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Abstract
In the past 20 years, liver transplantation has become one of the few effective treatments for various end-stage 
liver diseases. With the development of surgical methods and equipment, ischemia/reperfusion injury (IRI) and 
rejection have become the main factors affecting prognosis. Due to the use of detection methods such as 
metabolomics, surprising findings revealed that some significant lipid metabolism disorders are associated with 
liver transplantation. Moreover, the fatty liver, as an important part of the marginal donor organ, is severely 
affected by imbalances derived from the preexisting lipid metabolism turbulence. In other words, the lipid 

metabolism remodeling present in conventional liver transplantation is more severe and intricate in nonalcoholic 
fatty liver. This paper aims to review the recent 20 years of research on lipid metabolism in liver transplantation, 
especially the different molecular targets and signaling pathways involved in IRI, acute rejection, and chronic 
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rejection. Through a comprehensive review and analysis of the literature, we outline the research status and 
forward motion, which provides both a valuable reference substance for future research and a theoretical summary 
for the prevention and treatment of lipid metabolism disorders during liver transplantation.
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INTRODUCTION
Liver transplantation (LT) is a crucial treatment for end-stage liver disease[1,2]. However, the shortage of 
donor livers limits the feasibility of LT and the survival rate[3]. To solve this problem, the use of fatty livers as 
marginal donors is highly important for expanding the donor pool[4]. Studies have shown that fatty liver, 
due to its increased sensitivity to ischemia/reperfusion injury (IRI), may lead to a more severe inflammatory 
response and tissue damage after transplantation[5,6]. Although this risk can be weakened through the 
appropriate selection of recipients, more research is necessary to improve the utilization of donor livers[7,8].

Lipid metabolism disorders, the main pathological feature of fatty liver[9,10], are closely associated with poor 
outcomes in LT patients[11-13]. Lipid metabolism is an indispensable part of physiological status, including 
energy supply, organ protection, and biofilm composition[14-16]. There is a cross-relation between products 
from lipid metabolism and core signaling pathways activated in LT[17-19]. The importance of lipid metabolism 
in LT has been gradually realized in recent years, but there is still insufficient evidence to clarify this issue.

We used three literature search systems, namely PubMed, the Wiley Online Library, and Elsevier 
ScienceDirect, to search for studies about lipid metabolism and LT. A total of 137 articles were included. 
The two stages that may correlate with lipid metabolism in LT are IRI and acute rejection[20-23]. Hepatic IRI is 
characterized by aseptic inflammation, whereas acute rejection is the stage outcome of a series of immune 
responses. In this review, we describe key molecules that regulate lipid metabolism in LT and analyze their 
correlative signaling characteristics. In addition, the effects of several immunoregulatory drugs were 
evaluated given their impact on lipid metabolism. The interaction between lipid metabolism and oxidative 
stress should be carefully considered.

In summary, drawing upon clinical, translational, and basic research findings, we have deduced several 
potential directions and viable strategies for the burgeoning field of lipid metabolism research in LT.

LIPID METABOLISM AND LIVER ISCHEMIA-REPERFUSION INJURY
Arachidonic acid
Arachidonic acid (AA) is widely present in the phospholipids of the cell membrane as a necessary 
unsaturated fatty acid[24]. The metabolites of AA, including prostaglandins (PGs), leukotrienes, and 
thromboxane, regulate multiple molecular events that are closely associated with hepatic IRI. Intriguingly, 
despite belonging to similar metabolite pathways, they sometimes play contrary roles in hepatic IRI[25]. PGs 
have precise protective effects in disparate models[26]. Specifically, prostaglandin E (PGE) serves as a barrier 
against IRI damage in the liver. Monoacylglycerol lipase (MAGL) hydrolyses the endocannabinoid 2-
arachidonoylglycerol to generate the AA precursor pool for prostaglandin production. PGE can promote 
liver blood perfusion, inhibit platelet aggregation, and reduce oxidative stress levels[27] [Table 1].
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Table 1. Research on liver transplantation, lipid metabolism and signaling pathways

Title Journal Year Category Target molecule Signaling pathway Serial 
number

Monoacylglycerol lipase controls 
endocannabinoid and eicosanoid signaling 
and hepatic injury in mice

Gastroenterology 2014 Article MAGL Endocannabinoid, 
eicosanoid

27

Chemical composition of hepatic lipids 
mediates reperfusion injury of the 
macrosteatotic mouse liver through 
thromboxane A(2)

Journal of Hepatology 2011 Article TXA2 - 29

Endocannabinoid hydrolysis generates brain 
prostaglandins that promote 
neuroinflammation

Nature Neuroscience 2012 Article MAGL Endocannabinoid, 
prostaglandin

37

Substance P-regulated leukotriene B4 
production promotes acute pancreatitis-
associated lung injury through neutrophil 
reverse migration

