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Abstract
Aim: We measured the left-to-right ventricular volume ratio (LRVR) in a large cohort of patients with 
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transfusion-dependent thalassemia (TDT) and assessed its cross-sectional correlations and its prognostic value in 
predicting heart failure (HF) and all-cause mortality.

Methods: 1,481 TDT patients underwent cardiovascular magnetic resonance for assessment of biventricular 
volumes and ejection fractions (cine images) and myocardial iron overload (T2* technique) and for detection of 
replacement myocardial fibrosis (late gadolinium enhancement-LGE images). The LRVR was defined as the ratio 
between the left ventricular (LV) and right ventricular (RV) end-diastolic volume indexes.

Results: 1160 (78.3%) patients had normal ventricular symmetry, 220 (14.9%) LV dominant asymmetry (LRVR > 
118%), and 101 (6.8%) RV dominant asymmetry (LRVR < 89%).

Cardiac iron levels and LGE were comparable among the three groups. LV dominance was associated with reduced 
LV function. RV dominance was correlated with aging, reduced RV function, and a history of arrhythmias.

The mean follow-up time was 4.82 ± 2.06 years. HF death occurred in 15 (1.01%) patients. The risk for HF death 
was significantly higher in the group with RV dominant asymmetry compared to that with normal ventricular 
symmetry (hazard ratio, HR = 6.07). All-cause death occurred in 42 (2.8%) patients. RV dominant asymmetry was 
associated with a significantly increased risk of all-cause mortality compared to normal ventricular symmetry 
[hazard ratios (HR) = 3.57] and LV dominant asymmetry (HR = 6.17). RV dominance remained associated with an 
increased risk of HF and all-cause mortality even after adjusting for other risk factors such as cardiac iron, LGE, or 
biventricular ejection fractions.

Conclusion: The LRVR may play a significant role in enhancing death risk stratification in TDT.

Keywords: Transfusion-dependent thalassemia, left-to-right ventricular volume ratio, cardiac magnetic resonance, 
heart failure mortality, all-cause mortality

INTRODUCTION
Transfusion-dependent beta-thalassemia (β-TDT) is a severe autosomal recessive hemoglobinopathy 
characterized by the absence or marked reduction of the β-globin chain synthesis. The resultant chronic 
hemolysis and severe anemia necessitate lifelong, regular blood transfusions, which, although essential for 
survival, impose a significant risk of systemic iron overload[1,2]. Due to the lack of a physiological pathway 
for iron excretion, excess iron progressively accumulates in parenchymal tissues, particularly the 
myocardium, liver, and endocrine glands, leading to end-organ damage[3-5]. Iron-induced heart failure (HF) 
remains the principal cause of mortality in TDT patients, although the implementation of the T2* 
cardiovascular magnetic resonance (CMR) has dramatically improved outcomes and survival[6,7]. Indeed, by 
opening the door to the non-invasive, accurate, and reproducible quantification of cardiac iron levels[8,9], the 
T2* CMR technique enabled precise cardiac risk stratification[10,11] and the development and assessment of 
the efficacy of patient-specific iron chelation regimens[12-14]. However, additional factors, such as chronic 
anemia, myocarditis, endocrine dysfunction, and genetic predispositions, also play significant roles in the 
pathophysiology of cardiovascular morbidity in TDT patients[11,15-19]. Chronic anemia leads to a 
compensatory high-output cardiac state. Over time, this increased workload on the heart can lead to volume 
overload and maladaptive cardiac remodeling. This includes dilation of the heart chambers and 
hypertrophy of the ventricular walls, both of which increase the risk of heart dysfunction, heart failure, and 
arrhythmias[20-22].

CMR also plays a crucial role in detecting early signs of ventricular remodeling, being the gold standard for 
quantifying biventricular volumes, myocardial mass, and systolic function via cine imaging[23-25]. A large 
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multicentre study employing a multiparametric CMR approach demonstrated that not only myocardial iron 
overload but also other CMR parameters, including ventricular dilatation and ventricular dysfunction, were 
linked to a higher likelihood of mortality due to heart failure[26].

Few recent studies conducted in selected non-thalassemic disease conditions suggested that, beyond the 
absolute size of the ventricles, the relative size between the left and right ventricles can also provide valuable 
insights and serve as an important marker for predicting future cardiovascular risk[27-30]. The ventricular 
asymmetry can be assessed through simple volume ratio assessment. An asymmetric increase in the size of 
one ventricle may reflect early alterations in cardiac structure and function not evident from absolute size 
measurements alone and may suggest an imbalance in the distribution of the cardiac workload. Anyway, the 
evaluation of the ventricular asymmetry is generally performed only in specific clinical scenarios where the 
right ventricle is primarily affected, such as for differentiating physiological adaptations (athlete’s heart) 
from pathological conditions such as arrhythmogenic right ventricular cardiomyopathy[31].

