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Abstract
Accelerated phase-field frameworks leveraging time-dependent neural networks have recently been developed to 
accelerate microstructure-based phase-field simulations in both temporal and spatial domains. However, most of 
these frameworks have been designed for phase-field problems involving a single variable field, such as spinodal 
decomposition. In this study, we developed an accelerated framework for predicting the microstructural evolution 
of Ostwald ripening, a classical phase-field problem involving multiple interdependent parameter fields. This 
framework integrates various components: high-throughput phase-field simulations for generating high-quality 
microstructure database, autoencoder-based dimensionality reduction to transform 2D microstructure images into 
latent representations, and long short-term memory (LSTM) networks serving as the microstructure learning 
engine. Our results demonstrate that autoencoder techniques can effectively reduce the large dimension of 
microstructure images into 16 key values, while maintaining high accuracy in reconstructing these reduced 
representations back to their original space. Using these latent representations, LSTM models are employed to 
capture the key microstructural features of Ostwald ripening and predict their evolution over future time 
sequences, with a speedup of approximately 3.35 × 105 times compared to the high-fidelity phase-field simulations. 
The accelerated framework presented in this work is the first data-driven emulation specifically designed for 
coupled phase-field problems, and it can be easily extended to predict other evolutionary phenomena with more 
complex microstructural features.

Keywords: Accelerated phase-field framework, microstructural evolution, recurrent neural networks, 
dimensionality reduction, Ostwald ripening
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INTRODUCTION
Phase-field simulation is a highly powerful computational tool for modeling the dynamic behaviors of 
microstructures across a wide range of material systems[1-4]. It employs a variety of approaches, from 
continuum theory to classical thermodynamics, to explore the evolution of material interfaces in both 
spatial and temporal resolutions. Unlike atomistic simulations, such as molecular dynamics and first-
principles, phase-field simulations do not rely on atomistic details of the materials, enabling them to study 
materials dynamics over large length and time scales. For instance, these simulations are always used to 
model the microstructural evolutions of materials in various scenarios such as spinodal decomposition[5,6], 
Ostwald ripening[7], grain growth[8-10], and dendrite growth[11-13]. Additionally, phase-field simulations have 
been broadly applied to practical engineering problems in solid mechanics[14-16], fluid mechanics[17-19], 
fracture mechanics[20-22], and other disciplines[23-25].

A major drawback of high-fidelity phase-field simulations is their high computational cost, which stems 
from the need to solve a system of partial differential equations (PDEs) for various continuous variables that 
evolve both in space and in time[1]. In addition, phase-field simulations typically require refined spatio-
temporal discretization and an accurate description of the free energy of the entire system, making them 
cumbersome to implement for a specific engineering application. To effectively solve the convoluted PDEs, 
direct numerical solvers, such as finite-elements[26-28], finite-difference[29-31], finite-volume[32], and spectral 
methods[33-35], are widely adopted for phase-field simulations. Despite their improved effectiveness, these 
numerical schemes still require a large number of degrees of freedom and substantial computational 
resources to obtain accurate spatial and temporal solutions[33,36,37]. This limits the performance of phase-field 
simulation, particularly when dealing with large or complex problems. One approach to accelerate the 
solution of PDEs is to leverage the high-performance computing (HPC) architectures. For instance, 
researchers have found that graphics processing unit (GPU)-based algorithm can speed up phase-field 
simulation by 50 times compared to central processing unit (CPU) implementations[38]. Yet, the high 
demand and long waiting times for HPC resources may limit their effectiveness in speeding up phase-field 
simulations. As a result, developing alternative strategies to accelerate phase-field simulations has become 
an urgent research task.

As an emerging alternative, machine learning techniques are rapidly gaining research interest in the phase-
field communities due to their universal function approximation capabilities[39]. For instance, deep neural 
networks (DNNs) have been adopted to learn the high-dimensional free energy functions and their 
derivatives from atomistic simulations to solve PDEs for phase-field simulations[40-42]. Data-driven surrogate 
models, which use a reduced-order statistical representation of the microstructures combined with 
regression models to link phase-field input parameters (e.g., deposition rate and phase fraction), have been 
employed to forecast the corresponding microstructure at a given time[43,44]. Although these examples 
illustrate the huge potential to enhance the usability of integrating machine-learning models into phase-field 
simulations, such integration must be systematically examined to ensure high credibility. For instance, the 
accuracy and robustness of these integrated machine-learning models highly rely on the quality of the 
microstructure database used to train them. Generating these databases is both costly and often challenging 
to achieve, especially for real-world engineering problems.

