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Abstract
Cancer cells often develop tolerance to chemotherapy, targeted therapy, and immunotherapy drugs either before 
or during treatment. The significant heterogeneity among various tumors poses a critical challenge in modern 
cancer research, particularly in overcoming drug resistance. Copper, as an essential trace element in the body, 
participates in various biological processes of diseases, including cancers. The growth of many types of tumor cells 
exhibits a heightened dependence on copper. Thus, targeting copper metabolism or inducing cuproptosis may be 
potential ways to overcome cancer drug resistance. Copper chelators have shown potential in overcoming cancer 
drug resistance by targeting copper-dependent processes in cancer cells. In contrast, copper ionophores, copper-
based nanomaterials, and other small molecules have been used to induce copper-dependent cell death 
(cuproptosis) in cancer cells, including drug-resistant tumor cells. This review summarizes the regulation of copper 
metabolism and cuproptosis in cancer cells and the role of copper metabolism and cuproptosis in cancer drug 
resistance, providing ideas for overcoming cancer resistance in the future.
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INTRODUCTION
Cancer cells possess heightened metabolic capacity and energy demand compared to normal cells, 
continually driving proliferation, metastasis, and drug resistance through metabolic reprogramming[1-3]. 
Tumor drug resistance remains a common challenge in clinical practice, as the inevitable development of 
drug resistance during chemotherapy, targeted therapy, and immunotherapy significantly complicates 
cancer treatment. Copper, as one of the vital trace elements for life, maintains enzyme activity by forming 
copper-containing metalloenzymes or copper-binding proteins, participating in various life processes, 
including cancer and neurodegenerative diseases[4]. As a co-factor for cytochrome c oxidase, copper is 
indispensable for meeting the energy demands required for rapid cell division, with cancer cells having a 
greater need for copper. Studies have shown elevated copper concentrations in various cancers, including 
lung cancer, thyroid cancer, prostate cancer, and breast cancer[5-7].

Growing evidence suggests that copper plays a crucial regulatory role in cell proliferation, autophagy, and 
cell death in tumors[8]. Copper triggers the activation of kinases related to tumorigenesis under moderate 
concentrations and promotes vessel formation, ultimately promoting tumor development[9-12]. As such, 
copper chelators are studied for their use in cancer treatment[13]. Moreover, studies have shown that copper 
plays a role in promoting cancer drug resistance. For instance, copper transport-related proteins (Ctr1), 
antioxidant 1 copper chaperone (ATOX1), and copper transporters (ATP7A/B) participate in the 
translocation of cisplatin, suggesting that targeting the copper transport system may be a strategy to 
improve treatment efficacies of platinum-containing drugs in cancer chemotherapy[14-16].

Excessive copper intake can trigger the death of tumor cells, a process termed cuproptosis, which is a newly 
defined form of copper-dependent programmed cell death. Inducing cuproptosis could emerge as a 
promising strategy for combating cancers[17]. Currently, it has been discovered that copper ionophores, 
copper-based nanomaterials, and others can enhance drug sensitivity in drug-resistant tumor cells by 
triggering cuproptosis or directly killing drug-resistant tumor cells[18]. This review elucidates copper 
metabolism regulation and discusses the possibility of overcoming tumor resistance by targeting copper 
metabolism and promoting cuproptosis.

COPPER METABOLISM IN CANCER
Copper exists in two forms in the human body: copper ion (Cu+, reduced state) and copper ion (Cu2+, 
oxidized state) [Figure 1]. The steady-state balance of the two forms of copper is important for exerting its 
effect. The metabolic progress of copper is related to the inter-conversion between Cu+ and Cu2+, which is 
achieved by providing or accepting a single electron[19].

The solute carrier family 30 member 1 (SLC30A1/ZnT1) is a plasma membrane transporter that exports 
zinc (Zn2+) from cells while also regulating Cu2+ uptake and is necessary for cuproptosis[20]. Moreover, the 
human 6-transmembrane epithelial antigen of the prostate (STEAP) family, ferredoxin 1 (FDX1), and the 
histone H3-H4 tetramer reduced Cu2+ to Cu+, while the multicopper oxidase CueO oxidized Cu+ to 
Cu2+[8,21-23]. Recently, solute carrier family 46 member 3 (SLC46A3) has been identified as a lysosomal protein 
whose expression is induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), resulting in reduced cytosolic 
copper levels in the liver of mice[24].