In this study, the left-to-right ventricular volume ratio was measured in a large cohort of TDT patients with 
the aims of assessing its cross-sectional correlation with demographic, clinical, and CMR findings and 
determining its prognostic role for HF mortality or all-cause mortality.

METHODS
Study population
We considered 1,481 TDT patients consecutively enrolled in the Myocardial Iron Overload in Thalassemia 
(MIOT) project. The MIOT project was an Italian network constituted by 70 thalassemia centers and 10 
validated magnetic resonance imaging (MRI) centers that employed standardized protocols for MRI image 
acquisition and analysis[32,33]. At the baseline MRI, patients’ demographics, clinical features, laboratory, and 
instrumental findings were recorded in a web-based database, with updates conducted at each MRI scan, 
scheduled according to protocol every 18 ± 3 months.

Moreover, we included 91 healthy subjects (44.50 ± 13.65 years; 50.5% females) who were part of a 
multicenter cohort used to establish reference values for cardiac functional parameters and myocardial T1 
mapping. Healthy subjects were recruited from hospital staff, their family members, and via word of mouth 
and fulfilled the following inclusion criteria: normal electrocardiogram, no history of cardiac diseases or 
symptoms, no cardiovascular risk factors, no known systemic illnesses, and no absolute contraindications to 
the MRI.

All patients and healthy subjects gave informed consent in compliance with the Declaration of Helsinki. The 
study received approval from the institutional ethics committee.

MRI
The MRI scans were performed using 1.5T scanners of three main vendors (GE Healthcare, Milwaukee, WI; 
Philips, Best, Netherlands; Siemens, Erlangen, Germany) equipped with phased-array coils. Images were 
acquired during breath-holds with electrocardiogram (ECG) gating.

Cine images in standard long-axis and short-axis views from the atrioventricular ring to the cardiac apex 
were acquired using a balanced steady-state free precession (SSFP) sequence and were analyzed offline in a 
standard way to assess biventricular function parameters[34]. The inter-center reproducibility for the 
quantification of cardiac function had been previously reported[35]. Biventricular volumes and left 
ventricular (LV) mass were indexed to body surface area. The left-to-right ventricular volume ratio was 
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defined as the ratio between the LV end-diastolic volume index (EDVI) and right ventricular (RV) EDVI.

To evaluate iron overload, T2* gradient-echo multi-echo sequences were acquired. Basal, medium, and 
apical short-axis slices of the left ventricle[36] and a mid-hepatic slice were obtained[37]. Analysis of T2* 
images was conducted by experienced MRI operators (over 10 years of expertise) using HIPPOMIOT®, a 
custom-developed and validated software. This software calculated T2* values for all 16 LV segments based 
on the standard American Heart Association (AHA)/American College of Cardiology (ACC) model[38], and 
the global heart T2* value was determined by averaging the segmental values. Hepatic T2* values were 
measured within a circular region of interest, defined in a homogeneous area of parenchyma without blood 
vessels[37], and were converted into liver iron concentration (LIC)[39,40]. Previous studies have demonstrated 
both good intra- and inter-operator reproducibility and transferability across MIOT MRI centers[33].

Late gadolinium enhancement (LGE) images in both short- and long-axis views were obtained 8 min to 
18 min following intravenous administration of Gadobutrol (Gadovist®; Bayer; Berlin, Germany) at the 
standard dose of 0.2 mmol/kg using a T1-weighted fast gradient-echo inversion recovery sequence, with 
inversion time individually adjusted to optimize nulling of apparently normal myocardium. LGE was 
considered present upon identification of hyperintense regions confirmed on two orthogonal imaging 
planes[18]. LGE sequences were omitted in patients with a glomerular filtration rate < 30 mL/min/1.73 m2 and 
in patients who declined the administration of the contrast agent.

Diagnostic criteria
The healthy population was employed to establish the reference range for the left-to-right ventricular 
volume ratio. Lower and upper limits of normal were defined as the 5th and the 95th percentile values, 
respectively. Deviations beyond this range were classified into two distinct patterns of ventricular 
asymmetry: “LV dominant”, characterized by a disproportionately larger left ventricle (left-to-right 
ventricular volume ratio > upper limit), and “RV dominant”, defined by a significantly larger right ventricle 
(left-to-right ventricular volume ratio < lower limit).

A global heart T2* < 20 ms was considered indicative of significant myocardial iron overload (MIO)[8]. A 
LIC ≥ 3 mg/g/dw indicated significant hepatic iron overload[41].

