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Abstract
The extensive construction of bridge health monitoring (BHM) systems has made it challenging for the authorities 
to manage them centrally. The reliable operational status of BHM systems is vital to obtaining accurate monitoring 
data and evaluating the condition of bridges. To evaluate the operational status of these systems, this study 
established an assessment model that integrates the triangular intuitionistic fuzzy analytic network process 
(TIFANP) and the triangular intuitionistic fuzzy comprehensive evaluation (TIFCE) method. Firstly, an evaluation 
index system was established for the operational status of a BHM system. Factors such as system stability, data 
reliability, system maintenance, early warning, and human-computer interaction were comprehensively considered. 
Secondly, the evaluation indicator weights were assigned using TIFANP. The system evaluation rating levels were 
divided into four grades, and the membership and non-membership functions of the evaluation indicators for these 
rating levels were constructed based on TIFCE. Finally, the effectiveness of the proposed method was verified 
based on a case study. This is the first time that an operational status assessment method suitable for in-service 
BHM systems has been proposed. The results show that the TIFANP better accounts for the relationships for non-
independence and interactions among the evaluation indicators. Hesitations in the decision-making process were 
quantified, making the weight allocations more accurate. The proposed method outperforms other comparison 
methods and can be used to evaluate the operational status of BHM systems in a more scientific and objective 
manner.

Keywords: Bridge health monitoring, monitoring system operational status assessment, triangular intuitionistic 
fuzzy comprehensive evaluation, triangular intuitionistic fuzzy analytic network process
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1. INTRODUCTION
1.1. Literature review
With the extension of service years, bridges inevitably suffer from performance deterioration under the 
coupling effects of environment and load[1,2]. The bridge health monitoring (BHM) system has been 
extensively established to ensure the security of bridges[3]. The functionalities of BHM systems have been 
progressively implemented[4], including real-time monitoring, intelligent early warning, and scientific 
assessment. Recently, the number of BHM systems has increased significantly, making it technically 
challenging for authorities to manage and evaluate the operational status of BHM systems. Due to long-
term outdoor deployment, sensor failures[5], system instability[6], and abnormal monitoring data[7] can 
occasionally occur in BHM systems. Scholars have invested substantial energy into the assessment of bridge 
conditions based on BHM[8-10]; besides, the accuracy of bridge health diagnoses will be directly affected if the 
BHM system is suboptimal[11]. Therefore, the assessment of the BHM operational status has garnered 
increasing attention from bridge engineers and management authorities.

Relevant research on assessing the operational status of structural health monitoring (SHM) systems has 
been conducted[12-16]. At the acceptance stage, the reliability of BHM systems could be verified through 
consistency comparisons of the simulation and experimental data with the data of the BHM system. For 
example, Ye et al. evaluated the effectiveness of jacket platform SHM by comparing actual SHM data with 
finite element analysis simulation results[17]. Dal et al. analyzed the trends in dynamic and static data 
changes in a SHM system by applying external interventions to verify the reliability of the SHM system 
data[18]. Janapati et al. examined the effectiveness of acoustic SHM techniques for damage detection using 
both numerical calculations and experimental data[19]. These studies mainly focused on the effectiveness of 
the initial stage of system construction, neglecting the impact of long-term service on system operation. The 
operational status of the BHM system evolves progressively with the extension of its service life. To evaluate 
the operational status of a BHM system in service, Li et al. proposed a sensor fault detection method to 
diagnose of multiple sensor faults by using the relationship between the generalized likelihood ratio and the 
correlation coefficient[20]. Fan et al. introduced a method for the accurate classification and localization of 
anomaly monitoring data based on a convolutional neural network[21]. Li et al. developed a sensor anomaly 
signal detection method based on a two-segment deep convolutional neural network improving the 
recognition accuracy of abnormal signal patterns in a BHM system[22]. The aforementioned studies 
emphasized operational status diagnosis and abnormal sensor data detection. The evaluation perspective 
has been relatively singular and lacks a comprehensive consideration of the operational status of BHM 
systems.

With the extends of service life of the BHM system, environmental factors and load variations will lead to a 
decrease in sensor online rate, performance degradation of system, increased failure rate, and more frequent 
maintenance demands. The management demands of BHM systems cannot be adequately addressed merely 
through foundational validity assessments at implementation stage and runtime abnormal data detection.

Regarding the comprehensive evaluation of BHM systems during the process of long-term operation, Xin 
et al. developed a BHM evaluation model based on the Delphi, analytic hierarchy process (AHP), Grey 
relations analysis and Fuzzy integrated evaluation (DHGF) method to assess the performance of new BHM 
systems[23]. The model considers indicators related to the design, construction process, operation, and 
maintenance of BHM systems were considered. However, it is not fully applicable to BHM systems in long-
term operation; additionally, it does not account for the non-independence of the evaluation index and the 



Wang et al. Intell. Robot. 2025, 5(2), 378-403 https://dx.doi.org/10.20517/ir.2025.19  Page 380

fuzzy information in the decision-making process. In summary, the operational status of in-service BHM 
systems is seldom reported, and there is an urgent need to establish a comprehensive evaluation model for 
the operational status of BHM systems.