Maintaining copper homeostasis in the body is crucial for health. Copper is absorbed from food in the small 
intestine, passed through the portal vein, and transported via plasma proteins such as albumin and 
ceruloplasmin to the liver, where it is bound to metallothioneins (MTs) and glutathione (GSH), and stored 
in hepatocytes. In the small intestine, Cu2+ is reduced to Cu+ by metal reductases such as STEAP and 
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Figure 1. Copper redox, oxidation, and absorbance in cells. ZnT1 directly transports extracellular Cu2+ into cells. Extracellular Cu2+ could 
be reduced to Cu+ via STEAP and then transported into cells via SLC31A1, while ATP7B opposes this process via excreting Cu+. 
Intracellular Cu+ is absorbed into lysosomes and mitochondria via SLC46A3 and ATP7A, respectively. ZnT1: Solute carrier family 30 
member 1/Slc30a1, a zinc and copper transporter; STEAP: 6-transmembrane epithelial antigen of prostate, comprises STEAP1, STEAP2, 
STEAP3, and STEAP4; Dcytb: duodenal cytochrome b; SLC31A1: solute carrier family 31 member 1, Ctr1: copper transport protein 1; 
ATP7B: ATPase copper-transporting beta; SLC46A3: solute carrier family 46 member 3; ATP7A: ATPase copper-transporting alpha.

duodenal cytochrome b (Dcytb) [Figure 1]. It is then transported into intestinal cells by copper transport 
protein 1 [Ctr1, also known as solute carrier family 31 member 1 (SLC31A1)]. The human gene copper 
transport protein 2 [Ctr2, also known as solute carrier family 31 member 2 (SLC31A2)], which is highly 
homologous to the Ctr1 gene, acts as a copper transporter under certain conditions, maintaining 
intracellular copper homeostasis[25]. Multi-database analysis suggests that Ctr1 may be a tumor predictive 
biomarker[26]. Beyond its role in copper transport, Ctr1 also serves as an important transporter for cisplatin, 
a cancer chemotherapy drug, to enter yeast and mammalian cells[27,28]. The response rate of platinum therapy 
has been shown to be associated with high levels of Ctr1 expression. Therefore, lower levels of Ctr1 have 
also been observed to be related to increased cisplatin resistance in tumors, whereas higher Ctr1 expression 
is linked to a greater sensitivity to cisplatin treatment[29,30]. In chemotherapy-resistant patients, an elevated 
Ctr2/Ctr1 ratio portends a worse prognosis[31]. Thus, investigating key regulatory factors in copper 
metabolism offers great potential for driving advancements in cancer research.

Copper metabolism is meticulously controlled by multiple chaperones, including ATOX1, cytochrome c 
oxidase copper chaperone (COX17), and copper chaperone for superoxide dismutase (CCS), which 
transport copper to the Golgi apparatus, mitochondria, and copper/zinc superoxide dismutase enzymes 
(SOD), respectively[32] [Figure 2]. CCS is a copper-binding protein that interacts with copper-zinc 
superoxide dismutase 1 (SOD1), located in the cytoplasm and the intermembrane space of mitochondria. 
By forming a heterodimer with SOD1, it transfers copper from the cytoplasm to SOD1, activating SOD1 
and eliminating reactive oxygen species (ROS) in the organism[33,34]. In addition, CCS also delivers copper 
ions to the cell nucleus[35]. Research has reported that CCS promotes the growth and migration of breast 
cancer cells by regulating ROS-mediated ERK1/2 activity[36]. Inhibiting CCS would block the growth of lung 
cancer and leukemia cells[37]. Although the potential mechanisms by which CCS is linked to tumorigenesis 
remain to be explored, existing evidence points to CCS as a potential target for tumor therapy.
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Figure 2. The signaling pathways of copper metabolism. Extracellular Cu2+ is reduced to Cu+ via STEAP. Both Cu2+ and Cu+ are 
transported into cells via corresponding transporters. Intracellular copper is sequestrated via MT1/2 or GSH or transported via COX17, 
CCS, SOD1, ATOX1, MEMO1, and ATP7B. Mitochondrial copper functions via SCO1, SCO2, MT-CO1, MT-CO2, and COX11, while nuclear 
copper can regulate gene expression. STEAP: 6-Transmembrane epithelial antigen of prostate, comprises STEAP1, STEAP2, STEAP3 and 
STEAP4; MT1/2: metallothionein 1/2; GSH: glutathione; COX17: cytochrome c oxidase copper chaperone COX17; CCS: copper 
chaperone for superoxide dismutase; SOD1: superoxide dismutase 1; ATOX1: antioxidant 1 copper chaperone; MEMO1: mediator of cell 
motility 1; ATP7B: ATPase copper-transporting beta; SCO1: synthesis of cytochrome C oxidase 1; SCO2: synthesis of cytochrome C 
oxidase 1; MT-CO1: mitochondrially encoded cytochrome c oxidase I; MT-CO2: mitochondrially encoded cytochrome c oxidase II; 
COX11: cytochrome c oxidase copper chaperone COX11.