Heart failure was identified based on symptoms, signs, biomarkers, and instrumental parameters, according 
to the current guidelines[42]. Arrhythmias were diagnosed when documented by standard ECG or 24 h 
Holter ECG and required specific pharmacological treatment. Classification of arrhythmias followed the 
AHA/ACC guidelines[43]. Pulmonary hypertension (PH) was defined by a trans-tricuspidal velocity jet 
exceeding 3.2 m/s[44], accompanied by corresponding signs and symptoms.

Follow-up
The end of follow-up was defined as the date of the last available MRI. For patients who did not undergo a 
control MRI, clinical outcomes from the baseline MRI until September 2018 were documented by the 
treating hematologist via a case report form. In patients who died during the study period, follow-up was 
censored at the date of death.

Mortality outcomes included HF mortality and all-cause mortality.
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Statistical analysis
All data were analyzed using SPSS version 27.0 statistical package (IBM Corp, Armonk, NY).

Continuous variables were summarized as mean ± standard deviation (SD). Categorical variables were 
presented as frequencies and percentages.

The Kolmogorov-Smirnov test was used to assess the normality of the distribution of continuous variables.

Correlation analyses were performed using Pearson’s test or Spearman’s test as appropriate with respect to 
data distribution.

For continuous variables demonstrating normality, intergroup comparisons were conducted using the 
independent-samples t-test for two-group analyses, and one-way analysis of variance (ANOVA) for 
comparisons involving more than two groups. For continuous variables with non-normal distributions, 
comparisons between two groups were performed using the Mann-Whitney U test, while comparisons 
involving more than two groups utilized the Kruskal-Wallis test. Differences in categorical variables were 
tested using Chi-square or Fisher’s exact test. The Bonferroni correction was used for multiple comparisons.

The analysis of covariance (ANCOVA) was used to evaluate whether between-group differences persisted 
after controlling for potential covariates. Covariates were included if they significantly differed between 
groups and were associated with the considered dependent variable. When necessary, variables were 
log-transformed to normalize the residual distributions and to equalize the residual variance.

The Cox regression was applied to evaluate the relationship between the selected prognostic variables and 
the outcome. Results were expressed as hazard ratios (HR) along with 95% confidence intervals (CI). 
Kaplan-Meier curves were generated to estimate survival. The log-rank test was used to compare survival 
curves between groups.

A 2-tailed P < 0.05 was considered statistically significant.

RESULTS
Left-to-right ventricular volume ratio in healthy subjects
In the healthy population, the mean left-to-right ventricular volume ratio was 101.85 ± 8.16%. It was 
comparable between males and females (100.37 ± 7.93% vs. 103.29 ± 8.20%; P = 0.068) and was not 
correlated with age (R = 0.235; P = 0.085).

The lower and upper limits of the left-to-right ventricular volume ratio were 89% and 118%, respectively.

Patients’ characteristics
All TDT patients were white and well distributed between males (N = 711; 48.0%) and females (N = 770; 
52.0%). The mean age at the baseline CMR was 31.03 ± 8.86 years. All patients were regularly transfused 
since early childhood and chelated. Patients started chelation therapy in the mid-to-late 1970s, while 
patients born after this era commenced chelation treatment during early childhood. Chelation regimens 
were individualized and prescribed in accordance with current evidence-based clinical guidelines, guided by 
comprehensive clinical evaluation, laboratory parameters, and instrumental assessments.
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The mean left-to-right ventricular volume ratio was 105.82 ± 13.98% (range: 39.47%-208.51%). Overall, 1160 
(78.3%) patients had normal ventricular symmetry, 220 (14.9%) patients had LV dominant asymmetry, and 
101 (6.8%) patients had RV dominant asymmetry.

Associations of ventricular asymmetry with demographic, clinical, and CMR findings
Table 1 shows the comparison of demographic, clinical, and CMR characteristics among the three groups of 
TDT patients identified according to the ventricular symmetry.

No significant differences were found in terms of sex, age at the start of regular transfusions, and serum 
levels of pre-transfusion hemoglobin and ferritin. Age was significantly different among the three groups, 
with TDT patients with RV dominant asymmetry being older than both patients with normal ventricular 
symmetry (P < 0.0001) and with LV dominant asymmetry (P < 0.0001).

TDT patients with RV dominant asymmetry had an increased prevalence of pre-existing arrhythmias 
compared to the group with normal ventricular symmetry (P = 0.015). Among the arrhythmias, the 
supraventricular arrhythmias (atrial fibrillation and atrial flutter) were the most common type (79%).

Cardiac and hepatic iron levels were comparable among the three groups.