International 
Immunopharmacology

2018 Article LTB4 PKC/MAPK 38

Expression of a cyclo-oxygenase-2 
transgene in murine liver causes hepatitis

Hepatology 2005 Article COX-2 NF-κB 40

Acute atorvastatin is hepatoprotective 
against ischaemia-reperfusion

Liver International 2015 Article Atorvastatin NF-κB 41

Ferroptosis: an iron-dependent form of 
nonapoptotic cell death

Cell 2012 Article GPX4 Ferroptosis 49

Inactivation of the ferroptosis regulator 
Gpx4 triggers acute renal failure in mice

Nature Cell Biology 2014 Article Gpx4 Ferroptosis 50

Arachidonic acid activates NLRP3 
inflammasome in MDSCs via FATP2 to 
promote post-transplant tumour recurrence 
in steatotic liver grafts

JHEP Reports 2023 Article NLRP3 
inflammasome, 
FATP2

NLRP3 inflammasome 53

Hepatocyte pyroptosis and release of 
inflammasome particles induce stellate cell 
activation and liver fibrosis

Journal of Hepatology 2022 Article NLRP3 
inflammasome, 
gasdermin D

Pyroptosis 54

In situ repurposing of dendritic cells with 
CRISPRCas9-based nanomedicine to induce 
transplant tolerance

Biomaterials 2019 Article CRISPR/Cas9 - 63

MARC1 downregulation reduces hepatocyte 
lipid content by increasing beta-oxidation

Clinical and Molecular 
Hepatology

- Article 1-Mar Beta-oxidation 82

Hepatic deficiency in transcriptional 
cofactor TBL1 promotes liver steatosis and 
hypertriglyceridemia

Cell Metabolism 2011 Article TBL1 PPARα lipid 
metabolism

83

NAFLD causes selective CD4(+) T 
lymphocyte loss and promotes 
hepatocarcinogenesis

Nature 2018 Article ROS - 104

PPARα is down-regulated following liver 
transplantation in mice

Hepatology 2003 Article PPARα - 105

GTPBP8 mitigates NASH by depressing 
hepatic oxidative stress and mitochondrial 
dysfunction via PGC-1α

Free Radical Biology and 
Medicine

2024 Article GTPBP8, PGC-1α Oxidative stress,
mitochondrial
dysfunction

107

Elevated sensitivity of macrosteatotic 
hepatocytes to hypoxia/reoxygenation 
stress is reversed by a novel defatting 
protocol

Liver Transplantation 2015 Article ROS Oxidative stress 108

NASH: Nonalcoholic steatohepatitis; MAGL: monoacylglycerol lipase; TXA2: thromboxane A2; LTB4: leukotriene B4; COX-2: cyclo-oxygenase-2; 
Gpx4: glutathione peroxidase 4; NAFLD: nonalcoholic fatty liver disease; ROS: reactive oxygen species; PPARα: peroxisome proliferator-activated 
receptor α; MDSCs: myeloid-derived suppressor cells.

Another metabolic pathway, the lipoxygenase (LOX) pathway, which generates bioactive mediators such as 
leukotrienes and thromboxane, is related to AA. Prostanoids, including PGs and thromboxanes (TXs), are 
formed through the cyclooxygenase (COX) pathway, leukotrienes, and lipoxins (LXs) by the action of 5-
LOX. Although eicosanoids are usually associated with proinflammatory responses, nonclassic eicosanoids, 
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such as LX, have anti-inflammatory and proresolving properties. These mediators are nonnegligible in the 
immune response in hepatic IRI[28].

The activation of the AA metabolic pathway also depends on the phase divergence of liver disease. For 
example, patients diagnosed with nonalcoholic fatty liver disease (NAFLD) exhibit high AA levels in the 
liver, leading to overactivation of the AA metabolic pathway and the production of bioactive lipid 
mediators. The excessive accumulation of these factors exacerbates the degree of inflammation, promotes 
the deterioration of oxidative stress, and eventually exacerbates hepatic IRI[29].

Mitogen-activated protein kinase and nuclear factor kappa-B signaling pathways
Mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) are inextricably related to 
each other during hepatic IRI[30,31]. Research in recent years has revealed that they are connected to the AA. 
Metabolites of AA can activate MAPK and NF-κB directly and contribute to inflammatory conditions in the 
liver. Given these findings, we summarize the signaling pathways involved in the past few years [Figure 1].

MAPK
The MAPK signaling pathway contains several subfamilies, such as ERK, JNK, and p38[32-34]. These different 
subunits are often activated via phosphorylation and are widely involved in liver damage, oxidative stress, 
and early acute rejection disease (EAD)[35,36]. Some lipid mediators generated from the AA metabolic 
pathway are reported to mobilize MAPK. This might constitute a pivotal approach for lipid metabolites to 
participate in hepatic IRI, that is, to regulate immune responses by affecting core inflammatory signals.