Another strategy involves developing an artificial microstructure-learning engine to accelerate the 
prediction of microstructural evolution into the unknown future time sequence. Based on the architecture 
of these learning engines, two major types of accelerated phase-field frameworks have been developed to 
date: latent dynamics models (LDMs) and pixel-space dynamics models (PSDMs)[39]. LDMs typically learn 
microstructures in the latent space using dimensionality reduction techniques, and then employ history-
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dependent machine learning models, such as recurrent neural networks (RNNs), to predict the evolution of 
microstructures in future time sequence[45-50]. PSMDs directly approximate the microstructural dynamics 
from their original two-dimensional (2D) or three-dimensional (3D) space using the physics-informed 
neural networks, such as neural operator learning. These PSDMs generally incorporate a temporal-
conditioning mechanism, which can further improve the accuracy and efficiency of time-to-solution 
predictions for microstructural evolution. For instance, a deep-learning-based neural network with a U-Net 
architecture has been developed to predict the microstructural evolution for a range of phase-field 
problems, including spinodal decomposition, dendrite growth, and thin film deposition[51]. Despite their 
outstanding performance, most existing accelerated frameworks, including both LDMs and PSDMs have 
been developed for relatively simple phase-field problems with a single evolution field, such as spinodal 
decomposition[45-49]. Accelerated frameworks for more complex, coupled microstructural evolution 
problems are still scarcely developed, thereby motivating this study.

Using the classical benchmark problem Ostwald ripening as a modeling system[52], we in this work 
developed a highly integrated framework to accelerate the microstructural evolution of coupled phase fields. 
This accelerated framework integrates high-throughput phase-field modeling, dimensionality reduction, 
and long short-term memory (LSTM) networks to predict the microstructural evolution of Ostwald 
ripening in latent representations. Specifically, autoencoders are first used to transform the 2D 
microstructure images into a low-dimensional space for training LSTM models. Once trained, the LSTM 
models are employed to predict the temporal evolution of microstructures in the latent space, and then the 
autoencoder is used to reconstruct these predicted microstructure sequences back into the original 2D 
space. Finally, supervised learning techniques are applied to predict the correlations between coupled fields 
within the latent space, thereby further enhancing the overall efficiency of this accelerated phase-field 
framework.

MATERIALS AND METHODS
Figure 1 illustrates a simplified workflow of our accelerated framework for Ostwald ripening[52]. The high-
throughput phase-field simulations are first performed with various input parameters to generate a large 
database of microstructural evolution over time [Figure 1A]. Using the large number of microstructure 
images, we employ an autoencoder-based dimensionality reduction technique to reduce the data to the low-
dimensional space. Specifically, each parameter field in Ostwald ripening can be defined by a continuous 
function X (x, t), where x and t represent a 2D spatial domain and time, respectively. After dimensionality 
reduction, the microstructure of each parameter field can be given by a multivariate time-series x = (x1, x2, 
..., xN), where xi is a vector in latent space and represents the reduced microstructure at time t = ti 
[Figure 1B]. Next, we use one of the most popular RNN models, LSTM, to learn the nature of 
microstructure evolution of Ostwald ripening in the latent space [Figure 1C]. This is realized by establishing 
a functional relationship among the low-dimensional representation xi, the current time step ti and prior 
lagged values (ti-1, ti-n).

The LSTM-based microstructure-learning engine can efficiently learn the microstructural evolution as a 
function of any model input and predict future time frames without the need to perform computationally 
expensive phase-field simulations. Finally, the autoencoder will be used to transform the LSTM-predicted 
microstructure in latent space back to full-scale 2D images [Figure 1D].

(1)
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Figure 1. Workflow of accelerated phase-field framework for Ostwald ripening problem. (A) High-throughput phase-field simulations of 
generating database of 2D microstructure images for five coupled fields in Ostwald ripening; (B) Dimensionality reduction of 2D 
microstructural images into latent space using autoencoder; (C) LSTM-based machine learning engine to accelerate the microstructure 
prediction in latent space; (D) Reconstruction of latent microstructures back to original 2D space using well-trained autoencoder 
models, along with machine-learning prediction of feature correlation between the coupled phase fields. 2D: Two-dimensional; LSTM: 
long short-term memory.