The LV EDVI was not significantly different between patients with normal ventricular symmetry and 
patients with LV dominant asymmetry, while both groups exhibited a significantly increased LV EDVI 
compared to patients with RV dominant asymmetry (P < 0.0001 for both comparisons). The group with LV 
dominant asymmetry had a worse LV ejection fraction (EF) compared to both groups with normal 
ventricular symmetry and RV dominant asymmetry (P < 0.0001 for both comparisons).

The RV EDVI was significantly higher in both groups with normal ventricular asymmetry and RV 
dominant asymmetry compared to the group with LV dominant asymmetry (P < 0.0001 for both 
comparisons) and in the group with RV dominant asymmetry compared to the group with normal 
ventricular symmetry (P = 0.015). The group with RV dominant asymmetry had a worse RV EF compared 
to both groups with normal ventricular symmetry and LV dominant asymmetry (P < 0.0001 for both 
comparisons). All the between-group differences in LV and RV EDVI remained significant in the 
ANCOVA model after adjustment for age. The LV mass index was comparable among the three groups.

The contrast medium was injected in 1,183 (79.9%) patients, and 201 (17.0%) of them showed replacement 
myocardial fibrosis. Only two patients exhibited a transmural pattern of LGE, whereas the remaining 
patients demonstrated a non-ischemic LGE pattern. A total of 61.0% of patients presented with at least two 
distinct foci of myocardial fibrosis. The prevalence of replacement myocardial fibrosis did not differ 
significantly among the three TDT subgroups stratified by ventricular symmetry.

Patient outcomes
The mean follow-up time was 4.82 ± 2.06 years (median: 5.01 years).

All-cause death occurred in 42 (2.8%) patients. Specifically, 15 (35.7%) patients died for HF, 7 (16.7%) 
patients for cancer, 4 (9.5%) patients for cirrhosis, 4 (9.5%) patients for myocardial infarction, 3 (7.1%) 
patients for sepsis, 2 (4.8%) patients for anaphylactic shock, 2 (4.8%) patients for bone marrow transplant 
complications, 1 (2.4%) patient for pneumonia, 1 (2.4%) patient for agranulocytosis, 1 (2.4%) patient for 
trauma, 1 (2.4%) patient for suicide, and 1 (2.4%) patient for an unknown cause.
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Table 1. Baseline demographic, clinical, and MRI data of the three groups identified based on the left-to-right ventricular volume 
ratio

Variable Normal asymmetry 
(N = 1,160)

LV dominant asymmetry 
(N = 220)

RV dominant asymmetry 
(N = 101) P-value

Females, N (%) 599 (51.6) 125 (56.8) 46 (45.5) 0.150

Age (years) 30.74 ± 8.78 30.73 ± 9.54 34.98 ± 7.28 < 0.0001

Age at the start of regular transfusions (years) 1.59 ± 1.23 1.57 ± 1.19 1.46 ± 1.19 0.458

Pre-transfusion hemoglobin (g/dL) 9.60 ± 0.67 9.56 ± 0.77 9.54 ± 0.44 0.453

Serum ferritin (ng/L) 1,460.46 ± 1,403.86 1,674.35 ± 1,652.84 1,414.04 ± 1,700.32 0.058

History of HF, N (%) 62 (5.3) 14 (6.4) 11 (10.9) 0.071

History of arrhythmias, N (%) 67 (5.8) 12 (5.5) 13 (12.9) 0.016

History of pulmonary hypertension, N (%) 14 (1.2) 1 (0.5) 3 (3.0) 0.161

Global heart T2* (ms) 29.26 ± 11.98 28.09 ± 13.25 30.01 ± 11.97 0.225

Significant MIO, N (%) 298 (25.7) 71 (32.3) 28 (27.7) 0.127

Number of segments with T2* < 20 ms 4.52 ± 6.12 5.35 ± 6.60 4.47 ± 5.96 0.513

MRI LIC (mg/g/dw) 8.74 ± 10.58 9.64 ± 10.95 9.18 ± 13.33 0.218

Hepatic iron overload, N (%) 737 (63.5) 145 (65.9) 58 (57.4) 0.340

LV EDVI (mL/m2) 87.51 ± 18.75 89.62 ± 18.09 75.94 ± 19.17 < 0.0001

LV mass index (g/m2) 57.84 ± 12.87 59.17 ± 16.04 60.22 ± 15.84 0.476

LV EF (%) 61.98 ± 6.95 57.49 ± 7.44 62.63 ± 9.27 < 0.0001

RV EDVI (mL/m2) 84.88 ± 18.17 69.80 ± 15.40 93.75 ± 34.44 < 0.0001

RV EF (%) 61.57 ± 7.64 61.26 ± 9.44 53.81 ± 9.07 < 0.0001

Replacement myocardial fibrosis, N (%) 159/932 (17.1) 27/164 (16.5) 15/87 (17.2) 0.980

N: Number; LV: left ventricular; RV: right ventricular; HF: heart failure; MIO: myocardial iron overload; MRI: magnetic resonance imaging; LIC: liver 
iron concentration; EDVI: end-diastolic volume index; EF: ejection fraction; MRI: magnetic resonance imaging.