Previous studies have shown that the AA metabolite thromboxane A2 (TXA2) has the potential to launch 
the p38 subunit by binding to specific receptors[37]. This process then intensifies hepatic inflammation and 
cellular apoptosis. Similarly, leukotriene B4 (LTB4), another AA metabolite, can activate both ERK and p38. 
As a result, infiltration of neutrophils is increased, resulting in increased hepatic inflammation[38]. In 
addition, MAPK activation is usually affected by multiple factors in hepatic IRI[39]. Individual metabolites 
might have limited effects on core molecular events, so a joint analysis such as metabolomics involving 
diverse lipid metabolites is necessary.

NF-κB
Lipid metabolites derived from AA metabolism activate molecules associated with the NF-κB signaling 
pathway, which reinforces cytokine release and liver damage. Decades after the correlation between 
inflammation and tumors was revealed, the relationship between inflammation and metabolism came into 
sight.

A previous study revealed that PGE2 activates the NF-κB signaling pathway, which induces the release of 
cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the liver[40]. However, several 
PGs are known to support LT, particularly during the recovery phase following LT. For example, 
prostaglandin E1 infusion may prevent arterial spasm in LT[41]. Based on the above findings, the underlying 
mechanism of the PGs in LT still needs more evidence. As NF-κB signaling regulates both inflammation 
and regeneration, it sometimes has different functions even in the same model. This heterogeneity is 
consistent with particular stages of the disease and diverse upstreams.

Additionally, thromboxane B2 (TXB2) has also been investigated in hepatic IRI. Previous studies have 
shown that atorvastatin can reduce TXB2 levels and inhibit NF-κB, thereby mitigating the inflammation 
caused by liver IRI[42]. The primary disease of the liver significantly influences the degree of activation of the 
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Figure 1. Lipid metabolism signaling pathways in liver transplantation.

NF-κB signaling pathway, increasing the complexity of hepatic IRI and the severity of liver damage[43]. 
Notably, the determination of primary disease during LT is an emerging area due to the shortage of donor 
livers, especially in older livers and fatty livers, which tend to cause the receptors to produce a stronger 
immune response[4,5,44].

Ferroptosis and pyroptosis
Ferroptosis and pyroptosis are two vital processes of programmed cell death in hepatic IRI[45,46]. The AA 
metabolic pathway and its metabolites are intimately associated with the onset of ferroptosis and 
pyroptosis[47,48].

Ferroptosis
Ferroptosis, a form of cell death dependent on iron, is characterized by lipid peroxidation and iron ion 
accumulation[49]. During IRI, products of lipid peroxidation are generated through the AA metabolic 
pathway and then trigger ferroptosis. Lipid peroxidation by the AA pathway directly impairs the stability 
and integrity of liver cell membranes, eventually leading to membrane rupture and the release of iron ions. 
Iron ions act as catalysts and further aggravate lipid peroxidation reactions, thus creating a vicious cycle[50]. 
In addition, some lipid mediators in the AA metabolic pathway can directly mediate gene expression related 
to ferroptosis and accelerate the ferroptosis process[51].

During hepatic IRI, the occurrence of ferroptosis is not solely determined by the AA metabolic pathway. As 
with other types of programmed death, multiple factors might be involved in the regulation of ferroptosis. 
The primary disease of the liver partially determines the fate of hepatic cells after IRI[52]. In addition to liver 
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parenchymal cells, whether and how ferroptosis progresses in nonparenchymal cells and immune cell 
activation are largely unexplored.

Pyroptosis
Pyroptosis is characterized by cell swelling, membrane pore formation, and the release of inflammatory 
cytokines[53]. For pyroptosis, some AA mediators have the ability to activate the NLRP3 inflammasome, 
which is currently considered an inherent signal of pyroptosis. AA can activate the NLRP3 inflammasome 
in myeloid-derived suppressor cells (MDSCs) via FATP2 to promote posttransplant tumor recurrence in 
steatotic liver grafts[54]. Hepatocyte pyroptosis and inflammasome release induce stellate cell activation and 
liver fibrosis, suggesting the bridge role of pyroptosis among different hepatic cells[55]. The current research 
on the role of pyroptosis in lipid metabolism after LT is not limited to parenchymal cells and has made great 
progress. This finding is quite different from the initial reports of Kupffer cells as the main target in hepatic 
IRI.

From another perspective, gasdermin D (GSDMD) is currently considered the main functional subunit of 
pyroptosis in LT, but some studies have not screened other family proteins, which might omit some subtle 
mechanisms[56].

LIPID METABOLISM AND REJECTION
Rejection post-LT poses an inevitable challenge for every liver transplant recipient. Interestingly, IRI and 
lipid metabolism also play significant roles in rejection processes following LT.