The operational status of BHM systems is a multi-criterion comprehensive evaluation problem. However, 
interdependence and domination relationships often arise among the evaluation indicators during the 
system assessment process. Additionally, hesitation frequently occurs when distributing indicator weights, 
making it difficult to obtain definitive results[24,25]. To address this problem, Zhang et al. allocated indicator 
weights based on the triangular intuitionistic fuzzy analytic network process (TIFANP) and constructed a 
comparison matrix based on triangular intuitionistic fuzzy numbers (TIFNs), where the interactions among 
indicators were considered[26]. Through the interval from the lower limit (the most probable value) to the 
upper limit, fuzzy opinions in the decision-making process are more precisely described by TIFNs; this 
allows for a comprehensive consideration of actual attributes of each indicator; the logical relationships 
among multiple evaluation indicators, and their mutual influence can be comprehensively considered[27]. In 
addition, due to the strong ambiguity of some evaluation indicators, it is difficult to express them with 
accurate numerical values while quantifying the influence degree of each indicator on the evaluation grade; 
therefore, some differences exist between the opinions in the decision-making process and the actual 
situation. Pertinently, Zhang et al. proposed the triangular intuitionistic fuzzy comprehensive evaluation 
(TIFCE) model to quantify the influence of each indicator across different levels; this model uses 
membership and non-membership functions to describe ambiguous information in the decision-making 
process[26]. It represents not only the extent to which an element belongs to a set, but also considers the 
extent to which an element does not belong to a set due to subtle deviations in decision-making opinions; 
thus, the deviation of decision-making opinions caused by the ambiguous information of non-quantitative 
indicators is quantified. Hesitation and opinion deviations in the decision-making process of system 
assessment can be effectively addressed using the TIFANP and TIFCE models. Due to their improved 
performance, these models have been widely applied in tank floor corrosion assessments and marine supply 
chain management[24,28]. However, they have rarely been reported in the domain of BHM system operational 
status evaluation.

1.2. Contribution
Due to the aforementioned engineering requirements and the limitations of existing methods, this paper 
proposes a novel operational status assessment model for BHM systems. The model combines the TIFANP 
and TIFCE methods. Firstly, a three-layer comprehensive evaluation index system was established to assess 
the core elements of the system’s operational status. Secondly, the logical relationships and mutual 
influences among the evaluation indicators were analyzed, and the index weights, reflecting the actual 
attributes, were assigned using TIFANP. Then, a calculation method for quantitative evaluation indicators 
was proposed, along with a linguistic evaluation term for qualitative indicators. Finally, the membership and 
non-membership functions of each evaluation indicator were constructed for the evaluation rating level. 
The final assessment results were obtained through comprehensive qualitative and quantitative analysis 
based on TIFCE. The main contributions of this paper in comparison with the extant literature are 
summarized as follows:

(1) This is the first time a hierarchical index system and evaluation criteria have been proposed for the 
operational status assessment of BHM systems. The system effectiveness, maintenance, early warning, and 
the convenience of human-computer interaction design were all considered. Quantitative calculation 
methods are proposed for key indicators, while other indicators that cannot be quantitatively analyzed are 
expressed using linguistic terms. The established index system is meticulous and accurate, scientific, 
comprehensive, and operable. It effectively reflects the operational status of BHM systems.
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(2) The TIFANP was used to address the logical relationships and mutual influences among the evaluation 
indicators. Hesitation in the decision-making process was considered when assigning the weights of each 
indicator. TIFCE was employed to construct the membership functions. Differences between the decision 
opinion and the actual situation caused by the difficulty of quantifying calculation in the decision-making 
process, were expressed in the form of non-membership functions. The integration of TIFANP and TIFCE 
quantifies differences due to hesitation, deviation, and uncertainty in the decision-making process. It also 
resolves the problem of converting linguistic terms to TIFNs and exact values is solved when information is 
lacking for decision-making.

This paper is organized as follows. Section 2 presents the theoretical background of this paper. Section 3 
presents the construction of the indicators for operational status evaluation of BHM system and introduces 
the specific process of the proposed method. Specific case study is shown in Section 4. A comparative 
analysis is presented in Section 5, and conclusions are drawn in Section 6.

2. THEORETICAL BACKGROUND
2.1. TIFNs
TIFNs are complex intuitionistic fuzzy numbers that have the advantages of both triangular fuzzy numbers 
and intuitionistic fuzzy sets; they effectively handle the correlations and uncertainties between attributes. 
Approximating complex fuzzy information with simple rule forms, at the same time, the core characteristics 
of the information are preserved. It provides more accurate solutions for complex decision-making 
problems. In this way, multi-attribute evaluation problems with more ambiguity can be well resolved.

Assuming that domain X is a non-empty set, the TIFN A on X can be expressed as:

where μA(x) and vA(x) are the membership and non-membership functions of element x in domain X, 
respectively, which belongs to A. μA(x) and vA(x) satisfy μA(x): X → [0, 1], x ∈ X → μA(x) ∈ [0, 1], vA(x): X → 
[0, 1], x ∈ X → vA(x) ∈ [0, 1], and x ∈ X, 0 ≤ μA(x) + vA(x) ≤ 1. πA(x) = 1 - μA(x) - vA(x) denotes the hesitancy 
degree of element x belonging to A. 0 ≤ πA(x) ≤ 1 for any x.

The membership functions can be expressed as[29]:

Non-membership functions can be expressed as[29]:

(1)

(2)
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where μ is the maximum membership degree and v is the minimum non-membership degree of set A, 
respectively.

In this paper, the centroid method was adopted to defuzzify the TIFNs. If μ = 1 and v = 0 (i.e., A = [(a, b, c), 
(a’, b, c’)]), its crisp values can be calculated as[30,31]:

2.2. TIFANP
As an extension of triangular intuitionistic fuzzy set theory, TIFANP offers a systematic approach to handle 
complex network structures characterized by element interdependencies. The relative influence degree 
(RID) of each indicator is determined through the indirect dominance degree, and the cluster comparison 
matrix and indicator comparison matrix are established. The logical relationships among indicators and 
their degree of mutual influence are taken into account in the TIFANP, meanwhile, TIFNs are used instead 
of the normal 1-9 scale to represent the RID and participating in the calculation of eigenvectors. The typical 
structure of the TIFANP is shown in Figure 1.