Phase-field model of the Ostwald ripening
The phase-field modeling of Ostwald ripening involves a system consisting of both ordered and disordered 
phases. The solute concentration, c (x, t), is a conservative field that describes the atomic fraction of solute 
diffusion within a matrix. The structural order parameter, η, is a non-conservative field that describes 
different phases based on order parameters, such that η = 0 represents α phase and η = 1 means β phase. The 
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free energy landscape of the system can be expressed by[52]:

where fchem is chemical free energy density, κc is gradient energy coefficient for solute field, κη is the gradient
energy coefficients for structural order parameters ηp, and p is the number of structural order parameters.
We set p = 4 because it is a commonly used value used in nickel-based superalloys[52]. The fchem is determined
by:

where fα and fβ are the chemical free energy density of the α and β phases, h (η1, η2, ..., ηp) is an interpolation
function, g (η1, η2, ..., ηp) is a double-well function, and w is a parameter which controls the height of the
double-well barrier. The mathematical formulations and more detailed explanations for fα, fβ, h, and g can
be found in prior study[52]. Since c (x, t) must obey contiuity equation, the evolution of c is governed by
Cahn-Hilliard equation[5], which is derived from an Onsager force-flux relationships[53]:

where M is the mobility of solute. The evolution of ηp is governed by Allen-Cahn equation[54] based on 
gradient flow:

where L is the kinetic coefficient associated with the structural order parameter ηp. By considering one solute
field and four structural order parameter fields, the Ostwald ripening problem in this study can be treated as
a five-phase coupled phase-field problem.

Database generation via high-throughput phase-field simulations
All phase-field simulations for Ostwald ripening were performed using the Mesoscale Mutli-Physics Phase-
Field Simulator (MEMPHIS) code[55,56]. By analyzing the distribution of input parameters and their
corresponding microstructures, we found that the most influential input parameters for generating diverse

ranging from 0.15 to 0.45, the initial composition average (c0), ranging from 0.45 to 0.55, and the initial
composition variance (ϵ), ranging from 0.04 to 0.08, as shown in Supplementary Figure 1.

For these dominant input parameters, we randomly sample these parameters in their optimal ranges to
ensure they can capture a diverse set of microstructure images. Supplementary Figure 1 shows that 200
phase-field simulations with varying input parameters can effectively sample the entire parameter space,
ensuring that our microstructure database is sufficiently comprehensive to capture the key features of
coupled parameter fields across the spatial domain for this Ostwald ripening problem. Other parameters
necessary for the simulation are adopted as constants, and they are:
5[52].

Each phase-field simulation was performed on a 2D square grid with a uniform mesh composed of 256 ×
256 grid points. We used dimensionless spatial and temporal discretization parameters, with a spatial
discretization of Δx = Δy = 1, and a temporal discretization of Δt = 1 × 10-3. For each simulation, the total of

(2)

(3)

(4)

(5)

κc = κη = 3, ρ  =    , w = 1, α = 5, and L =

microstructural features are solute mobility (M), ranging from 4.5 to 5, the equilibrium phase fraction (cα),

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jmi5023-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jmi5023-SupplementaryMaterials.pdf
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time steps is set to 30,000,000, and no-flux boundary conditions are applied to all sides of the domain, 
ensuring that microstructures stick to the edges of the simulation box and do not pass through. All 
microstructure evolutionary trajectories are evenly divided into the 100 intervals, ensuring that each 
simulation has a 256 × 256 × 100 data points. As it does not have microstructures, it is not included in the 
dataset, but a snapshot of the initial condition is also saved for each trajectory. Given the five coupled fields 
in each simulation, the total size of a microstructure evolution for 200 simulations is 256 × 256 × 100 × 5 × 
200 (26 billion data points) generated in this work. Each phase-field simulation takes about 377 minutes by 
using 16 CPUs on HPC facilities at the Alabama Supercomputer Center to predict the microstructure 
evolution of Ostwald ripening over the 100 time frames. All microstructure databases have been uploaded to 
the materials data facility (MDF)[57,58] and the database is already available online[59].