Acute rejection
Acute rejection is a common complication in the early posttransplant period after LT and manifests as 
impaired graft function, tissue damage, and poor prognosis[57-59]. Acute rejection is thought to be associated 
with lipid metabolism remodeling. Moreover, LT patients are procedurally treated with immunosuppressant 
drugs for acute rejection, which probably influences lipid metabolism as a nonnegligible side effect[20,60,61].

Lipid metabolism remodeling during acute rejection
Acute rejection after LT is one of the primary problems[62,63]. Owing to the activation of immune cells, 
including T cells and macrophages, in the graft, a substantial amount of cytokines and chemokines are 
released, causing direct damage to the graft and remodeling lipid metabolism[64-66].

Tacrolimus-induced lipid metabolism perturbations 
Tacrolimus (TAC), as the first-line drug for immunosuppressive therapy, exerts certain effects on lipid 
metabolism[67,68] [Table 2]. Studies have shown that in patients undergoing adult-to-adult living donor liver 
transplantation (AALDLT), higher blood concentrations of TAC are associated with hyperlipidemia in the 
early postoperative period. The potential mechanism might involve the activation of immune cells, leading 
to the release of inflammatory factors, which in turn injures lipid metabolism. This can partially explain the 
elevation of total cholesterol (TC) and triglyceride (TG) levels and the decrease in high-density lipoprotein 
cholesterol (HDL-C) levels[69]. Given that, the tandem effects of inflammation and lipid metabolism seem to 
require further elucidation.

Ethanol-induced oxidative stress and lipid metabolism disturbance 
Ethanol is reported to be involved in acute rejection. A previous study revealed that ethanol consumption 
by donors prior to LT causes oxidative stress after the transplantation of fatty livers, thereby disturbing the 
graft and generating microcirculation disturbances. In this situation, Kupffer cells and neutrophils are 
redeployed by oxidative stress and then facilitate the production of free radicals[70].
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Table 2. Influence of the application of immunosuppressants after liver transplantation on lipid metabolism

Category Name Effect

CNIs Tacrolimus Reduces total cholesterol and triglycerides levels, potentially lowering the risk of cardiovascular 
disease

Cyclosporine A Elevates blood lipid levels, including cholesterol and triglycerides

Antiproliferative 
gents

Mycophenolate 
mofetil

Generally has a neutral or mildly beneficial effect on lipid metabolism, with no significant increase in 
lipid levels

mTOR inhibitors Sirolimus 
(rapamycin)

Can increase cholesterol and triglyceride levels, but may have a beneficial effect on reducing the 
progression of atherosclerosis in some patients

Everolimus Similar to sirolimus, may increase lipid levels but with potential cardiovascular protective effects in 
certain contexts

Corticosteroids Dexamethasone Increases blood lipid levels, including cholesterol and triglycerides, contributing to an increased risk 
of cardiovascular disease

Circular RNA circFOXN2 Alleviates dyslipidemia induced by tacrolimus and dexamethasone by reducing FASN mRNA 
stability and modulating lipid metabolism

CNIs: Calcineurin inhibitors; FASN: fatty acid synthase.

Application of immunosuppressant drugs
Impact of TAC and cyclosporine a on lipid metabolism 
To prevent acute rejection, a prolonged immunosuppressive strategy is necessary for most LT patients. 
Some of these drugs have complicated synergistic effects on lipid metabolism[71,72]. TAC and cyclosporine A 
are widely administered immunosuppressants. Studies indicate that the utilization of TAC is related to 
lower levels of TC and TG after LT, which might reduce the risk of cardiovascular disease. Moreover, 
cyclosporine A is associated with elevated blood lipid levels[73]. As powerful immunosuppressive drugs, their 
ability to modulate lipid metabolism has far-reaching effects on direct and indirect targets, and what we 
observe might be some macroscopic results from synergistic actions.

Therapeutic potential of circFOXN2 in managing dyslipidemia 
Another study revealed that circFOXN2 can alleviate dyslipidemia induced by TAC and dexamethasone 
(Dex). Specifically, a decreased circFOXN2 level is correlated with an increase in fatty acid synthase (FAS). 
The overexpression of circFOXN2 can reverse TC, TG, FASN, and sterol regulatory element-binding 
transcription factor 2 (SREBP-2) levels[74]. These findings suggest that circFOXN2 might serve as a potential 
therapeutic target for managing dyslipidemia in LT patients receiving TAC and Dex.

Combination therapy for minimizing adverse effects on lipid metabolism 
Combination therapy is often used to mitigate the adverse effects of immunosuppressants in the clinic. 
Strategies integrating mTOR inhibitors with TAC or mycophenolate mofetil (MMF) could reduce the 
dosage of single drugs, thereby minimizing interference with lipid metabolism[75].