2.3. TIFCE
TIFCE has the ability to evaluate multiple attributes of FCE. It replaces the fuzzy set with a triangular 
intuitionistic fuzzy set, and the uncertainty in the decision-making process is expressed in the form of non-
membership functions. Membership functions and non-membership functions are essential tools for TIFCE 
to handling fuzzy information. Membership functions describe the degree to which an element belongs to a 
fuzzy set; their range is between 0 and 1, representing a continuous transition from “completely not 
belonging” to “completely belonging”. Non-membership functions, on the other hand, describe the degree 
to which an element does not belong to a fuzzy set. Similar to membership functions, their values range 
from 0 to 1, indicating a transition from “completely belonging” to “completely not belonging”. Therefore, 
TIFCE can more effectively quantify the assessment results[32].

3. CONSTRUCTION OF TIFANP-TIFCE MODEL
3.1. Overview of the proposed method
The flowchart of the proposed operational status evaluation method of BHM systems is shown in Figure 2. 
Firstly, the critical factors for evaluating the operational status of the BHM system are determined, and the 
hierarchical index system and indicator set of the BHM operational status are established. Secondly, the 
degrees of interaction among the indicators are defined, and the weights of the indicators are determined 
using the TIFANP. Then, the membership and non-membership functions are constructed between each 
indicator and the evaluation target using TIFCE. Finally, the final operational status evaluation grade of the 
BHM system is obtained through the comprehensive weight and evaluation matrix.

(3)

(4)
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Figure 1. Typical structure of TIFANP. TIFANP: Triangular intuitionistic fuzzy analytic network process.

3.2. Construction of the index system
First, based on the principles of scientific rigor, comprehensiveness, and feasibility, identify the factors 
influencing the operational state of the BHM system.

From the perspective of designers, real-time performance, continuity, and accuracy are expected of a BHM 
system; these can be reflected through indicators of mean no-failure rate, sensors online rate, data accuracy, 
data integrity and data consistency[33]. From the perspective of managers, a BHM system is expected to 
accurately predict structural abnormalities, making threshold settings and accuracy of early warnings as 
suitable evaluation indicators[34]. Additionally, system maintenance plays a crucial role in ensuring the 
functionality of system, leading to the selection of timeliness of troubleshooting, timeliness of alarm 
confirmation and timeliness of report uploads as another evaluation indicator[35]. From the perspective of 
users, the smoothness of system operation plays a critical role in judgment during warning events. 
Therefore, interface layout, operational response time has been chosen as an evaluation criterion[36].

Subsequently, a hierarchical indicator system was established, as illustrated in Figure 3.

As shown in Figure 3, each cluster Ei = (E1, E2, …, En) contains several nodes Eik, and all the indicators 
ultimately make up the indicator set. In the proposed hierarchical evaluation index system, the factors 
influencing the operational status of the system are considered in four categories: system effectiveness, 
system maintenance, early warning and human-computer interaction.

3.3. Allocation of relative weights
Each evaluation indicator has a distinct degree of influence on the system operational status; therefore, an 
accurate weight is assigned to each indicator.

Step 1: Establish an analytical network structure. 
Utilizing the predefined indicator sets, consider the interactions among elements in a complex system, and 
analyze the relationships between different clusters and each indicator within each cluster[37].
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Figure 2. The holistic structure of the proposed method.
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Figure 3. Hierarchical evaluation index system of BHM operational status. BHM: Bridge health monitoring.

Step 2: Establish a triangular intuitionistic fuzzy comparison matrix. 
In this study, TIFNs are utilized to represent the RIDs in place of conventional precise numerical values. For 
example, “essential or strong importance” can be expressed as <[(5 - ∆μ, 5, 5 + ∆μ); μ], [(5 - ∆v, 5, 5 + ∆v); 
v]>, where ∆μ and ∆v are termed the fuzzy factors corresponding to the degrees of membership and non-
membership, respectively. To simplify the calculation, let μ = 1, v = 0, ∆μ = 1, ∆v = 1.5. Table 1 presents the 
linguistic scales and their associated TIFNs used to describe the RID.

Table 2 illustrates the cluster comparison matrix and the node comparison matrix, which is derived from 
the analysis of indirect dominance relationships.

According to Equation (4), all of the wik values are clarified into a clear set of values wij
’, and all of the wij

’ 
values can be calculated as follows:

where the column vectors of Wij are the vectors of the RID of Ei1, Ei2, …, Eil in the Ei relative to Ej1, Ej2, …, Ejl 
in Ej. If there is no influence, Wij = 0.

Step 3: Consistency check. 
To avoid logical mistakes in the judgment matrix and achieve a higher level of reliability of the model, it is 
necessary to perform a consistency check of the judgment matrix.

(5)
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Table 1. Linguistic scales and their corresponding TIFNs to describe the relative importance degree between two indicators

Importance degree Scale TIFN

Equal importance 1 [(1, 1, 2), (1, 1, 2.5)]

Weak importance 3 [(2, 3, 4), (1.5, 3, 4.5)]

Essential or strong importance 5 [(4, 5, 6), (3.5, 5, 6.5)]

Demonstrated importance 7 [(6, 7, 8), (5.5, 7, 8.5)]

Extreme importance 9 [(8, 9, 9), (7.5, 9, 9)]

Intermediate value between two adjacent 
comparisons

2, 4, 6, 
8

[(1, 2, 3), (1, 2, 3.5)], [(3, 4, 5), (2.5, 4, 5.5)], [(5, 6, 7), (4.5, 6, 7.5)], [(7, 8, 9), (6.5,
8, 9)]

Reciprocals - If the importance of A relative to B is [(a, b, c), (a’, b, c’)], then B relative to A is 

TIFNs: Triangular intuitionistic fuzzy numbers.