COX17 assembles cytochrome c oxidase in mitochondria as a copper chaperone. The transportation of Cu+ 
into mitochondria mainly depends on COX17. COX17 transfers Cu+ from the cytoplasm to the 
mitochondrial membrane proteins: synthesizing cytochrome c oxidase 1 (SCO1) and 2 (SCO2), thereby 
inserting copper into the MT-CO2/COX2 encoded by the mitochondria[38]. According to reports, COX17 
can inhibit the progression of renal fibrosis and exacerbate Alzheimer’s disease by regulating copper 
levels[39,40]. In addition, it has been suggested that COX17 may serve as a therapeutic target for non-small cell 
lung cancer[41].

ATOX1 is an important copper chaperone protein, antioxidant, and transcription factor whose oxidative 
function and transcriptional activity both depend on its capacity to bind copper. ATOX1 regulates copper 
distribution within the cytoplasm; it can acquire copper ions from Ctr1, CCS, glutathione 1 (GRX1), and 
GSH, transporting them to the Golgi apparatus or nucleus. The copper-binding capacity and transport 
activity of ATOX1 are regulated by GSH. ATOX1 has been shown to directly interact with ATPases 
(ATP7A/B) in a copper-dependent manner. When cellular copper overload occurs, ATOX1 transports 
copper via ATP7A/B transporters to the Golgi apparatus or lysosomes, thereby facilitating the export of 
excess copper[42-44]. Studies show that ATOX1 promotes cell proliferation, migration, and autophagy. When 
activated by copper, ATOX1 undergoes nuclear translocation, DNA binding, and activation, thereby 
promoting cell proliferation[45]. In addition, ATOX1 binds to cisplatin through direct interaction, leading to 
the vesicular sequestration of cisplatin, which may cause drug resistance in tumor cells[46,47]. Blockage of the 
copper transportation functions of ATOX1 and CCS results in copper homeostasis imbalance, significantly 
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inhibiting cancer cell proliferation and tumor growth, and increasing the sensitivity of cancer cells to 
therapeutic drugs[37,48,49]. Given the high dependence of cancer cells on copper, establishing copper 
chaperone molecules as new therapeutic targets for cancer treatment is of great significance.

Recently, SLC46A3 has been found to be localized in the lysosomes and is constitutively expressed in the 
liver of wild-type mice. According to copper analysis in the liver and cell lines, SLC46A3 may transport 
copper into the lysosomes and regulate intracellular copper levels[24]. When cellular copper overload occurs, 
copper is transported by the copper-transporting ATPases (ATP7A and ATP7B) located in the Golgi 
apparatus, loading copper into the Golgi vesicles. Finally, the vesicles fuse with the plasma membrane and 
release copper into the extracellular space. Research has shown that ATP7A and ATP7B are associated with 
drug resistance in various tumors[32,50], providing potential targets for overcoming tumor resistance 
challenges in future clinical practice.

CUPROPTOSIS IN CANCER
Copper is a crucial component in the formation and maintenance of various copper enzymes, playing a 
pivotal role in cancer cell metabolism, which sustains their rapid growth. As a result, cancer cells exhibit an 
increased dependency on copper. However, excessive copper can induce tumor cell death, which is called 
cuproptosis [Figure 3]. Excessive intracellular Cu2+ can be transported into mitochondria, where FDX1 
reduces Cu2+ to Cu+. Subsequently, Cu+ directly interacts with the lipidated components of the tricarboxylic 
acid (TCA) cycle, leading to increased fatty acylation and aggregation of the mitochondrial protein DLAT 
(dihydroceramide S-succinyltransferase). This leads to a decrease in the stability of Fe-S cluster proteins, 
resulting in proteotoxic stress and, ultimately, cell death[17]. Copper also induces ferroptosis by promoting 
the generation of ROS and facilitating the degradation of glutathione peroxidase 4 (GPX4) in cancer cells[51].