Chronic rejection
Chronic rejection, a long-term complication following LT, primarily presents as durable degeneration of 
graft function, fibrosis, and vascular pathology[76-78]. Compared with acute rejection, chronic rejection has a 
more enduring and intricate influence on lipid metabolism.

Long-term transition in lipid metabolism during chronic rejection
In the context of chronic rejection, ongoing inflammation and fibrosis of the graft result in aberrant 
expression of enzymes and ligands that interfere with lipid metabolism. Studies have shown that patients 
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with chronic rejection exhibit persistent elevations in TC, TG, and LDL-C, along with decreased HDL-C[79]. 
This lipid metabolism disorder could be explained by macrophage infiltration, increased oxidative stress, 
and dysregulation of lipid metabolism-associated genes in the transplanted organ.

Both the immune system and the metabolic system might be damaged by chronic rejection. A previous 
study demonstrated that patients with chronic rejection suffer from insulin resistance and abnormal glucose 
metabolism. Insulin resistance inhibits fatty acid oxidation and ketogenesis but promotes fat synthesis and 
deposition. Excessive glucose metabolism might lead to the accumulation of intermediate products of lipid 
metabolism, further worsening lipid metabolism disorders in renal transplantation[80]. However, more 
studies are needed on fatty LT to clarify the relationship between insulin resistance and chronic rejection in 
fatty LT patients, which is a potential research direction for the future. Moreover, in 2023, disulfide death 
induced by glucose starvation was discovered; for example, the donor liver suffers glucose deprivation 
during ischemia, and the low glucose level of the living donor decreases graft survival[81]. Thus, this new 
form of programmed death may be comprehensively explored in the context of LT and lipid 
metabolism[82,83].

Regulation of lipid metabolism in delaying chronic rejection
Considering the connection between lipid metabolism and chronic rejection, regulating lipid metabolism 
may constitute another strategy for preventing chronic rejection.

Regulation of fatty acid oxidation
Fatty acid oxidation is vital for lipid metabolism stability[84]. Increasing fatty acid β-oxidation can decrease 
fat production and accumulation, thus improving lipid metabolism. Research has shown that peroxisome 
proliferator-activated receptor α (PPARα) can stimulate the β-oxidation of fatty acids, reduce liver fat, and 
delay chronic rejection[85]. PPARα agonists such as fenofibrate and clofibrate are being further investigated 
for the treatment of lipid metabolism disorders in chronic rejection. In addition, lipase inhibitors also 
improve liver lipid levels/utilization and insulin sensitivity, which affects the outcomes of patients with 
LT[86,87].

Cholesterol metabolism 
Inhibition of cholesterol synthesis and promotion of cholesterol excretion improve graft dysfunction caused 
by lipid metabolism instability[88-90]. Statins are commonly administered as lipid-lowering drugs in the clinic 
and inhibit the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, subsequently 
restricting cholesterol synthesis. According to some studies, statins can simultaneously remit blood lipids 
and liver fibrosis[91]. However, further research is needed to demonstrate its benefits and potential side 
effects in chronic rejection.

Other molecules 
Sterol regulatory element-binding proteins (SREBPs) are a cluster of important transcription factors that 
control lipid synthesis and metabolism. Recent findings suggest that the upregulation of SREBPs, especially 
SREBP2, is indispensable in lipid metabolism disorders induced by TAC. CircFASN inhibited miR-33a, thus 
weakening SREBP expression and fat synthesis and deposition. These consequences collectively improve 
lipid metabolism disorders induced by TAC[92]. Liver X receptors (LXRs) are nuclear receptors that 
coordinate cholesterol metabolism and inflammation. Mobilization of LXRs contributes to cholesterol 
excretion, immune adjustment, and hepatic stellate cell deactivation[93]. T0901317, an LXR agonist, has been 
investigated in the study of chronic rejection. The causal relationship between lipid metabolism and chronic 
rejection appears to be variable for some of the multiconnotative molecular threads involved. Concurrently, 
the establishment of a chronic rejection model costs much more than the acute rejection and IRI models do.
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Potential interventions
When exploring the regulation of lipid metabolism in chronic rejection, several potential treatments have 
demonstrated significant protective effects in various organ transplantations and IRI and may contribute to 
chronic rejection after LT. MAGL inhibitors have been shown to effectively prevent IRI in lung 
transplantation[94]. Another study demonstrated that inhibition of lipolysis improves the survival of 
transplanted fat grafts by ameliorating lipotoxicity and inflammation[95]. Similarly, the lipase inhibitor 
atglistatin preserves myocardial function following cardiac ischemia[96].

LIPID METABOLISM AND OXIDATIVE STRESS
Oxidative stress in the donor liver can directly impair liver function. Although the harmful effects of 
oxidative stress on the whole process of LT have been studied for many years, its association with lipid 
metabolism has gradually been recognized.