The most frequent type of HF was HF with reduced ejection fraction (11/15 deaths = 73.3%). Most of the 
patients with HF with reduced ejection fraction presented to healthcare providers with decreased exercise 
tolerance, primarily due to dyspnea and/or fatigue. Two patients developed chronic heart failure diagnosed 
more than one year after the CMR scan and both experienced rapid clinical deterioration. One patient had 
heart failure with preserved ejection fraction (HFpEF) and showed evidence of underlying structural heart 
disease.

The mean time from the baseline MRI to the HF-related death was 2.06 ± 2.02 years and 7 (46.7%) deaths 
occurred within the first year of follow-up.

Association between ventricular symmetry and heart failure mortality
The prevalence of HF death was 0.7% for patients with normal ventricular symmetry, 1.4% for patients with 
LV dominant asymmetry, and 4.0% for patients with dominant RV asymmetry, with a significant difference 
between patients with normal ventricular symmetry and RV dominant asymmetry (P = 0.036).

Table 2 shows the results of the univariate Cox Regression analysis for the prediction of HF mortality.

HF mortality was not associated with age, gender, hepatic iron levels, or pre-transfusion hemoglobin. 
Compared to the group with normal ventricular symmetry, only the group with RV dominant asymmetry 
was associated with a significantly increased risk of HF mortality. The RV dominant asymmetry did not 
provide additional prognostic stratification in comparison to the LV dominant asymmetry (HR = 2.69, 
95%CI = 0.59-12.04, P = 0.197). The Kaplan-Meier curve showing the impact of the ventricular symmetry on 
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Table 2. Univariate Cox regression for the prediction of heart failure mortality

Univariate analysis
N  (%) in group N  (%) of HF deaths

HR (95%CI) P-value

Sex 
Male 
Female

 
711 (48.0) 
770 (52.0)

 
9 (1.3) 
6 (0.8)

 
Reference 
0.61 (0.22-1.72)

 
 
0.351

Age 1.05 (0.99-1.12) 0.102

Age at the start of regular transfusions 0.90 (0.54-1.49) 0.686

Pre-transfusion hemoglobin 0.42 (0.17-1.03) 0.058

Serum ferritin 1.00 (1.00-1.01) < 0.0001

History of HF 
No 
Yes

 
1394 (94.1) 
87 (5.9)

 
12 (0.9) 
3 (3.4)

 
Reference 
4.03 (1.14-14.29)

 
 
0.031

History of arrhythmias 
No 
Yes

 
1389 (93.8) 
92 (6.2)

 
12 (0.9) 
3 (3.3)

 
Reference 
3.89 (1.09-13.80)

 
 
0.035

Hepatic iron overload 
No 
Yes

 
541 (36.5) 
940 (63.5)

 
3 (0.6) 
12 (1.3)

 
Reference 
2.30 (0.65-8.16)

 
 
0.196

Significant MIO 
No 
Yes

 
1084 (73.2) 
397 (26.8)

 
7 (0.6) 
8 (2.0)

 
Reference 
3.09 (1.12-8.53)

 
 
0.029

LV EF 0.89 (0.85-0.93) < 0.0001

RV EF 0.92 (0.89-0.95) < 0.0001

Myocardial fibrosis (N = 1,183) 
No 
Yes

 
982 (83.0) 
201 (17.0)

 
8 (0.8) 
6 (3.0)

 
Reference 
3.73 (1.29-10.75)

 
 
0.015

Ventricular symmetry 
normal  
LV dominant 
RV dominant

 
1160 (78.3) 
220 (14.9) 
101 (6.8)

 
8 (0.7) 
3 (1.4) 
4 (4.0)

 
Reference 
2.17 (0.58-8.22) 
6.07 (1.83-20.18)

 
 
0.251 
0.003

N: Number; HF:heart failure; HR: hazard ratio; CI: confidence intervals; MIO: myocardial iron overload; LV: left ventricular; EF: ejection fraction; 
RV: right ventricular; MRI: magnetic resonance imaging.

HF mortality is shown in Figure 1A. The log-rank test revealed a significant difference in the curves (P = 
0.004). The other univariate prognosticators of HF mortality were mean serum ferritin levels, history of HF 
and arrhythmias, significant myocardial iron overload, LV and RV ejection fractions, and replacement 
myocardial fibrosis.