Table 2. Node comparison matrix

Djk Di1Di2…Dil Normalized eigenvectors

Di1 I11I12…I1l wi1
(jk)

Di2 I21I22…I2l wi2
(jk)

Dil Ii1Ii2…Iil wil
(jk)

The consistency index can be calculated by

where λmax is the maximum eigenvalue of the judgment matrix, n is the order of the matrix.

Then, the consistency ratio can be calculated as

where RI represents the random index, which has a unique value determined by the order of judgment 
matrix[18]. If RI is less than 0.1, the judgment matrix could be considered to have satisfactory consistency.

Step 4: Establish a weighted supermatrix. 
The supermatrix S can be constituted by all Wij:

Similarly, the weighted supermatrix AW can be constituted by all the eigenvectors aij:

(6)
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The weighted supermatrix can be calculated by

Step 5: Calculate the limit supermatrix. 
Through limit processing of the weighted supermatrix, the resultant steady-state matrix S∞ (limit 
supermatrix) can be derived as follows:

Step 6: Determine the relative weight of each indicator. 
The column vectors of a limit supermatrix represent the final relative weight vectors of the indicators.

3.4. Establishment of the rating levels
The Eik obtained in Section 3.2 constitutes a set of indicators. For ease of calculation, the indicator set can be 
recorded as e = {e1, e2, …, en}, and the value of each indicator can be denoted as a number in the range [1-
100] for the purpose of assessment.

The set of rating levels contains all the possible assessment results for the operational status of the BHM 
system. In this study, a 4-level TIFN was used to classify the system rating levels, i.e., Y = (y1, y2, y3, y4). 
Similar to the TIFANP where μ = 1 and v = 0, Δμ = 5 and Δv = 10 in TIFCE. The rating levels of the BHM 
system operational status are divided into I, II, III, and IV, i.e., V = (90, 75, 60, 20)T. The system evaluation 
level divisions and the corresponding TIFNs are shown in Table 3.

3.5. Establishment of the membership and non-membership functions
The membership and non-membership functions of the index are established for each rating level are 
shown in Figure 4. Specifically, μ(x) shows the membership function, while v(x) illustrates the 
corresponding non-membership function. Figure 4 presents the relationship between the membership and 
non-membership degrees as the indicator scores change across different levels.

3.6. Comprehensive evaluation results
Assume that all the values of indicators are (x1, x2, …, xn). According to the membership and non-
membership functions of each indicator and rating level, the judgment matrix can be expressed as follows:

where rij represents the value xi of indicator ei for the membership and non-membership functions of rating 
level yi.

(7)

(8)

(9)

(10)
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Table 3. The linguistic terms and corresponding TIFNs of the operational status of BHM systems

Evaluation level Linguistic term Score level TIFN

I Excellent [90, 100] [(85, 90, 95), (80, 90, 100)]

II Good [75, 90] [(70, 75, 80), (65, 75, 90)]

III Fair [60, 75] [(55, 60, 65), (50, 60, 70)]

IV Poor [20, 60] [(15, 20, 25), (10, 20, 30)]

Level I: excellent. The BHM system is operating in optimal condition, requiring only regular routine checks. Level II: good. The BHM system is 
operating effectively, but there may be potential risks. Occasional specialized inspections are recommended. Level III: Fair. The performance of 
the BHM system is suboptimal; specialized inspections should be conducted. Level IV: Poor. The BHM system has significant issues and fails to 
provide effective monitoring. A major overhaul is necessary. TIFNs: Triangular intuitionistic fuzzy numbers; BHM: bridge health monitoring.

Figure 4. Membership and non-membership functions of each rating level.

The results of the comprehensive assessment can be calculated as follows:

where Wi is the relative weight of the indicator. According to the principle of maximum membership, the 
comprehensive evaluation result is bj

u, j = 1, 2, …, m, and the corresponding evaluation grade is yj.

To facilitate comparison, a crisp value of TIFCE can be converted from the calculation result as follows:

(11)

(12)

(13)
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where TIZ is the score of the operational status of the BHM system expressed by a TIFN, Z is the score of 
the operating status of the BHM system after TIFN deblurring, and Vj is the TIFN of the system rating level 
j.

4. CASE STUDY
The operational status of the BHM system plays a vital role in the subsequent structural status assessment.
In this section, a specific model is constructed using the proposed method for the operational status
evaluation of BHM systems.

4.1. Background of a cable-stayed BHM system
The analysis focused on a BHM system of cable-stayed bridges with a total span length of 1,001 meters. The
BHM system integrates a network of 288 measurement points, which capture various parameters including
environmental temperature, humidity, vehicle load, etc. The arrangement of measurement points is
illustrated in Figure 5.

4.2. Comprehensive evaluation
4.2.1. Analytical network structure of the index system
According to the hierarchical evaluation index system constructed in Section 3.2, the hierarchical evaluation
index system of the operational status of BHM systems was divided into four clusters, and the interactions
among the indicators were further analyzed. Taking the mean no-failure rate as an example, the mean no-
failure rate of the system affects the sensors online rate, data integrity, and other indicators; it is also affected
by the timeliness of troubleshooting indicator. Table 4 shows the relationships among the influencing
indicators. According to the data in Table 4, a network analysis structure of the BHM system’s operational
status was constructed, as shown in Figure 6.

4.2.2. Allocate the relative weights of indicators
A comparison matrix was systematically developed for each cluster and corresponding node. As an
example, the comparison matrix for the cluster of E1 is shown in Table 5. The Supplementary Materials
provides comprehensive details of the comparison matrix for both cluster and node, enabling a thorough
examination of the respective datasets.