Copper ionophores for inducing cuproptosis in cancer cells
Currently, elesclomol and disulfiram are two common copper ion carriers. Elesclomol, originally developed 
by Synta Pharmaceuticals as a chemotherapeutic adjuvant, was long believed to function by generating ROS 
and inducing Hsp70[52]. However, it was later found to bind Cu2+ and facilitate its intracellular delivery. The 
specific mechanism by which copper overload induces cell death remained unclear until the discovery of 
cuproptosis. The target of elesclomol, ferredoxin-1 (FDX1), subsequently reduces Cu2+ to its Cu+ form. This 
reduction leads to the accumulation of copper-bound lipoylated mitochondrial proteins and the 
destabilization of iron-sulfur cluster proteins, resulting in proteotoxic stress and, ultimately, cell death[53]. 
Thus, elesclomol primarily targets mitochondrial metabolism, and cells with high mitochondrial 
metabolism are very sensitive to elesclomol[54,55]. Harnessing the metabolic plasticity of cancer cells, 
inhibiting glycolysis, and enhancing reliance on mitochondrial metabolism can ultimately increase the 
effectiveness of elesclomol in suppressing tumors[56,57]. Clinical trials have already validated the safety of 
elesclomol and its selective cytotoxicity toward cancer cells[58].

Disulfiram is an aldehyde dehydrogenase (ALDH) inhibitor that was first approved for the treatment of 
alcoholism in 1951, and it is currently gaining attention in the field of cancer research[59,60]. Disulfiram can 
form with copper as disulfiram-Cu complexes that induce cancer cell death and inhibit cancer cell 
migration, invasion, and angiogenesis[8,61,62]. Additionally, disulfiram-Cu can simultaneously induce 
cuproptosis and ferroptosis in hepatocellular carcinoma cells[63]. The combined use of disulfiram and copper 
has a stronger inhibitory effect on tumor growth than the use of disulfiram or copper alone[64]. Other copper 
ionophores include 7-iodo-5-chloro-8-hydroxyquinoline (CQ) and bidentate thiosemicarbazones. CQ-Cu 
exhibits great selectivity against prostate cancer cells, exerting its anticancer effects by inducing X-linked 
inhibitor of apoptosis (XIAP) degradation in these cancer cells[65]. The dithiocarbamates (SMTMs) ligands, 
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Figure 3. The mechanism of cuproptosis. Copper ionophore elesclomol directly transports Cu2+ into cells and then Cu2+ is reduced to 
Cu+ via FDX1. After the reduction of Cu2+ into Cu+ via STEAP, Cu+ is pumped into cells via SLC31A1. FDX1 and LIAS induce DLAT 
lipoylation and aggregation, inducing the damage of the TCA cycle. As such, cells are dead via cuproptosis. FDX1: Ferredoxin 1; STEAP: 
6-transmembrane epithelial antigen of prostate, comprises STEAP1, STEAP2, STEAP3, and STEAP4; SLC31A1: solute carrier family 31 
member 1; LIAS: lipoic acid synthetase; DLAT: dihydrolipoamide S-acetyltransferase; TCA: tricarboxylic acid; LA: lipoic acid.

diacetylbis  [N4-methylthiosemicarbazonato]  Cu(II)  (Cu-ATSM) and glyoxalbis  [N4-
methylthiosemicarbazonato] Cu(II) (Cu-GTSM), have been investigated as potential anticancer drugs for 
prostate cancer cells both in vitro and in vivo[66].