Dimensionality reduction of microstructural evolution
A key component of our accelerated framework is the manifold hypothesis, which suggests that high-
dimensional data lies near a low-dimensional manifold inside high-dimensional space[60]. Similarly, many 
studies have shown that high-dimensional microstructure images can be effectively transformed into a 
lower-dimensional space while preserving key features to represent their evolutionary behaviors. Therefore, 
we applied dimensionality reduction to transform the 2D microstructure images of Ostwald ripening into a 
reduced space. A recent study by Desai et al. has demonstrated that the autoencoder is a very powerful 
technique in transforming microstructure images into low-dimensional space and provides smooth 
trajectories in the latent space[61]. As such, we primarily adopted this approach to process the 2D images of 
Ostwald ripening for all five coupled fields [Figure 1B].

Autoencoder
An autoencoder is an unsupervised learning technique that is designed to encode high-dimensional data 
into a compressed and meaningful representation[62,63]. Briefly speaking, an autoencoder has two major 
components: an encoder that maps the input data into a lower-dimensional space, and a decoder that 
reconstructs the original data from this compressed representation [Figure 1B]. The code typically has a 
space Z, which is smaller than the original space of input data but can still retain useful features in its 
compressed space. This capability makes autoencoders a powerful tool for transforming 2D microstructure 
image data, X (x, t), into a low-dimensional representation, Z (xi, t)[64,65]. The microstructure dataset used to 
train the autoencoders consists of 80,000 2D images, which is 80% of all microstructure images generated 
for Ostwald ripening. The microstructure images from the early time frames (1 to 80) were preferentially 
selected as training data due to their larger diversity, while those from later time frames tend to exhibit more 
uniform and constant features because most of the systems have reached a fully stabilized state after time 
frame 80 and were thus included less often. This selection strategy also ensured that each microstructure 
trajectory has an equal number of microstructure images (80) included in the entire dataset. The training 
routine further creates a split between training data and validation data, with 80% used for training and 20% 
used for testing. The autoencoders were trained to minimize the reconstruction error using the binary 
cross-entropy (BCE) as the loss function[66]. We selected BCE as the performance metric for evaluating the 
reconstruction performance of the autoencoder due to two main reasons: (i) its focus on the probabilistic 
difference between the predicted and actual outputs when there are discrete options, such as in phase 
selection during reconstruction; and (ii) faster convergence speed during the training process. The training 
was conducted for a total of 1,400 epochs, and the autoencoder reached convergence after approximately 
700 epochs, based on the training and validation loss shown in Supplementary Figure 2. The reconstruction 
error depends on the size of the latent dimension Z, i.e., the degree of data compression desired. By testing 
the performance of autoencoders, we found that the 2D microstructure images with 256 × 256 pixels can be 
effectively transformed a 16-value representation which can be viewed as a 4 × 4 matrix. The well-trained 
autoencoders enable the complete encoding and reconstruction of any microstructure frame of the same 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jmi5023-SupplementaryMaterials.pdf
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type by using only these 16 values in latent space. The pointwise error of 2D images was plotted to visualize 
the difference between autoencoder-reconstructed 2D images and original ones, and the method for 
plotting pointwise error has been discussed in Ref.[50].

Machine-learning engine of microstructural evolution
Another key component of this accelerated phase-field framework is the machine learning engine, which 
learns the dynamics of microstructure evolution within the latent representation space. As history-
dependent machine learning techniques, RNN models have been widely adopted as the preferred machine 
learning engines to accelerate microstructure predictions[45-49]. RNNs are a class of artificial neural networks 
that use time series data, or sequential data, to predict future data values[67]. In this work, the reduced 
microstructures of five interdependent phase fields in Ostwald ripening were individually treated as time-
series data sets, allowing RNN models to predict their evolution over time. Mathematically, a RNN model 
consists of a hidden state h and an optional output, both operating on each component, xt, of the latent 
vector xt within the time sequence x = (x1, x2, ..., xN). At each time step t, the hidden state ht of the RNN is 
updated using a nonlinear activation function f as:

where the activation function f can be a simple element-wise sigmoid function in a simple RNN model or a 
more complex gating function in gate recurrent unit (GRU) and LSTM models. Among these RNN models, 
LSTM has been proven to be one of the most efficient machine-learned surrogates for phase-field 
simulations[46,47,49]. Therefore, we primarily use LSTM as the machine learning engine in our accelerated 
framework for Ostwald ripening.