Association between lipid peroxidation and oxidative stress
Some papers argue that lipid peroxidation serves as an intermediary agent between lipid metabolic disorders 
and oxidative stress. In the case of fatty liver, the peroxidation of polyunsaturated fatty acids under oxidative 
stress generates a series of highly reactive molecules, including reactive oxygen species (ROS). Together with 
lipid peroxidation products such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), these toxic 
factors give rise to structural impairment and dysfunction in cells. The accumulation of these metabolites 
could, in turn, exacerbate oxidative stress[97] [Table 3].

Studies have demonstrated that oxidative stress accelerates inflammation and cell death, particularly under 
conditions of fatty liver and IRI. ROS formation increases the formation of MDA and 4-HNE, damaging 
cellular components. On this basis, the interaction between lipid metabolism disorders and oxidative stress 
creates favorable conditions for lipid peroxidation[98].

Energy metabolism is crucial for both lipid metabolism and oxidative stress, and its disturbance has 
substantial implications. The Cori and Krebs cycles are reported to intensify oxidative stress and lipid 
peroxidation. Research on the primary nonfunction of fatty liver allografts has shown that defects in lactate 
transport and utilization can result in the build-up of lactate and related metabolites, possibly exacerbating 
oxidative stress and lipid peroxidation[99]. This relationship might need further elaboration, especially in the 
case of product crossover among different types of metabolism.

During LT, cold storage of the liver is necessary in some cases, and latent adverse conditions such as 
temperature fluctuations and insufficient oxygen supply are responsible for the increase in lipid 
peroxidation levels. The oxidative stress derived from organ preservation can directly lead to extensive cell 
damage and uncontrollable immune responses[100,101]. Even rats with mild fatty liver exhibit severe lipid 
peroxidation and oxidative stress after cold preservation[102]. At present, although several reports of 
ischemia-free cases exist, researchers might still pay attention to improving the conditions of organ 
preservation for a long time because of cost and technical limitations[103,104].

ROS directly target polyunsaturated fatty acids in the cell membrane, triggering a chain reaction that 
produces massive amounts of lipid peroxidation substances. This process leads to severe cell membrane 
damage, resulting in compromised integrity and the leakage of intracellular components. Consequently, it 
can induce alterations in protein structure and cause DNA damage, ultimately exacerbating oxidative 
stress[105-108].
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Table 3. Pathophysiological process after liver transplantation: the interaction between lipid metabolism and the immune response

Molecular event Key findings Mechanisms

- Increased lipid metabolism disorders - AA metabolites regulate inflammatory responses

- AA metabolites (PGs, leukotrienes, thromboxanes) play 
crucial roles

- MAPK and NF-κB pathways mediate cellular 
responses to injury

IRI

- MAPK and NF-κB signaling pathways activated - Ferroptosis and pyroptosis induced by lipid 
peroxidation

- Lipid metabolism remodeling - Immune cell activation leads to cytokine release, 
affecting lipid metabolism

- Immunosuppressant drugs (e.g., tacrolimus, cyclosporine 
A) influence lipid metabolism

- Immunosuppressants have varied effects on lipid 
profiles

Acute rejection

- Increased levels of TC and TG, decreased HDL-C - Ethanol-induced oxidative stress disturbs lipid 
metabolism

- Persistent lipid metabolism disorders - Ongoing inflammation and fibrosis interfere with 
lipid metabolism

- Increased TC, TG, LDL-C, decreased HDL-C - Insulin resistance and abnormal glucose metabolism 
exacerbate disorders

Chronic rejection

- Fibrosis and vascular pathology - Fatty acid oxidation, cholesterol metabolism, and 
other molecular pathways involved

- Lipid peroxidation serves as an intermediary between lipid 
metabolic disorders and oxidative stress

- ROS targets polyunsaturated fatty acids, initiating 
lipid peroxidation

- Increased ROS, MDA, and 4-HNE levels cause cell damage - Peroxidation products damage cell structures and 
function

Oxidative stress and lipid 
peroxidation

- Lipid peroxidation modifies mitochondria, exacerbating 
oxidative stress

- Mitochondrial membrane permeability altered, 
leading to cell death

AA: Arachidonic acid; PGs: prostaglandins; MAPK: mitogen-activated protein kinase; NF-κB: nuclear factor-κB; ROS: reactive oxygen species; 
MDA: malondialdehyde; 4-HNE: 4-hydroxynonenal; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; IRI: 
ischemia/reperfusion injury; TC: total cholesterol; TG: triglycerides.

In addition, lipid peroxidation modifies mitochondria, which are energy factories, as they are the primary 
site of ATP production and a considerable source of generated ROS. Lipid peroxidation can directly attack 
the mitochondrial membrane, thus altering its permeability and leading to ROS production. Lipid 
peroxidation also activates the mitochondrial permeability transition pore (MPTP), a key trigger for cell 
apoptosis and necrosis, subsequently exacerbating hepatocyte death in LT[109-112].