Nanoparticles for inducing cuproptosis in cancer cells
Owing to the unique dimensions and performance advantages of nanomaterials, researchers employed 
nanocarriers as the foundation for a delivery system to precisely deliver copper, copper ionophores, and 
other anticancer drugs to cancer cells. This aims to explore tumor treatment strategies based on 
nanomedicines-induced cuproptosis[18]. For instance, elesclomol-loaded copper oxide (CuO) nanoparticles 
(NPs) induce cuproptosis, enhance tumor immune response, and exhibit anti-mouse melanoma effects[67]. 
TP-M-Cu-MOF/siATP7A can effectively silence the ATP7A gene, increasing copper intake, thereby 
inducing cuproptosis and enhancing antitumor efficacy[68]. The polydopamine nanomaterials loaded with 
high-concentration copper ions (PDA-DTC/Cu) can enhance copper uptake, inhibit the expression of 
ATP7A and ATP7B, and improve tumor immune therapy[69]. Cu-doped polypyrrole (CuP) nanospheres 
containing bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) can enhance cuproptosis 
and immunotherapy, leading to inhibiting both primary and metastatic tumors[70]. Glucose oxidase copper-
based nanomaterials GOx@[Cu(tz)], through their diverse cooperative effects, in turn, treat bladder 
cancer[71]. A transparent hydrogel-modified metal-organic framework loaded with doxorubicin (DOX) and 
calcium peroxide has been developed to form a self-enhancing bimetallic Mito-Jammer (also known as 
HA‐CD@MOF NPs). This enhances ROS storms and mitochondrial damage, thereby sensitizing cancer 
cells to cuproptosis, activating robust immunogenic cell death, and suppressing tumor metastasis[72]. Nano-
sized coordination polymer particles Cu/TI target mitochondria, effectively inducing copper death and PD-
L1 downregulation and inhibiting the growth of colorectal cancer (CRC) and triple-negative breast 
cancer[73]. Nanomaterials can induce different types of cell death simultaneously to exert anticancer effects. 
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CuO2@G5-BS/TF modulates the tumor microenvironment to achieve targeted TNBC magnetic resonance 
imaging, enhancing ferroptosis, cuproptosis, and chemodynamic therapy[74]. Copper-based nanomaterials 
have emerged as a promising strategy in cancer therapy as they induce cuproptosis and enhance 
immunotherapy efficacy. By delivering copper ions directly to tumor cells, these nanomaterials can 
simultaneously modulate the tumor microenvironment and stimulate the immune system, thereby 
amplifying anticancer effects. Collectively, copper-based nanomaterials play a significant role in improving 
the efficiency of cancer treatment [Table 1].

Other agents for inducing cuproptosis in cancer cells
Beyond classical copper ionophores, an increasing number of chemical agents have been found to exert 
anticancer effects by regulating copper metabolism and inducing cuproptosis. Therefore, the identification 
of novel cuproptosis-regulated chemicals may provide new strategies for cancer treatments.

LGOd1 interferes with cellular copper homeostasis by disrupting the copper chaperone protein CCS, 
thereby inducing cuproptosis in liver cancer cells[77]. Sorafenib, the first-line treatment drug for liver cancer, 
and erastin can promote cuproptosis in liver cancer by inhibiting FDX1 and upregulating the lipoic acid 
modification of proteins[78]. Eupalinolide B (EB) from Eupatorium lindleyanum enhances the inhibitory 
effect of elesclomol on pancreatic cancer[79]. Zinc pyrithione can induce the death of TNBC cells by 
disrupting the homeostasis of copper metabolism and triggering DLAT aggregation[80]. In addition, the 
protein synthesis inhibitor anisomycin, which binds to the 60S ribosomal subunit, has been found to lead to 
the inactivation of the transcriptional activity of FDX1, DLD, DLAT, and PDHB, potentially contributing to 
cuproptosis in ovarian cancer stem cells[81]. Recent studies have also found that curcumin, a natural 
compound extracted from turmeric, can act as a copper ionophore, promoting copper-induced cell death in 
CRC cells[82,83]. In addition, curcumin exerts anti-liver cancer effects through ferroptosis and cuproptosis[84]. 
These findings highlight the therapeutic potential of targeting copper-dependent cell death pathways, such 
as cuproptosis, in various cancers.

