Page 103 - Read Online
P. 103
Page 14 of 20 Zhang et al. Cancer Drug Resist 2024;7:34 https://dx.doi.org/10.20517/cdr.2024.59
2018;19:143-57. DOI PubMed PMC
13. Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol
2022;19:188-206. DOI PubMed
14. Wen SY, Qadir J, Yang BB. Circular RNA translation: novel protein isoforms and clinical significance. Trends Mol Med
2022;28:405-20. DOI PubMed
15. Williams M, Cheng YY, Phimmachanh M, Winata P, van Zandwijk N, Reid G. Tumour suppressor microRNAs contribute to drug
resistance in malignant pleural mesothelioma by targeting anti-apoptotic pathways. Cancer Drug Resist 2019;2:1193-206. DOI
PubMed PMC
16. Chen B, Dragomir MP, Yang C, Li Q, Horst D, Calin GA. Targeting non-coding RNAs to overcome cancer therapy resistance. Signal
Transduct Target Ther 2022;7:121. DOI PubMed PMC
17. Zhang X, Xie K, Zhou H, et al. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer 2020;19:47.
DOI PubMed PMC
18. Mattick JS, Amaral PP, Carninci P, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev
Mol Cell Biol 2023;24:430-47. DOI PubMed PMC
19. Huarte M. The emerging role of lncRNAs in cancer. Nat Med 2015;21:1253-61. DOI PubMed
20. Yuan JH, Yang F, Wang F, et al. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in
hepatocellular carcinoma. Cancer Cell 2014;25:666-81. DOI PubMed
21. Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug
Discov 2021;20:629-51. DOI PubMed PMC
22. Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell 2019;179:1033-55. DOI PubMed PMC
23. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006;6:857-66. DOI PubMed
24. Cavaliere AF, Perelli F, Zaami S, et al. Towards personalized medicine: non-coding RNAs and endometrial cancer. Healthcare
2021;9:965. DOI PubMed PMC
25. Piergentili R, Basile G, Nocella C, et al. Using ncRNAs as tools in cancer diagnosis and treatment-the way towards personalized
medicine to improve patients’ health. Int J Mol Sci 2022;23:9353. DOI PubMed PMC
26. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug
Discov 2017;16:203-22. DOI PubMed
27. Naorem LD, Prakash VS, Muthaiyan M, Venkatesan A. Comprehensive analysis of dysregulated lncRNAs and their competing
endogenous RNA network in triple-negative breast cancer. Int J Biol Macromol 2020;145:429-36. DOI PubMed
28. Mahato RK, Bhattacharya S, Khullar N, et al. Targeting long non-coding RNAs in cancer therapy using CRISPR-Cas9 technology: a
novel paradigm for precision oncology. J Biotechnol 2024;379:98-119. DOI PubMed
29. Kilikevicius A, Meister G, Corey DR. Reexamining assumptions about miRNA-guided gene silencing. Nucleic Acids Res
2022;50:617-34. DOI PubMed PMC
30. Shang R, Lee S, Senavirathne G, Lai EC. microRNAs in action: biogenesis, function and regulation. Nat Rev Genet 2023;24:816-33.
DOI PubMed PMC
31. Agbu P, Carthew RW. MicroRNA-mediated regulation of glucose and lipid metabolism. Nat Rev Mol Cell Biol 2021;22:425-38.
DOI PubMed PMC
32. He B, Zhao Z, Cai Q, et al. miRNA-based biomarkers, therapies, and resistance in Cancer. Int J Biol Sci 2020;16:2628-47. DOI
PubMed PMC
33. Pan G, Liu Y, Shang L, Zhou F, Yang S. EMT-associated microRNAs and their roles in cancer stemness and drug resistance. Cancer
Commun 2021;41:199-217. DOI PubMed PMC
34. Meng X, Lou QY, Yang WY, et al. The role of non-coding RNAs in drug resistance of oral squamous cell carcinoma and therapeutic
potential. Cancer Commun 2021;41:981-1006. DOI PubMed PMC
35. Zhang S, Huangfu H, Zhao Q, Li Y, Wu L. Downregulation of long noncoding RNA HCP5/miR-216a-5p/ZEB1 axis inhibits the
malignant biological function of laryngeal squamous cell carcinoma cells. Front Immunol 2022;13:1022677. DOI PubMed PMC
36. Gao F, Han J, Wang Y, Jia L, Luo W, Zeng Y. Circ_0109291 promotes cisplatin resistance of oral squamous cell carcinoma by
sponging miR-188-3p to increase ABCB1 expression. Cancer Biother Radiopharm 2022;37:233-45. DOI PubMed
37. Cao W, Sun Y, Liu L, et al. HOTAIR mediates cisplatin resistance in nasopharyngeal carcinoma by regulating miR-106a-5p/SOX4
axis. Bioengineered 2022;13:6567-78. DOI PubMed PMC
38. Cui J, Wang H, Zhang X, Sun X, Zhang J, Ma J. Exosomal miR-200c suppresses chemoresistance of docetaxel in tongue squamous
cell carcinoma by suppressing TUBB3 and PPP2R1B. Aging 2020;12:6756-73. DOI PubMed PMC
39. Proença C, Freitas M, Ribeiro D, Rufino AT, Fernandes E, Ferreira de Oliveira JMP. The role of flavonoids in the regulation of
epithelial-mesenchymal transition in cancer: a review on targeting signaling pathways and metastasis. Med Res Rev 2023;43:1878-
945. DOI PubMed
40. Garinet S, Didelot A, Denize T, et al. Clinical assessment of the miR-34, miR-200, ZEB1 and SNAIL EMT regulation hub underlines
the differential prognostic value of EMT miRs to drive mesenchymal transition and prognosis in resected NSCLC. Br J Cancer
2021;125:1544-51. DOI PubMed PMC
41. Chien CS, Wang ML, Chu PY, et al. Lin28B/Let-7 regulates expression of Oct4 and Sox2 and reprograms oral squamous cell
carcinoma cells to a stem-like state. Cancer Res 2015;75:2553-65. DOI PubMed