After the consistency check, a TIFANP weighted matrix was constructed using the eigenvalues calculated
from each judgment matrix, as shown in Table 6.

Using Equations (5) and (6), the TIFANP supermatrix, weighted supermatrix, and limit supermatrix were
calculated. The supermatrix was constructed using all of the node comparison matrices, as shown in
Table 7.

The stable limit-weighted supermatrix was calculated using Equation (9), as shown in Table 8. The weighted
supermatrix of the TIFANP model can be found in the Supplementary Materials.

(14)

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202505/ir5019-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202505/ir5019-SupplementaryMaterials.pdf
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Table 4. The influencing relationships among indicators

Assessment indicators Influenced indicators

E11 E12, E14, E32, E33

E12 E11, E12, E22, E23

E13 E14, E15, E31, E32, E41, E43

E14 E11, E13, E21, E23, E32, E33

E15 E11, E13, E31, E32

E21 E11, E12, E13, E14, E15, E32, E33, E41

E22 E21, E23, E31, E33

E23 E21, E22, E31, E32, E43

E31 E13, E15, E22, E23, E32, E33

E32 E14, E15, E21, E22

E33 E41, E43

E41 E42, E43

E42 E32, E33

E43 E22, E23

Table 6. The weighted matrix of the TIFANP model

E1 E2 E3 E4

E1
0.3264 0.1934 0.2400 0.2400

E2
0.2863 0.2863 0.2863 0.1412

E3
0.2251 0.1081 0.2993 0.2592

E4
0 0.4612 0.2694 0.2694

TIFANP: Triangular intuitionistic fuzzy analytic network process.

The normalized weight distribution of BHM system operational status indicators is represented by the 
column vectors derived from the limit supermatrix, as depicted in Figure 7. The weight of the data accuracy 
indicator is higher than that of the other indicators because the accuracy of the system data is affected by 
more indicators and also directly affects more other indicators, so a higher proportion was assigned.

Keep the influence relationships in Table 4 unchanged, and increase the influence level by one degree (e.g., 
changing “Weak importance” to “Essential” or “Strong importance”). The resulting limit supermatrix is 
provided in the Supplementary Materials. As a result, the disparity between the higher and lower weights 
increases, demonstrating that the computed weights are affected by the degree of importance assigned to the 
criteria. Specifically, as the influence level of an indicator rises, its corresponding computed weight becomes 
larger. Therefore, selecting an appropriate influence level is crucial for obtaining reasonable weights.

Table 5. Cluster comparison matrix of E1

E1 E1 E2 E3 E4

E1 [(1, 1, 2)(1, 1, 2.5)] [(1, 1, 2)(1, 1, 2.5)] [(1, 2, 3)(1, 2, 3.5)] [(1, 2, 3)(1, 2, 3.5)]

E2 [(3, 2, 1)(3.5, 2, 1)] [(1, 1, 2)(1, 1, 2.5)] [(3, 2, 1)(3.5, 2, 1)] [(3, 2, 1)(3.5, 2, 1)]

E3 [(3, 2, 1)(3.5, 2, 1)] [(1, 2, 3)(1, 2, 3.5)] [(1, 1, 2)(1, 1, 2.5)] [(1, 1, 2)(1, 1, 2.5)]

E4 [(3, 2, 1)(3.5, 2, 1)] [(1, 2, 3)(1, 2, 3.5)] [(1, 1, 2)(1, 1, 2.5)] [(1, 1, 2)(1, 1, 2.5)]

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202505/ir5019-SupplementaryMaterials.pdf
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Figure 5. Longitudinal layout of the bridge measuring points of a long-span cable-stayed bridge. Note: the number of sensors is given in 
parentheses: (A) Ambient temperature and humidity; (B) Vehicle load; (C) Wind load; (D) Structural temperature; (E) Earthquake; (F) 
Displacement; (G) Angle of rotation; (H) Strain; (I) Cable tension; (J) Vibration; (K) Video.

Figure 6. Network analysis structure diagram of BHM system operational status. BHM: Bridge health monitoring.

4.2.3. Establish the rating levels
In this paper, evaluation criteria for each index are proposed, as shown in Table 9; the calculation methods 
for quantitative indicators are synchronously defined:
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Table 7. The supermatrix of the TIFANP model

E11 E12 E13 E14 E15 E21 E22 E23 E31 E32 E33 E41 E42 E43

E11
0.000 0.500 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.647 0.353 0.000 0.000 0.000 

E12
0.353 0.647 0.000 0.000 0.000 0.000 0.353 0.647 0.000 0.000 0.000 0.000 0.000 0.000 

E13
0.000 0.000 0.000 0.353 0.647 0.000 0.000 0.000 0.737 0.263 0.000 0.263 0.000 0.737 

E14
0.647 0.000 0.353 0.000 0.000 0.263 0.000 0.737 0.000 0.737 0.263 0.000 0.000 0.000 

E15
0.647 0.000 0.000 0.353 0.000 0.000 0.000 0.000 0.737 0.263 0.000 0.000 0.000 0.000 

E21
0.185 0.133 0.271 0.271 0.133 0.000 0.000 0.000 0.000 0.737 0.263 0.000 0.000 0.000 

E22
0.000 0.000 0.000 0.000 0.000 0.353 0.000 0.647 0.647 0.000 0.353 0.000 0.000 0.000 

E23
0.000 0.000 0.000 0.000 0.000 0.647 0.353 0.000 0.353 0.647 0.000 0.000 0.000 0.000 

E31
0.000 0.000 0.353 0.000 0.647 0.000 0.353 0.647 0.000 0.789 0.211 0.000 0.000 0.000 

E32
0.000 0.000 0.000 0.647 0.353 0.353 0.647 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

E33
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.647 0.000 0.353 

E41
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.353 0.647 

E42
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.353 0.647 0.000 0.000 0.000 

E43
0.000 0.000 0.000 0.000 0.000 0.000 0.789 0.211 0.000 0.000 0.000 0.000 0.000 0.000 

TIFANP: Triangular intuitionistic fuzzy analytic network process.