ROLE OF COPPER METABOLISM AND CUPROPTOSIS IN TUMOR DRUG RESISTANCE
Copper chelators overcome cancer drug resistance
Copper level increases in cancers and is associated with tumor grade[85]. Moreover, copper metabolism is 
correlated with drug resistance in tumors[27,86-90]. For example, loss of Ctr1 reduces the absorption of cisplatin 
into cells[89], and low Ctr1 levels are associated with poor clinical response to cisplatin[91]. Similarly, high 
ATP7A expression is linked to reduced chemotherapy sensitivity in colon cancer, as it can directly efflux 
DOX and SN-38 from cells[90]. Therefore, copper chelators act as promising agents for overcoming 
anticancer drug resistance. Indeed, copper chelator tetrathiomolybdate boosts the antitumor effect of 
cisplatin via fostering the uptake of cisplatin in cervical cancer and enhances the anticancer effect of 
metformin in breast cancer[91,92]. Another copper chelator, curcumin, also promotes the susceptibility of 
cisplatin in lung cancer cells[93]. Moreover, copper chelator JYFY-001 augments the antitumor effect of PD-1 
inhibitors in CRC[94]. Thus, copper chelators enhance drug sensitivity by disrupting copper metabolism and 
facilitating drug uptake.

Copper ionophores combat cancer drug resistance
The induction of cuproptosis may be an effective strategy to overcome drug resistance in cancers 
[Figure 4]. Indeed, studies demonstrated that copper ionophore elesclomol can trigger cisplatin-resistant 
cell death in lung cancer, melanoma, and hepatocellular carcinoma[95-97]. In addition, 5-fluorouracil-resistant 
colon cancer cells and vemurafenib-resistant melanoma cells were also highly sensitive to elesclomol[98,99]. 
Under the dual pressure of chemotherapeutic drugs and elesclomol, it helps to prevent cancer cells from 
developing drug resistance. However, a Phase II clinical trial investigating the combination of elesclomol 
and paclitaxel for treating platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer showed 
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Table 1. Cuproptosis-related NPs for cancer treatment

NPs Tumor types effects Ref.

ES@CuO Melanoma Induce cuproptosis, enhance immune response [67]

TP-M-Cu-MOF/si ATP7A Small cell lung cancer Induce cuproptosis, improved therapeutic efficacy in SCLC brain 
metastasis

[68]

PDA-DTC/Cu Breast cancer Enhance cuproptosis, stimulate the immune response, relieve the 
tumor immunosuppressive microenvironment

[69]

Cu-doped polypyrrole nanoparticles 
(CuP) nanosystem (PCB)

Breast cancer Induce cuproptosis, improve immunogenic cell death, suppress 
both primary and distant tumors

[70]

GOx@[Cu(tz)] Bladder cancer Induce cuproptosis, develop photodynamic synergistic therapy [71]

HA�CD@MOF NPs Breast cancer Increase cuproptosis sensitization, induce immunogenic cell 
death, suppress tumor metastasis

[72]

Cu/TI Colorectal carcinoma, triple�
negative breast cancer

Induce cuproptosis, induce immunogenic cancer cell death and 
reduce PD�L1 expression

[73]

CuO2@G5-BS/TF Triple�negative breast cancer Induce ferroptosis, cuproptosis, and enhance chemodynamic 
therapy

[74]

CS/E-C@DOX Nanoplatform breast cancer Induce cuproptosis, inhibit the stemness of cancer cells [75]

CuET NPs Non-small cell lung cancer Induce cuproptosis [76]

NPs: Nanoparticles; MOF: metal-organic framework; ATP7A: ATPase copper-transporting alpha; SCLC: small cell lung cancer; PDA-DTC: 
polydopamine- diethyldithiocarbamate; PD-L1: CD274 molecule; CS: chondroitin sulfate; DOX: doxorubicin.

Figure 4. Copper ionophores and cuproptosis combat tumor drug resistance. Copper ionophore elesclomol overcomes cisplatin, 5-
fluorouracil and vemurafenib resistance in the indicated cancers. Copper ionophore disulfiram bypasses cisplatin, 5-fluorouracil, 
paclitaxel and gemcitabine resistance in the indicated tumors. Cuproptosis inducers combat cisplatin, proteasome inhibitors, oxaliplatin, 
docetaxel, enzalutamide and anti-PD-L1 resistance in the indicated cancers. PD-L1: CD274 molecule.
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no significant benefit, as only a small proportion of patients responded[100]. Another clinical trial on 
paclitaxel alone or in combination with elesclomol in advanced melanoma demonstrates that elesclomol 
does not prolong the progression-free survival induced by paclitaxel[101]. Paclitaxel alone or in combination 
with elesclomol shows similar toxicity in refractory solid tumors in a phase I clinical trial[102]. These clinical 
trials contradict the effects observed in vitro, which may result from individual differences, differences in 
dosage, and the complex drug metabolism mechanisms in vivo. Therefore, chemotherapy combined with 
elesclomol can overcome the issue of tumor drug resistance in vitro.

