of CD8+ PD-1+ immune infiltrates and PDCD1 gene expression in
triple negative breast cancer. J Immunother Cancer 2019;7:34.
67. Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R, et al. Microbes and cancer. Annu Rev Immunol 2017;35:199-228.
68. Thompson KJ, Ingle JN, Tang X, Chia N, Jeraldo PR, et al. A comprehensive analysis of breast cancer microbiota and host gene
expression. PLoS One 2017;12:e0188873.
69. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy
against epithelial tumors. Science 2018;359:91-7.
70. D’Abreo N, Adams S. Immune-checkpoint inhibition for metastatic triple-negative breast cancer: safety first? Nat Rev Clin Oncol
2019;16:399-400.
71. Rojas K, Stuckey A. Breast cancer epidemiology and risk factors. Clin Obstet Gynecol 2016;59:651-72.
72. Safe S, Li X. Endocrine disruption: relevance of experimental studies in female animals to human studies. Curr Opin Toxicol
2017;3:12-9.
73. Reid G. Can breast microbiota provide protective effects against cancer? Future Microbiol 2016;11:987-99.
74. Hamada T, Keum N, Nishihara R, Ogino S. Molecular pathological epidemiology: new developing frontiers of big data science to
study etiologies and pathogenesis. J Gastroenterol 2017;52:265-75.
75. Ogino S, Nowak JA, Hamada T, Milner DA Jr, Nishihara R. Insights into pathogenic interactions among environment, host, and tumor
at the crossroads of molecular pathology and epidemiology. Annu Rev Pathol 2019;14:83-103.