(1) Average no-failure rate 
The average no-failure rate can be defined as

where ti is the normal working time of the unit i, ri is the abnormal working time of the unit i, and n is the total number of units in the data acquisition.

(2) Sensors online rate 
The sensors online rate can be defined as
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Table 8. The limit supermatrix of the TIFANP model

E11 E12 E13 E14 E15 E21 E22 E23 E31 E32 E33 E41 E42 E43

E11
0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 

E12
0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 

E13
0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 

E14
0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 

E15
0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 

E21
0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 

E22
0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 

E23
0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 

E31
0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 

E32
0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 

E33
0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 

E41
0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 

E42
0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 

E43
0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 

TIFANP: Triangular intuitionistic fuzzy analytic network process.

(3) Data integrity 
The data integrity is calculated as follows:

where P3 represents the rate of data integrity, p represents the count of faulty measurement points, ti denotes the duration of failure for the i-th measurement 
point (in terms of days), P stands for the total number of measurement points, and T indicates the evaluation period (in terms of days).
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Figure 7. Weight distribution of each indicator.

(4) Timeliness of troubleshooting 
When the percentage of the eigenvalues of each sensor is less than 70% of the total number of sensors, and 
the troubleshooting duration is more than 6 h, the system is judged to be faulty. If the faulty system is not 
fixed within 72 h, it is judged that the fault is not promptly fixed.

The timeliness of troubleshooting can be constructed as below:

where P4 is the rate of promptly addressed faults in the past year, n is the number of faults not addressed 
promptly in the past year, and N indicates the total number of faults that occurred in the past year.

(5) Timeliness of alarm confirmation 
The timeliness of alarm confirmations within one year is evaluated. When a second-level warning is not 
confirmed within 48 h or a third-level warning is not confirmed within 24 h, it is judged that the alarm is 
not promptly confirmed.

The timeliness of alarm confirmation can be calculated as follows:

where P5 is the number of promptly confirmed alarms, P5i is the score of the i-th level of the rate of 
promptly confirmed alarms, and ai is the weight of the i-th level of the rate of promptly confirmed alarms 
(0.4 for the second level and 0.6 for the third level). The i-th level for the timeliness of alarm confirmation 
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Table 9. The rating criteria of the indicators for the operational status of BHM systems

Indicator/score I [90-100] II [75-90] III [60-75] IV [0-60]

Mean no-failure rate P1 ≥ 99% 95% < P1 ≤ 99% 90% < P1 ≤ 95% P1 ≤ 90%

Sensors online rate 90% ≤ P2 ≤ 100% 75% < P2 < 95% 60% ≤ P2 < 75% P2 < 60%

Data accuracy The data of the system are in excellent 
agreement with the theoretical calculations

The data of the system are in good agreement 
with the theoretical calculations

The data of the system are basically in 
agreement with the theoretical 
calculations

The data of the system are not in 
agreement with the theoretical 
calculations

Data integrity 95% ≤ P3 ≤ 100% 90% ≤ P3 < 95% 85% ≤ P3 < 90% P3 < 85%

System 
effectiveness

Data consistency The associative relationship between 
symmetrical and closely located sensors of 
the same type is extremely clear and 
reasonable

The associative relationship between 
symmetrical and closely located sensors of the 
same type is clear and reasonable

The associative relationship between 
symmetrical and closely located sensors 
of the same type is basically clear and 
reasonable

The associative relationship 
between symmetrical and closely 
located sensors of the same type is 
not clear and reasonable

Timeliness of 
troubleshooting

90% ≤ P4 ≤ 100% 75% ≤ P4 < 90% 60% ≤ P4 < 75% P4 < 60%

Timeliness of alarm 
confirmation

90% ≤ P5 ≤ 100% 75% ≤ P5 < 90% 60% ≤ P5 < 75% P5 < 60%

System 
maintenance

Timeliness of report 
uploads

90% ≤ P6 ≤ 100% 75% ≤ P6 < 90% 60% ≤ P6 < 75% P6 < 60%

Threshold settings The three-level thresholds for all 
monitoring items are extremely accurate

The three-level thresholds for all monitoring 
items are accurate

The thresholds at all levels are basically 
accurate

The thresholds at all levels deviate 
from the requirements of the 
specification

Accuracy of early 
warnings

The alarms for structural safety 
demonstrate exceptional precision, 
exhibiting a near-zero false positive rate in 
its warning outputs

The structural safety alarm exhibits high 
precision, with false alarm probabilities 
maintained within statistically acceptable 
thresholds

The structural safety alarm generates 
intermittent false positives, exerting a 
measurable yet non-critical influence on 
operational efficacy

The structural safety alarm 
demonstrates suboptimal reliability, 
with statistically significant false 
alarm rates

Early warning

Guidelines for 
structural condition 
checks

The system can provide exact bridge 
inspection guidelines and management 
measures based on the structural condition 
assessment and overrun conditions

The system can provide correct bridge 
inspection guidelines and management 
measures based on the structural condition 
assessment and overrun conditions

Sometimes the system can provide 
bridge inspection guidelines and 
management measures based on the 
structural condition assessment and 
overrun conditions

There are no relevant bridge 
inspection guidelines or 
management measures when the 
monitoring data and analysis results 
are exceeded

Interface layout The interface demonstrates an optimally 
designed layout with logically organized 
elements, enabling intuitive visualization of 
dynamic data variations