Lipid metabolism disorders exacerbate oxidative stress
Lipid metabolism abnormalities in LT manifest in various forms, including enhanced fatty acid synthesis, 
TG aggregation, and low-density lipoprotein (LDL) oxidation. These processes interact to form a complex 
network that promotes ROS generation and exacerbates oxidative stress. This phenomenon has been widely 
explored in the context of fatty liver disease[97,113,114].

Reports certify that specific preservation solutions and adjuvants could mitigate liver injury caused by lipid 
metabolism disorders and oxidative stress by enhancing antioxidant defense and reducing inflammation. 
Preservation solutions such as HTK, UW, and IGL-2 have been demonstrated to reduce injury in steatotic 
livers[115]. This provides a potential option for future cold storage for the donation of fatty liver. Research has 
focused mainly on improving traditional preservation solutions that have not been specific for fatty liver in 
the past ten years, and there is a lack of revolutionary next-generation products on the market.
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Abnormal fatty acid synthesis is a prominent manifestation of lipid metabolism disorders. Under LT, 
hypoxia and hypothermia coupled with the stress response can increase the level of FAS. This event results 
in excessive lipid accumulation[21,115].

TG are key molecules in lipid metabolism disorders that intensify oxidative stress. As a main substance of 
lipid metabolism, superfluous fatty acids, which are deposited as TG, disrupt the dynamic balance of 
mitochondrial metabolic processes, resulting in increased ROS and oxidative stress[116,117]. Due to the effects 
of organ preservation and IRI, the amount of TG is clearly increased. This condition can reshape the liver 
energy supply and impair patient outcomes.

LDL oxidation is another mechanism that exacerbates oxidative stress. LDL is easily oxidized under 
oxidative stress conditions, thereby generating oxidized low-density lipoprotein (ox-LDL). Ox-LDL is 
capable of activating immune cells and releasing cytokines[118,119]. Although few studies have investigated the 
oxidative stress of LDL in LT, its impacts on lipid metabolism regulation in other organs have been 
confirmed. Appropriate strategies for LDL are expected to be potential tactics for fatty donor livers.

Regulation of oxidative stress on lipid metabolism
Notably, oxidative stress exerts an inverse effect on lipid metabolism. Alleviation of oxidative stress can 
improve lipid metabolism in the liver. A traditional Chinese medicinal formula has been shown to remit 
fatty acid oxidation by upregulating peroxisome proliferator-activated receptors (PPARs), thus reducing 
lipid accumulation in the liver. This formula, through its antioxidant properties, has the potential for use in 
the treatment of NAFLD[120]. Stimulation with PPAR can increase the oxidative decomposition of fatty acids 
and diminish lipid accumulation. In contrast, the elevation of beta-oxidation of fatty acids under PPAR 
initiation may increase ROS[105,107,121].

Pinolenic acid, a natural compound discovered in pine nut oil, has also been found to coordinate lipid 
metabolism. Pinolenic acid can decelerate lipid synthesis and oxidative stress induced by oleic acid through 
the AMPK/SIRT1 signaling pathway. It inhibits the expression of lipid synthesis-related genes such as FAS 
and leads to increased antioxidant defense and improved lipid metabolism imbalance[122].

More importantly, the impact of oxidative stress on mitochondria could disrupt lipid metabolism. Oxidative 
stress impairs the mitochondrial membrane and disrupts respiratory chain complexes, paving the way for 
decreased ATP synthesis and increased ROS. These alterations further induce mitochondrial fusion, fission, 
and autophagy[105,123-125].

Potential interventions
The relationship between lipid metabolism and oxidative stress is complex, but there are still several 
potential mechanisms and interventions that can be explored in the future.

One promising approach is the administration of antioxidants, such as vitamin E and N-acetylcysteine, 
which can scavenge ROS and thereby reduce lipid peroxidation[126,127]. The utilization of dietary supplements 
rich in antioxidants, such as omega-3 fatty acids, has shown promise in reducing oxidative stress and lipid 
peroxidation[128]. These interventions hold great potential in improving the outcomes of LT by mitigating 
the adverse effects of lipid peroxidation.
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DISCUSSION
The role of lipid metabolism in LT presents both challenges and opportunities for the development of novel 
therapeutic strategies. Through an in-depth review of studies, we can more fully understand how lipid 
metabolism affects the diverse stages of LT. This discussion focuses on three major issues commonly 
encountered in LT - IRI, rejection, and oxidative stress - which are explored in detail.