LSTM learning engine for Ostwald ripening
LSTM was initially introduced as a RNN model used for natural language processing (NLP)[68]. Its 
architecture typically consists of input, forget, and output gates, as illustrated in Figure 1C. One advantage 
of LSTM network is that its “memory” can be maintained through the cell state (ct), which performs 
continuously throughout the entire LSTM cell. Briefly speaking, the input gate receives a new input point 
from the microstructure evolution sequence along with the hidden state from the previous time step, 
determining which values from the input data will be used to modify the cell state. The forget gate decides 
which parts of the cell state will be forgotten and thus selects the optimal time lag for the input sequence. 
The output gate combines the processed information and generates the output of the LSTM cell ht, which is 
then passed to the next cell ht+1 [Figure 1C]. Each gate operates with its own set of weights and biases, 
allowing the network to effectively capture complex temporal dependencies.

For each field in this Ostwald ripening problem, we train an LSTM model by using the corresponding 
autoencoder-reduced microstructure sequences in the latent space. We used 80% of the phase-field 
simulations as the training dataset, while the remaining 20% were reserved for testing. When using LSTM to 
forecast the future evolution of microstructure in latent space, predicting entire sequences at once would 
require a very complex and data-intensive model, which exceeds the capability of our available dataset. As 
such, the LSTM models were trained using a window-shifting method, where a specific window size is 
specified before training begins. This window size defines the number of time frames the LSTM model will 
consider as input to predict the next one. For instance, if 80 time frames are selected for training, the 
window-shifting method uses true time frames 1 through 80 to predict frame 81, which is then stored. Next, 
true frames 2 through 80 along with the predicted frame 81 are used to predict frame 82.

(6)
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Since a prior study found that deep LSTM architectures often failed to converge during the training 
process[46], we used 2 hidden layers and trained each LSTM model for 1,000 epochs for each field. The 
training and validation loss, as shown in Supplementary Figure 3, indicates that all LSTM models can 
achieve convergence after around 500 epochs. The mean square error (MSE) loss function was used as the 
performance metric to assess the training process of LSTM models[69]. All LSTM models were trained and 
tested using the PyTorch library with Adam optimizer.

Predicting the correlation between coupled phase fields
Support vector machine (SVM) is a supervised learning technique that maps each input to a specific vector 
in the output space[70]. The output vector is scaled based on the magnitude of the input, and because each 
input corresponds to a vector with a unique direction, combining these vectors allows the SVM model to 
reach any point in the output domain. This capability makes SVM particularly effective for capturing the 
correlation of the microstructure evolution among different fields in latent space.

We trained SVM models to capture the relationships among the autoencoder-reduced representations of 
the five coupled fields involved in Ostwald ripening. The input to each SVM model is the reduced 
microstructure sequences of four phases, while the output corresponds to the microstructures of the 
remaining one field in the latent space. Accordingly, five distinct SVM models were developed for each field 
in this work. We used 80% of the microstructure sequences for training and the remaining 20% for testing. 
The performance of the SVM models was evaluated using MSE values as the scoring metric.

RESULTS AND DISCUSSION
Microstructural evolution of Ostwald ripening
Ostwald ripening is a classical phase-field benchmark problem in which multiple phases are coupled with 
each other and evolve spontaneously[52]. This phenomenon is commonly observed in real material systems, 
such as the growth and coarsening of γ′ precipitates in a γ matrix in nickel-based superalloys[71]. By varying 
the dominant input parameters (e.g., M, ca, c0, and ϵ), a wide range of microstructures can be obtained for 
the Ostwald ripening problem. Figure 2 illustrates the representative microstructural evolution for both 
solute and four structural order parameter fields at different time steps. At the initial stage, the conservative 
c fields (left column in each panel) always consist of small particles, which gradually coalesce into larger 
particles over time. The four η fields exhibit similar evolutionary behaviors, where the initial small particles 
merge and grow larger. By comparing the microstructure morphology between the c and the four η fields in 
Figure 2, it is interesting to see that the η fields consist of particles that are isolated from the c field. 
Moreover, the sum of all particles in the four η fields is always identical to the c field at all time steps. As 
time evolves, some isolated particles in the η fields rapidly coalesce and form larger particles, while other 
small particles may disappear, such as η2-4 fields as shown in Figure 2A.