The interface exhibits a well-structured layout 
with logically organized elements, enabling 
intuitive visualization of dynamic data changes

The interface exhibits suboptimal layout 
organization, compromising both visual 
clarity and the accurate representation of 
dynamic data changes

The interface’s spatial arrangement 
lacks intuitive coherence, hindering 
effective data interpretation and 
user interaction

Operational 
response time

The response time of the system’s software 
operations is less than 2 s, and the 
response time of data queries is less than 3 
s

The response time of the system’s software 
operations is within 2-3 s, and the response 
time of data queries is within 3-5 s

The response time of the system’s 
software operations is within 3-10 s, and 
the response time of data queries is 
within 5-15 s

The response time of the system’s 
software operations is more than 10 
s, and the response time of data 
queries is more than 15 s

It has a variety of overrun reminder 
methods, such as color changes, pushed 
messages, SMS prompts, sound and light 
alarm, etc., and the overrun reminder is 

It has a comparatively diverse overrun 
reminder methods, such as color changes, 
pushed messages, SMS prompts, sound and 
light alarm, etc., and the overrun reminder is 

Human-
computer 
interaction

Overrun alerts The overrun reminder is comparatively 
less obvious

There is no overrun reminder, or the 
overrun reminder method is not 
obvious

extremely obvious comparatively obvious
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where P2 is the online rate of the sensor, n represents the aggregate count of sensors in the system. T is the range of inquiry time, and ti is the offline time for the i-th sensor within the range of the query time. BHM: 
Bridge health monitoring; SMS: short message service.

can be calculated as follows:

where ni is the number of times that a first-level alarm has not been promptly confirmed in the past year, and Ni is the total number of times that the i-th level 
alarm has occurred in the past year.

(6) Timeliness of report upload 
The timeliness of the report within 1 year is evaluated. If one of the following conditions is met, the report is not promptly uploaded: 
� The quarterly reports are not uploaded within 30 days after the end of the quarter. 
� The annual report was not uploaded by the end of February of the following year. 
� A special matters report was not uploaded within 15 days after the incident was processed.

The timeliness of report upload is defined as

where P6 is the timeliness of report uploads, P6i is the score of the i-th level of report upload timeliness, and bi is the weight of the i-th level of the report upload 
timeliness (0.2 for quarterly reports, 0.5 for annual reports, and 0.3 for special incident reports). The i-th level timeliness of report upload is calculated as

where ni is the number of times that i-th level reports were not promptly uploaded in the past year, and Ni is the total number of i-th level reports in the past 
year.
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4.2.4. Establish the membership and non-membership functions
According to the TIFNs, the membership and non-membership functions of the rating level are written as
follows:

For Level I:

For Level II:

For Level III:

For Level IV:

4.2.5. Comprehensive evaluation result
The construction of the comparison matrix requires specific indicator values. In this study, a long-span
cable-stayed BHM system was taken as an example. Compared with the rating criteria for each indicator in
Table 9, the scores of each index are x = (92, 92, 94, 84, 88, 92, 81, 86, 83, 92, 87, 93, 89, 89), by integrating
the membership and non-membership functions outlined in Section 4.2.4, the judgment matrix could be
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systematically derived as follows:

According to the relative weights and judgment matrix R obtained in Section 4.2.2, using Equations (11) 
and (12), the comprehensive assessment results were calculated:

Based on the range of the four evaluation grades outlined in Table 3, it can be concluded that the BHM
system falls into the “II” evaluation grade. This indicates a “good” status; the BHM system is operating
effectively, but there may be potential risks. Occasional specialized inspections are recommended.

4.2.6. Application to a BHM system of suspension bridge
A long-span suspension bridge has a total length of 1,650.5 meters. The main span of the bridge measures
1,120 meters, while the deck width is 22 meters. The structural design features a hybrid steel-concrete beam
for the main girder and reinforced concrete for the main piers. This configuration ensures both durability
and load-bearing capacity, making it a robust example of modern bridge engineering. Figure 8 is the
measurement point layout diagram of its BHM system.
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Figure 8. Longitudinal layout of monitoring points of a long-span suspension bridge. Note: the number of sensors is given in parentheses: 
(A) Displacement; (B) Cable tension; (C) Cable tension of sling; (D) Anchor strand force across the cable; (E) acceleration; (F) Vehicle 
load; (G) wind velocity; (H) temperature.

Compared with the rating criteria for each indicator in Table 9, the scores of each index are x = (96, 96, 94, 
90, 86, 89, 90, 96, 98, 94, 97, 94, 96, 88), The calculation process is detailed in the Supplementary Materials, 
with the final evaluation result:

Z = 86.76

Based on the range of the four evaluation grades determined in Table 3, it can be concluded that the bridge 
monitoring system belongs to the evaluation grade “II”, which indicates a “good” status; the BHM system is 
operating effectively, but there may be potential risks. Occasional specialized inspections are recommended.

5. COMPARISON AND DISCUSSION
5.1. Efficiency verification of TIFANP
To verify the reliability of the TIFANP in assigning the weights of each indicator, a comprehensive 
comparative analysis was performed to evaluate various weight assignment methodologies.

The comparative analysis of weight assignment methodologies, including TIFANP, AHP, analytic network 
process (ANP), and intuitive fuzzy analytic network process (IFANP), is illustrated in Figure 9. As depicted, 
a significant divergence is observed between the TIFANP and AHP approaches in determining indicator 
weights. For example, the AHP assigns a lower weight of 0.045 to indicator E11, but the TIFANP assigns a 
higher weight of 0.076 to E11. Similar differences are also reflected in indicators E12, E21, E42, and E43; this is 
due to the different mechanisms underlying the AHP and TIFANP methods. The AHP follows a 
hierarchical structure. The decision problem is broken down into multiple levels. Higher-level indicators 
influence lower-level ones, but there are no direct interactions between the lower-level indicators. Only the 
importance of two indicators is considered in the AHP when determining the weight. TIFANP uses a 
network structure, the interdependence and dominance of indicators at the same level are more flexibly 
considered. Considering the actual attributes of the indicators, the weights obtained by the TIFANP are 
more consistent with the importance that decision-makers place on the indicators; therefore, the TIFANP is 
more appropriate than the AHP for weight assignment.