The low number of deaths for HF prevented performing a multivariate analysis including simultaneously all 
univariate prognosticators. Different Cox regression analyses were performed, adjusting the ventricular 
symmetry for one univariate prognosticator at a time [Table 3]. In all tested models, RV dominance 
remained associated with an increased risk for HF mortality.

Association between ventricular symmetry and all-cause mortality
Patients with RV dominant asymmetry had a significantly higher all-cause mortality rate compared to both 
patients with normal ventricular symmetry (8.9% vs. 2.6%; P < 0.0001) and with LV dominant asymmetry 
(8.9% vs. 1.4%; P = 0.006).

Table 4 shows the results of the univariate Cox Regression analysis for the prediction of all-cause mortality. 
RV dominant asymmetry was associated with a significantly increased risk of all-cause mortality compared 
to normal ventricular symmetry (HR = 3.57, 95%CI = 1.69-7.53, P = 0.001) and to LV dominant asymmetry 
(HR = 6.17, 95%CI = 1.67-22.85, P = 0.006). The Kaplan-Meier curve showing the impact of the ventricular 
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Table 3. Cox regression analysis for prediction of HF death adjusted for different covariates in TDT patients stratified by ventricular 
symmetry

LV asymmetry vs. normal 
ventricular symmetry

RV asymmetry vs. normal 
ventricular symmetry

RV asymmetry vs. LV 
asymmetry

HR (95%CI) P-value HR (95%CI) P-value HR (95%CI) P-value

Model 1: crude 2.17 
(0.58-8.22)

0.251 6.07 
(1.83-20.18)

0.003 2.69 
(0.59-12.04)

0.197

Model 2: adjusted for serum 
ferritin

2.48 
(0.44-13.79)

0.301 9.56  
(2.10-43.51)

0.004 3.68  
(0.61-22.18)

0.154

Model 3: adjusted for history of HF 2.19  
(0.58-8.26)

0.249 5.74  
(1.72-19.16)

0.005 2.42  
(0.54-10.94)

0.250

Model 4: adjusted for history of 
arrhythmias

2.18  
(0.58-8.23)

0.250 5.29  
(1.56-17.93)

0.007 1.99  
(0.43-9.25)

0.382

Model 5: adjusted for significant 
MIO

2.05 
(0.54-7.77)

0.290 5.98 
(1.79-18.87)

0.004 3.28 
(0.73-14.69)

0.178

Model 6: adjusted for LV EF 1.28 
(0.33-4.96)

0.719 5.58 
(1.62-19.15)

0.006 4.49 
(0.99-20.49)

0.052

Model 7: adjusted for RV EF 1.94  
(0.51-7.38)

0.328 1.95  
(1.10-11.60)

0.050 1.59  
(0.35-7.21)

0.542

Model 8: adjusted for replacement 
myocardial fibrosis

2.37 
(0.63-8.96)

0.203 4.25 
(1.13-16.03)

0.033 1.69 
(0.34-8.43)

0.520

LV: Left ventricular; RV: right ventricular; HR: hazard ratio; CI: confidence intervals; HF: heart failure; MIO: myocardial iron overload; EF: ejection 
fraction; TDT: transfusion-dependent thalassemia.

Table 4. Univariate Cox regression for the prediction of all-cause death

Univariate analysis
N (%) in group N (%) of all-cause deaths

HR (95%CI) p-value

Sex 
Male 
Female

 
711 (48.0) 
770 (52.0)

 
25 (3.5) 
17 (2.2)

 
Reference 
0.61 (0.33-1.13)

 
 
0.116

Age 1.05 (1.02-1.09) 0.006

Age at the start of regular transfusions 1.24 (0.99-1.57) 0.063

Pre-transfusion hemoglobin 0.73 (0.44-1.21) 0.219

Serum ferritin 1.00 (1.00-1.01) 0.032

History of HF 
No 
Yes

 
1394 (94.1) 
87 (5.9)

 
30 (2.2) 
12 (13.8)

 
Reference 
6.51 (3.33-12.73)

 
 
< 0.0001

History of arrhythmias 
No 
Yes

 
1389 (93.8) 
92 (6.2)

 
30 (2.2) 
12 (13.0)

 
Reference 
6.35 (3.25-12.41)

 
 
< 0.0001

Hepatic iron overload 
No 
Yes

 
541 (36.5) 
940 (63.5)

 
13 (2.4) 
29 (3.1)

 
Reference 
1.30 (0.68-2.51)

 
 
0.429

Significant MIO 
No 
Yes

 
1084 (73.2) 
397 (26.8)

 
23 (2.1) 
19 (4.8)

 
Reference 
2.39 (1.29-4.39)

 
 
0.005

LV EF 0.93 (0.89-0.96) < 0.0001

RV EF 0.93 (0.91-0.95) < 0.0001

Myocardial fibrosis (N = 1,183) 
No 
Yes

 
982 (83.0) 
201 (17.0)