Given that elesclomol provokes cell death in drug-resistant cancers, other copper ionophores may also 
function in cancer drug resistance. For instance, disulfiram overcomes paclitaxel resistance in triple-
negative breast cancer cells[103]. Moreover, disulfiram fuels the tumor-killing action of cisplatin by retarding 
the tumor stemness and reshaping the vulnerability of ALDH+ stem-like cells to cisplatin in breast 
cancer[104]. Furthermore, the disulfiram-Cu complex boosts the sensitivity of gemcitabine-resistant cell 
lines[105], and disulfiram-mediated blockage of NF-κB activity enhances the sensitivity of 5-fluorouracil in 
human CRC cell lines[106]. Although disulfiram shows a similar antitumor effect as elesclomol, its clinical 
trial performance is not good.

Cuproptosis enhances drug sensitivity in drug-resistant cancer cells
Copper ionophores also foster susceptibility of drug-resistant cancer cells by inducing cuproptosis 
[Figure 4][107]. For example, elesclomol-Cu inhibits autophagy and promotes cell retention in the G2/M 
phase, thereby reinforcing the chemosensitivity of docetaxel in prostate cancer[108]. Copper ionophore 
significantly boosts the cytotoxicity of enzalutamide in enzalutamide-resistant cells, providing an effective 
option for the treatment of castration-resistant prostate cancer (CRPC) cells, especially enzalutamide-
resistant CRPC[109]. Disulfiram combined with anti-PD-L1 circumvents NSCLC anti-PD-L1 resistance by 
regulating the HIF-1 signaling pathway through ATP7B[110]. Other chemicals also attenuate the drug 
resistance in cancer. As a recent study reported, baicalein exacerbates cuproptosis via AKT pathway 
blockage, and then circumvents the cisplatin resistance in cervical cancer cells[111]. Copper and iron 
homeostasis influences each other, leading to an interplay between cuproptosis and ferroptosis[4]. For 
example, copper also triggers ferroptosis by boosting the product of ROS and enhancing the autophagy-
associated degradation of GPX4 in cancer cells[51]. The combination of cuproptosis inducer elesclomol-Cu 
and ferroptosis inducer imidazole ketone erastin (IKE) facilitates both cuproptosis and ferroptosis in 
myelodysplastic syndromes[112]. Additionally, the ferroptosis inducers erastin and sorafenib promote the 
cuproptosis effects of copper ionophores in liver cancer[78]. Therefore, these findings suggest that 
cuproptosis inducers and ferroptosis inducers provide a novel strategy for overcoming drug resistance.

Non-coding RNAs play a critical role in regulating cellular responses, influencing both oncogenesis and 
drug resistance. Among them, HOX antisense intergenic RNA (HOTAIR) is one of the most well-studied 
oncogenic long non-coding RNAs (lncRNAs), implicated in cisplatin resistance in lung adenocarcinoma as 
well as trastuzumab and DOX resistance in breast cancer[113,114]. Additionally, lncRNA H19 has been 
identified as a driver of tamoxifen resistance in breast cancer[115]. Recently, cuproptosis-related lncRNAs 
have been identified and integrated into prognostic models. For instance, a model featuring six cuproptosis-
related lncRNAs: AC026412.3, AC125437.1, AL353572.4, MKLN1-AS, TMCC1-AS1, and SLC6A1-AS1 
predicts both the prognosis and immunotherapy outcomes in hepatocellular carcinoma patients[116]. 
Additionally, non-coding RNAs/DNAs also modulated the drug resistance via cuproptosis in cancers 
[Figure 4]. For example, MUC20 triggers cuproptosis and reverses proteasome inhibitor resistance by 
thwarting the expression of cuproptosis-negative regulator CDKN2A, blocking IGF-1R lactation and 
abrogating MET activation in multiple myeloma cells[117]. LINC02362/ hsa-mir-18a-5p/FDX1 axis provokes 
cuproptosis and enhances the sensitivity of oxaliplatin in hepatocellular carcinoma, providing a promising 
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Table 2. Cuproptosis-related compounds for overcoming cancer drug resistance

Compounds Tumor types Enhance drug efficacy Ref.