In the case of the same comparison matrix, the weights derived from the ANP, IFANP, and TIFANP exhibit 
notable similarities. This convergence arises from their shared foundational logic, which involves the 
analysis of the mutual influence degree of indicators. At the same time, the TIFANP, IFANP, and ANP also 
reflect some differences, such as in the indicators E11 and E32, due to the fact that when hesitation occurs in 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202505/ir5019-SupplementaryMaterials.pdf
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Figure 9. Comparative evaluation of weight assignment methodologies: AHP, ANP, IFANP, and TIFANP. AHP: Analytic hierarchy 
process; ANP: analytic network process; IFANP: intuitive fuzzy analytic network process; TIFANP: triangular intuitionistic fuzzy analytic 
network process.

the decision-making process, the traditional ANP completely relies on subjective judgment, and the IFANP 
and TIFANP obtain quantitative hesitation information through TIFNs. The weights derived from the 
IFANP and TIFANP are almost identical; the difference between the indicators is within 0.01 because both 
the IFANP and TIFANP quantify the hesitation information implicitly in the decision-making process, so 
the results are more accurate than the traditional ANP. The main difference between the TIFANP and the 
IFANP is that the TIFANP further introduces triangular fuzzy numbers to quantify the hesitation implied in 
the opinions of decision makers, which is more accurate than the IFANP in the method of quantifying 
uncertainty.

In summary, the TIFANP approach introduced in this study demonstrates superior reliability in 
determining indicator weights compared to alternative methodologies.

5.2. Efficiency of the TIFANP-TIFCE model
Based on the weights determined using the TIFANP, this section discusses the efficiency of the TIFANP-
TIFCE method using different membership function construction methods.

The comparison of the assessment results obtained using the same indicator weights and different 
membership function construction methods, i.e., TIFANP-TIFCE, TIFANP-FCE, and the TIFANP-gray 
clustering method, are shown in Table 10. As can be seen in Table 10, the results of the rating level obtained 
using TIFANP-TIFCE are consistent with those obtained using other comprehensive evaluation methods 
under the same weight, which proves the effectiveness of the method. The scores of the TIFANP-grey 
clustering method and TIFANP-FCE are slightly higher than those of TIFANP-TIFCE, because the 
TIFANP-grey clustering method and TIFANP-FCE only consider the membership degree of the indicators 
to the system rating level. On this basis, TIFANP-TIFCE further considers the difference between the 
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Table 10. Result comparison of different membership function construction methods

Evaluation method TIFANP-TIFCE TIFANP-FCE TIFANP-gray clustering

Rating level II II II

Result 80.98 82.73 82.15

TIFANP: Triangular intuitionistic fuzzy analytic network process; TIFCE: triangular intuitionistic fuzzy comprehensive evaluation; FCE: fuzzy 
comprehensive evaluation.

decision-making opinion and the actual situation, which is caused by the difficulty of quantifying the 
calculation of some indicators in the decision-making process, i.e., the non-membership degree of the 
evaluation indicators to the system rating grade. Therefore, the evaluation results of TIFANP-TIFCE are 
more realistic and plausible.

6. CONCLUSIONS
To determine the operational status of BHM systems, this paper proposes a novel assessment method based 
on TIFANP-TIFCE. A comprehensive case study was performed on a long-span cable-stayed BHM system 
and a suspension BHM system to validate the efficacy of the proposed method. The conclusions of this 
study can be summarized as follows.

(1) The operational status evaluation of BHM systems represents a complex, multi-dimensional assessment 
that involves analyzing various interrelated indicators. For the first time, this paper proposes a multi-level 
evaluation index system, which is satisfactory and can well reflect the operational status of BHM systems in 
service.

(2) The mutual influence relationships of dependence and domination among indicators are 
comprehensively considered by the TIFANP, and the hesitation frequency of decision-makers during the 
evaluation process is effectively addressed. The weights obtained using the TIFANP are more accurate than 
those of the traditional AHP and ANP.

(3) By combining qualitative and quantitative evaluation, the influence of various indicators on the 
operational status of a BHM system is comprehensively considered. By integrating the complex indicators 
of the operational status of the BHM system, the membership degree function is constructed. While some 
indicators are difficult to quantify, the differences between the decision-making opinions and the actual 
situation are expressed through non-membership functions, and the evaluation results obtained are more 
authentic.

(4) Hesitation in the decision-making process is well addressed with the introduction of TIFNs, which 
solves the problem of conversion from linguistic terms to TIFNs and exact values when lacking information 
for decision-making, quantifying the deviation caused by hesitation and uncertainty in the decision-making 
process, and making the evaluation process more meticulous.

(5) A comparison analysis of the weights allocation by TIFANP, IFANP, ANP, and AHP is conducted. The 
results show that TIFANP outperforms other methods in handling the hesitant information and mutual 
influence relationship between indicators. Then, the differences of constructing membership functions 
between TIFCE and other methods were compared based on the weights obtained by TIFANP, the 
effectiveness of the non-membership functions of TIFCE in handling uncertain information are verified.
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In this paper, some non-quantifiable indicators are included in the proposed indicator system, such as data 
consistency. Future research could focus on the development of methods for quantifying indicators.
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