 
24 (2.4) 
8 (4.0)

 
Reference 
1.68 (0.75-3.74)

 
 
0.205

Ventricular symmetry 
Normal  
LV dominant 
RV dominant

 
1160 (78.3) 
220 (14.9) 
101 (6.8)

 
30 (2.6) 
3 (1.4) 
9 (8.9)

 
Reference 
0.59 (0.18-1.92) 
3.57 (1.69-7.53)

 
 
0.378 
0.001

N: Number; HR: hazard ratio; CI: confidence intervals; HF: heart failure; MIO: myocardial iron overload; LV: left ventricular; EF: ejection fraction; 
RV: right ventricular.
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Figure 1. Kaplan-Meier curve of heart failure death (A) and all-cause death (B) according to baseline ventricular symmetry.

symmetry on all-cause mortality is shown in Figure 1B. The log-rank test revealed a significant difference in 
the curves (P < 0.0001). The other univariate prognosticators of all-cause mortality were age, serum ferritin 
levels, history of HF and arrhythmias, significant MIO, and LV and RV ejection fractions.

Different Cox regression analyses were performed, adjusting the ventricular symmetry for a group of 
univariate prognosticators at a time [Table 5]. In all tested models, RV dominance remained associated with 
an increased risk for all-cause death compared to both normal ventricular symmetry and LV dominance.

DISCUSSION
The left-to-right ventricular volume ratio can be easily derived from routinely available CMR parameters; 
however, its clinical relevance has been poorly investigated. This is the first study to evaluate this metric in 
TDT.
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Table 5. Cox regression analysis for prediction of all-cause death adjusted for different covariates in TDT patients stratified by 
ventricular symmetry

LV asymmetry vs. normal 
ventricular symmetry

RV asymmetry vs. normal 
ventricular symmetry

RV asymmetry vs. LV 
asymmetry

HR (95%CI) P-value HR (95%CI) P-value HR (95%CI) P-value

Model 1: crude 0.59  
(0.18-1.92)

0.378 3.57 
(1.69-7.53)

0.001 6.17 
(1.67-22.85)

0.006

Model 2: adjusted for age and serum 
ferritin

0.45 
(0.11-1.92)

0.280 3.06  
(1.36-6.91)

0.007 8.22  
(1.71-39.55)

0.009

Model 3: adjusted for history of heart 
failure and arrhythmias

0.61 
(0.19-2.01)

0.421 2.99  
(1.41-6.35)

0.004 4.61  
(1.23-17.25)

0.023

Model 5: adjusted for CMR predictors 
(significant MIO, LV EF, and RV EF)

0.47 
(0.14-1.58)

0.224 2.77 
(1.25-6.14)

0.012 5.44 
(1.24-23.82)

0.025

LV: Left ventricular; RV: right ventricular; HR: hazard ratio; CI: confidence intervals; HF: heart failure; MIO: myocardial iron overload; EF: ejection 
fraction; TDT: transfusion-dependent thalassemia.

To define the normal range for the left-to-right ventricular volume ratio, we included in our study a group 
of healthy subjects free from cardiovascular risk factors and cardiac or systemic diseases. The identified 
normal range (between 89% and 118%) is quite consistent with that identified in a previous study (between 
80 and 112%), where the group of subjects was significantly larger, but the presence of cardiovascular risk 
factors, such as diabetes, obesity, hypertension, and smoking, did not represent one of the exclusion 
criteria[29].

Almost three-quarters of TDT patients had balanced LV and right ventricular volumes, while the prevalence 
of LV dominance was almost double compared to RV dominance. In line with a UK study involving 44,796 
patients affected by different cardiac and respiratory diseases[29] and another study focused on patients with 
heart failure with preserved ejection fraction[27], we confirmed in TDT patients the lack of an association of 
LV dominant asymmetry with aging, gender, and LGE and the presence of a link between LV dominance 
and reduced LV systolic function. Conversely, we failed to detect a link between LV dominant asymmetry 
and increased LV mass index. The pathway linking LV dominant asymmetry to LV hypertrophy is 
complex[29], and in TDT, it is further complicated by the presence of many other drivers of LV hypertrophy, 
including volume overload and myocardial siderosis[45,46].

The RV dominant asymmetry showed a correlation with aging and reduced RV function. The absence of a 
link between RV asymmetry and pulmonary hypertension is most likely due to the low number of patients 
with the disease, thanks to the good transfusional regimen, able to reduce both the chronic hemolysis and 
its negative effects on nitric oxide availability and the circulating proinflammatory hormones[47,48]. 
Conversely, we demonstrated an association between RV dominant asymmetry and a history of arrhythmias 
(mainly supraventricular). Studies specifically reporting the prevalence and clinical significance of adverse 
cardiac outcomes of RV involvement in TDT are lacking. This gap likely reflects the historical 
underappreciation of the RV and its ability to predict cardiac outcomes, despite its now recognized 
independent and additive value beyond left ventricular function. Indeed, in other populations, a link 
between atrial fibrillation and right ventricular dilatation and/or dysfunction has been demonstrated[49,50].