The remodeling of lipid metabolism in LT is a phenomenon that cannot be ignored. As early as the Suzuki 
score was proposed, the accumulation of lipid droplets was included in the pathological criteria. LT and 
subsequent immunosuppressive therapy have a profound impact on lipid metabolism[129,130]. IRI is a decisive 
challenge in the early stages of LT[131]. AA metabolites, including PGs, leukotrienes, and TXs, are crucial in 
regulating molecular events during hepatic IRI, yet their mechanisms of action are diverse and occasionally 
contradictory[29,48,54,132,133]. PGE has shown marked effects in protecting the liver from IRI damage by 
promoting liver blood perfusion, inhibiting platelet aggregation, and reducing oxidative stress levels[27]. 
However, other metabolites, such as TXA2 and LTB4, may exacerbate liver inflammation and apoptosis by 
initiating the MAPK and NF-κB signaling pathways[29,38]. This dual role of metabolites requires a deeper 
understanding of the internal mechanisms for more precise regulation.

In addition, lipid metabolism is critical in rejection. Both acute rejection and chronic rejection impair the 
function and cell structure of the transplanted liver, along with lipid metabolism disorders[134,135]. The effects 
of immunosuppressants on lipid metabolism have often been overlooked. TAC strongly influences lipid 
metabolism[73]. Studies have shown that TAC can lead to abnormalities in lipid metabolism and further 
endanger the transplanted liver by increasing oxidative stress and inflammatory responses[69]. In chronic 
rejection, the relationship between fibrotic processes and lipid metabolism has not been confirmed, but its 
correlation has been reported[136-141].

Oxidative stress and lipid metabolism closely interact in LT[98,107,142,143]. In fatty LT, oxidative stress promotes 
the peroxidation of polyunsaturated fatty acids to produce a series of highly reactive molecules and lipid 
peroxidation products, including ROS, MDA, and 4-HNE. These molecules further alter cell structure and 
function[100,109,118]. Moreover, abnormal lipid metabolism in the liver, manifested by increased fatty acid 
synthesis, TG accumulation, and LDL oxidation, can also increase oxidative stress levels[97,113,114]. Identifying 
the common factors among these elements represents a future research direction.

In addition to their direct ramification, lipid metabolism and oxidative stress also regulate the outcome of 
LT by influencing cell destiny. Ferroptosis and pyroptosis are highly important in LT[20,45,144,145]. Lipid 
peroxides produced by the AA metabolic pathway can erode the stability and integrity of liver cell 
membranes, leading to membrane rupture and iron ion release, triggering iron death[146]. LTB4 can also 
initiate pyroptosis by activating the NLRP3 inflammasome, causing cell swelling, membrane pore 
formation, and the subsequent release of inflammatory cytokines[147]. New modes of death continue to be 
discovered, and the main target cells will be the first focus.

In special populations, such as obese individuals, elderly patients, and pregnant women, more factors often 
need to be considered during LT. Abnormal lipid metabolism in obese patients may exacerbate IRI and 
rejection post-transplantation, whereas the decline in physiological functions in elderly patients and the 
unique physiological state of pregnant women may also significantly impact transplantation outcomes and 
postoperative recovery[148]. Therefore, for these special populations, further in-depth research on the role of 
lipid metabolism in LT is needed, and more personalized and refined treatment strategies need to be 
developed.
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The liver is the main execution organ of lipid metabolism and is closely related to other physiological 
processes, including glucose metabolism[149,150]. In addition to surgical means, systemic measures are 
necessary. In the preoperative phase, a thorough assessment of lipid metabolism indicators allows for the 
timely identification of potential abnormalities, suggesting appropriate intervention measures. During 
surgery, efforts are made to optimize organ preservation techniques and conditions, minimizing the impact 
of lipid peroxidation and oxidative stress on the transplanted liver. Postoperatively, personalized 
immunosuppressive therapy and nutritional support plans are tailored to each patient's unique needs, 
ensuring the maintenance of normal lipid metabolism.

In the future, we need to further refine our research directions. Specifically, future studies could focus on 
elucidating the underlying mechanisms of the AA metabolic pathway in the long-term dysregulation of lipid 
metabolism post-LT, as well as developing novel intervention strategies targeting this pathway to improve 
graft function. Moreover, identifying new targets capable of effectively inhibiting lipid peroxidation and 
oxidative stress during chronic rejection post-LT is crucial.

In summary, lipid metabolism faces such challenges during LT. As an immunologically privileged organ, 
immunization protocols for other organs sometimes have some reference value for the liver. Moreover, the 
expanded use of some drugs has yielded unexpected benefits for lipid metabolism. The shortage of donor 
organs is a global problem. It is still under discussion whether there is a need for refined subdivision criteria 
for marginal donor livers, especially for fatty liver and elderly donor liver, including distinct coping 
approaches for every type.

CONCLUSION
This review identifies potential targets, underlying mechanisms, and future directions by analyzing common 
problems closely related to lipid metabolism in LT. Fatty liver, an important component of marginal donor 
livers, has self-evident importance. Addressing lipid metabolism disorders, the core issue in fatty LT, is 
crucial for improving the quality of life and outcomes of patients.
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