Tetrathiomolybdate Cervical cancer, breast cancer Cisplatin, metformin [91,92]

Curcumin Lung cancer Cisplatin [93]

JYFY-001 CRC PD-1 inhibitor [94]

Elesclomol Lung cancer, melanoma, hepatocellular carcinoma, colon 
cancer, CRPC

Cisplatin, 5-fluorouracil, vemurafenib, 
docetaxel, enzalutamide

[95-99,108,
109]

Disulfiram Triple-negative breast cancer, breast cancer, colon cancer, 
CRC, CRPC, non-small cell lung cancer

Paclitaxel, cisplatin, 5-fluorouracil, 
enzalutamide, gemcitabine

[103-106,
109,110]

Baicalein Cervical cancer Cisplatin [111]

CS/E-C@DOX 
nanoplatform

Breast cancer Adriamycin [75]

CuET NPs Non-small cell lung cancer Cisplatin [76]

CRC: Colorectal cancer; CRPC: castration-resistant prostate cancer; CS: chondroitin sulfate; DOX: doxorubicin; NPs: nanoparticles.

therapeutic approach to bypass oxaliplatin resistance in hepatocellular carcinoma[118]. These non-coding 
RNAs/DNAs may be targets for bypassing drug resistance in cancers. Since non-coding RNAs perform a 
variety of roles, their silencing (in the case of oncogenes) or overexpression (for tumor suppressors) has 
emerged as an attractive study topic in recent years. For instance, the silencing of HOTAIR by siRNA 
sensitizes breast cancer to trastuzumab and DOX[119,120]. Focusing on the regulatory non-coding RNAs 
related to cuproptosis may provide new approaches to overcome tumor drug resistance.

Studies show that nanomaterials overcome tumor resistance by promoting cuproptosis. For example, ellagic 
acid (EA), Cu2+, DOX, and chondroitin sulfate (CS) form CS/E-C@DOX Nanoplatform (CS/NPs). CS/NPs 
show excellent antitumor effects by inducing cuproptosis and significantly inhibiting the stemness of cancer 
cells without body weight loss, suggesting strong potential to confer cancer chemoresistance[75]. CuET NPs 
bypass cisplatin resistance in A549 cells by driving cuproptosis without body weight loss[76]. The 
nanomaterials show low toxicity but high efficiency in overcoming drug resistance. Targeting cuproptosis 
may be a novel antitumor treatment and therapeutic strategy to circumvent drug resistance in cancers 
[Table 2].

CONCLUSION AND PROSPECT
Copper is an essential element in the human body that participates in a variety of vital processes. Existing in 
both oxidized and reduced states, copper exerts dual effects in vivo. It can inhibit multiple cancer-
promoting pathways while also facilitating tumor development under certain conditions. The imbalance of 
copper homeostasis can cause a variety of diseases, including cancers. At present, a series of copper 
ionophores as anticancer drugs have attracted the close attention of researchers. Although the antitumor 
effect of copper ionophores is exciting, there are still challenges in their clinical translation.

Copper and copper-based nanomaterials have been widely used in nanomedicine. Copper-based 
nanomaterials prepared by new nanotechnology have excellent physical and chemical properties, and can be 
used in various biomedical applications. The method of inducing cuproptosis combined with 
immunotherapy shows good results in tumor treatment. The biodegradation rate of copper-based 
nanomaterials is low, and long-term existence in the body may produce potential toxicity and adverse 
effects[121,122], which has become a major challenge for tumor treatment. Further optimizing the 
biocompatibility of copper-based nanomaterials, improving the biodegradability, and realizing the design of 
multifunctional nanoplatforms are the research directions for exploring antitumor therapy in the future.
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Copper ionophores and copper-based nanomaterials, alone or in combination with other antitumor 
methods, can treat cancer, especially to overcome cancer drug resistance. Small molecule compounds and 
NPs kill cancer cells by inducing cuproptosis, which will provide new ideas for the development of 
anticancer drugs by driving cuproptosis in the future[107]. However, we also face the potential issue of drug 
resistance. To that end, further research is needed to elucidate the physiological roles and mechanisms of 
copper ions in human beings, investigate the molecular mechanisms of cuproptosis, and identify new 
cuproptosis inducers. These efforts could provide new research directions for overcoming tumor drug 
resistance.
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