In the prospective part of our study, we explored the prognostic ability of the left-to-right ventricular 
volume ratio with respect to HF mortality and all-cause mortality. Our results demonstrated that TDT 
patients with RV dominance had a significantly increased risk of heart failure death as well as all-cause 
death compared with those with normal ventricular symmetry. Moreover, the RV dominance was 
associated with an increased all-cause mortality risk in comparison to the LV dominance. Importantly, the 
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prognostic significance remained even after adjustment for other significant univariate prognosticators, 
including myocardial iron overload and LGE, which are well-established biomarkers for unfavorable 
prognosis[10,11,51].

Previous studies using CMR or other non-invasive imaging modalities like computed tomography have 
demonstrated the value of RV dominance as a mortality risk marker in different clinical settings, including 
patients without selected cardiac diseases[29], heart failure with preserved ejection fraction[27], pulmonary 
hypertension[52], interstitial lung disease[53], and pulmonary embolism[54]. Of note, in some cases, metrics 
different from the left-to-right ventricular volume ratio, such as the ratio between RV and LV diameters or 
volumes, have been used to assess the ventricular symmetry. Our study corroborates the literature and 
expands upon it by demonstrating that the connection between RV asymmetry and increased HF or 
all-cause mortality is also present within the unique pathophysiological landscape of TDT.

The RV and LV are intricately linked through the interventricular septum, shared epicardial circumferential 
myocyte fibers, and the surrounding pericardium, collectively establishing the foundation of ventricular 
interdependence[55]. So, the volume ratio provides a more comprehensive perspective on cardiac adaptation 
to pathological conditions. In the setting of chronic RV volume overload, the septum can shift toward the 
LV, leading to a reduction in LV capacity and impairing its function[56]. Under such conditions, an elevated 
volume ratio reflects not only the anatomical remodeling and enlargement of the right ventricle but also 
highlights the pathophysiological disruption of ventricular harmony and coordinated function.

Recent findings suggest that RV remodeling may also reflect broader systemic or non-cardiac processes that 
contribute to elevated all-cause mortality. Indeed, systemic conditions such as renal dysfunction[57], liver 
disease[58], and cancer[59] have been associated with adverse RV remodeling. Furthermore, biological 
processes such as chronic inflammation, oxidative stress, and fibrosis are strongly linked to RV 
remodeling[60,61] and may contribute to increased all-cause mortality. This evolving understanding positions 
RV remodeling as a potential surrogate marker for complex pathophysiological processes that extend 
beyond the cardiovascular system.

The recognition of RV remodeling as a clinical biomarker of systemic physiological strain highlights the 
need for comprehensive, multidisciplinary management in thalassemia. In addition to the two cornerstones 
of care-regular red blood cell transfusions and iron chelation therapy-the careful use of cardiopulmonary 
medications, when indicated, along with interventions targeting systemic contributors, may help improve 
RV structure and function by reducing overall physiological stress and mitigating secondary cardiac 
involvement.

The main limitations of our study were its retrospective design and the small number of events. The limited 
number of deaths prevented us from conducting a multivariate analysis including all univariate 
prognosticators, which may affect the strength and generalizability of our conclusions. While the observed 
associations appear clinically meaningful, they should be interpreted with caution and highlight the need for 
larger, prospective cohorts with sufficient event rates to enable more robust risk stratification and 
confirmatory analyses. Additionally, the small sample size restricted our ability to perform subgroup 
analyses, which could have provided a more nuanced understanding of the prognostic value of the 
left-to-right ventricular volume ratio in specific patient subgroups. We finally acknowledge that detailed 
data on transfusion history and transferrin saturation index were not available for inclusion in the present 
analysis. These parameters could have offered valuable insights into iron burden and disease progression.



Page 13 of Meloni et al. Vessel Plus. 2025;9:7 https://dx.doi.org/10.20517/2574-1209.2025.03 16

Conclusion
In TDT, RV dominant asymmetry is associated with increased HF and all-cause mortality, highlighting the 
importance of incorporating a thorough evaluation of ventricular geometry in routine CMR assessments. 
Further studies are needed to evaluate the transferability of these findings to other TDT populations and to 
better elucidate the biological pathways and mechanisms that link ventricular asymmetry to mortality, 
providing insights that may guide future therapeutic approaches.
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