Page 82 - Read Online
P. 82

Page 385                                                        Novotny et al. Art Int Surg 2024;4:376-86  https://dx.doi.org/10.20517/ais.2024.52

               9.       Cevik J, Seth I, Hunter-Smith DJ, Rozen WM. A history of innovation: tracing the evolution of imaging modalities for the preoperative
                   planning of microsurgical breast reconstruction. J Clin Med 2023;12:5246.  DOI  PubMed  PMC
               10.      Schmale IL, Vandelaar LJ, Luong AU, Citardi MJ, Yao WC. Image-guided surgery and intraoperative imaging in rhinology: clinical
                   update and current state of the art. Ear Nose Throat J 2021;100:NP475-86.  DOI  PubMed
               11.      Luz M, Strauss G, Manzey D. Impact of image-guided surgery on surgeons’ performance: a literature review. IJHFE 2016;4:229-63.
                   DOI
               12.      Kim Y, Kim H, Kim YO. Virtual reality and augmented reality in plastic surgery: a review. Arch Plast Surg 2017;44:179-87.  DOI
                   PubMed  PMC
               13.      Lin HH, Lo LJ. Three-dimensional computer-assisted surgical simulation and intraoperative navigation in orthognathic surgery: a
                   literature review. J Formos Med Assoc 2015;114:300-7.  DOI  PubMed
               14.      Glas HH, Kraeima J, van Ooijen PMA, Spijkervet FKL, Yu L, Witjes MJH. Augmented reality visualization for image-guided surgery:
                   a validation study using a three-dimensional printed phantom. J Oral Maxillofac Surg 2021;79:1943.e1-10.  DOI  PubMed
               15.      Murphy DC, Saleh DB. Artificial intelligence in plastic surgery: What is it? Where are we now? What is on the horizon? Ann R Coll
                   Surg Engl 2020;102:577-80.  DOI  PubMed  PMC
               16.      Park BJ, Hunt SJ, Martin C 3rd, Nadolski GJ, Wood BJ, Gade TP. Augmented and mixed reality: technologies for enhancing the future
                   of IR. J Vasc Interv Radiol 2020;31:1074-82.  DOI  PubMed  PMC
               17.      Palumbo A. Microsoft HoloLens 2 in medical and healthcare context: state of the art and future prospects. Sensors 2022;22:7709.  DOI
                   PubMed  PMC
               18.      Pratt P, Ives M, Lawton G, et al. Through the HoloLens™ looking glass: augmented reality for extremity reconstruction surgery using
                   3D vascular models with perforating vessels. Eur Radiol Exp 2018;2:2.  DOI  PubMed  PMC
               19.      Al Janabi HF, Aydin A, Palaneer S, et al. Effectiveness of the HoloLens mixed-reality headset in minimally invasive surgery: a
                   simulation-based feasibility study. Surg Endosc 2020;34:1143-9.  DOI  PubMed  PMC
               20.      Fitoussi A, Tacher V, Pigneur F, et al. Augmented reality-assisted deep inferior epigastric artery perforator flap harvesting. J Plast
                   Reconstr Aesthet Surg 2021;74:1931-71.  DOI  PubMed
               21.      Microsoft Stories Asia. AI in the operating theater: technology transforms cosmetic surgery in Korea. 2018. Available from: https://
                   news.microsoft.com/apac/features/ai-in-the-operating-theater-technology-transforms-cosmetic-surgery-in-korea/. [Last accessed on 2
                   Nov 2024].
               22.      Shademan A, Decker RS, Opfermann JD, Leonard S, Krieger A, Kim PC. Supervised autonomous robotic soft tissue surgery. Sci
                   Transl Med 2016;8:337ra64.  DOI  PubMed
               23.      Lindenblatt N, Grünherz L, Wang A, et al. Early experience using a new robotic microsurgical system for lymphatic surgery. Plast
                   Reconstr Surg Glob Open 2022;10:e4013.  DOI  PubMed  PMC
               24.      Dunn J, Yeo E, Moghaddampour P, Chau B, Humbert S. Virtual and augmented reality in the treatment of phantom limb pain: a
                   literature review. NeuroRehabilitation 2017;40:595-601.  DOI  PubMed
               25.      Javed H, Olanrewaju OA, Ansah Owusu F, et al. Challenges and solutions in postoperative complications: a narrative review in
                   general surgery. Cureus 2023;15:e50942.  DOI  PubMed  PMC
               26.      Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg 2018;268:70-6.  DOI
                   PubMed  PMC
               27.      Wen R, Zheng K, Zhang Q, et al. Machine learning-based random forest predicts anastomotic leakage after anterior resection for rectal
                   cancer. J Gastrointest Oncol 2021;12:921-32.  DOI  PubMed  PMC
               28.      Willan J, King AJ, Jeffery K, Bienz N. Challenges for NHS hospitals during covid-19 epidemic. BMJ 2020;368:m1117.  DOI  PubMed
               29.      Bielsa VF. Virtual reality simulation in plastic surgery training. literature review. J Plast Reconstr Aesthet Surg 2021;74:2372-8.  DOI
                   PubMed
               30.      Lareyre F, Adam C, Carrier M, Chakfé N, Raffort J. Artificial intelligence for education of vascular surgeons. Eur J Vasc Endovasc
                   Surg 2020;59:870-1.  DOI  PubMed
               31.      Dave M, Patel N. Artificial intelligence in healthcare and education. Br Dent J 2023;234:761-4.  DOI  PubMed  PMC
               32.      Moglia A, Georgiou K, Georgiou E, Satava RM, Cuschieri A. A systematic review on artificial intelligence in robot-assisted surgery.
                   Int J Surg 2021;95:106151.  DOI  PubMed
               33.      Deo RC. Machine learning in medicine. Circulation 2015;132:1920-30.  DOI  PubMed  PMC
               34.      Sutton RS, Barto AG. Reinforcement learning, second edition. An introduction. MIT Press, 2018. Available from: https://mitpress.mit.
                   edu/9780262039246/reinforcement-learning/. [Last accessed on 2 Nov 2024].
               35.      Nogueira R, Eguchi M, Kasmirski J, et al. Machine learning, deep learning, artificial intelligence and aesthetic plastic surgery: a
                   qualitative systematic review. Aesthetic Plast Surg 2024.  DOI  PubMed
               36.      Wang PS, Walker A, Tsuang M, Orav EJ, Levin R, Avorn J. Strategies for improving comorbidity measures based on Medicare and
                   Medicaid claims data. J Clin Epidemiol 2000;53:571-8.  DOI  PubMed
               37.      Mofidi R, Duff MD, Madhavan KK, Garden OJ, Parks RW. Identification of severe acute pancreatitis using an artificial neural
                   network. Surgery 2007;141:59-66.  DOI  PubMed
               38.      Chen M, Decary M. Artificial intelligence in healthcare: an essential guide for health leaders. Healthc Manage Forum 2020;33:10-8.
                   DOI  PubMed
               39.      Chan HP, Samala RK, Hadjiiski LM, Zhou C. Deep learning in medical image analysis. Adv Exp Med Biol 2020;1213:3-21.  DOI
   77   78   79   80   81   82   83   84   85   86   87