Transforming microstructural evolution in latent space
Based on the diverse microstructural evolution paths of Ostwald ripening, all 2D original images were 
transformed into the low-dimensional space using autoencoder technique. Mathematically, autoencoder is 
used to achieve a nonlinear embedding of high-dimensional microstructure data X (x, t) into a low-
dimensional representation, Z (xi, t). Figure 3 shows the autoencoder-reduced features for a representative 
microstructural evolution of five fields in Ostwald ripening at three different time frames: t = t1, t = t10, and t 
= t100. The results demonstrate that the autoencoder effectively transforms the 2D images from 256 × 256 
pixels into 4 × 4 reduced matrices for all five fields at different time frames. By using these latent 
microstructures, the well-trained autoencoder can easily transform them back into the original space, and 
the agreement with phase-field-simulated images demonstrated the promising performance of autoencoder 
in reconstructing 2D images for the Ostwald ripening problem Figure 3.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jmi5023-SupplementaryMaterials.pdf
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Figure 2. Microstructural evolutions for Ostwald ripening. The screenshots of representative microstructure images of five coupled 
fields, including one compositional field (c) and four structural order parameters ( ηi, i = 1-4) with distinct microstructure features. The 
input parameters include mobility (M), average initial composition (ca), and final composition (cf) for four panels are: (A) M = 4.811, ca = 
0.545, cf = 0.276; (B) M = 4.864, ca = 0.500, cf = 0.279; (C) M = 4.993, ca = 0.481, cf = 0.344; (D) M = 4.717, ca = 0.499, cf = 0.187.

To further evaluate the performance of autoencoder to capture microstructural evolution in latent space, we 
plot the first four feature values of the autoencoder-reduced microstructures as a function of total 100 time 
frames in Figure 3D. As illustrated in the left panel for the c field, these feature values exhibit smooth and 
continuous variation over time and eventually converge after approximately 80 time frames. This behavior 
indicates that the autoencoder effectively learns the microstructural evolution of the c field in the reduced 
space. A similar continuous variation is also observed for the four η fields [Figure 3D], further 
demonstrating the autoencoder’s strong performance in capturing the dynamic evolution of Ostwald 
ripening with coupled fields in latent space. This finding not only aligns with the manifold hypothesis[60], 
which suggests that the latent representation of microstructures can effectively mirror its dynamic behaviors 
over temporal space, but is also consistent with the prior work by Desai et al.[61]. That work demonstrated 
that autoencoders are efficient in representing 2D microstructure images in a relatively smaller dimension, 
while these reduced features are able to maintain smooth trajectories within this latent space.

It is important to note that the autoencoder-reduced microstructure features do not follow the rule that the 
sum of four η fields is identical to the c field. This is because the autoencoder is a nonlinear reduction 
technique, which means it cannot preserve the linear additive relationships of the microstructural features 
for the five fields in the reduced spaces. Next, we use these reduced features as input parameters for the 
microstructure-learning engine to accelerate the prediction of evolutionary behavior in Ostwald ripening.

LSTM prediction of microstructure evolution
The LSTM model is chosen as the microstructure-learning engine for Ostwald ripening due to its excellent 
performance to capture dynamic features of spinodal decomposition in latent space[46,47,49]. Notably, prior 
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Figure 3. Performance of autoencoder in reducing and reconstructing coupled microstructures. Reduced and reconstructed 
microstructure of five coupled fields for a representative Oswald ripening simulation at (A) t = t 1, (B) t = t 10, and (C) t = t100; (D) Four 
selected feature values of reduced microstructures are plotted as a function of 100 time frames for each field. The variations of these 
feature values in the latent space can reflect the real microstructural evolution in the original space based on manifold hypothesis. For 
instance, the microstructural stability at a certain time frame (e.g., flat curves) in the latent space is equivalent to the stability at that 
same time frame in the original 2D space. 2D: Two-dimensional.

studies[45,46] have shown that LSTM models achieve best performance in predicting the microstructure of 
spinodal decomposition when trained on 80 time frames. However, in the case of Ostwald ripening, we 
found that most of the coupled fields reach a converged state after approximately 75 time frames, with no 
significant changes thereafter. As a result, training LSTM models with 80 time frames becomes less 
meaningful for the Ostwald ripening problem. This can be clearly seen in Figure 4A, where the feature 
values (dotted lines) predicted by the LSTM models trained on 80 frames remain nearly constant from 
frames 81 to 100 frames, meaning that the microstructures have already converged and no longer evolves 
during this period. Therefore, our next objective is to identify the optimal training time frames for 
developing the most efficient LSTM models.

To achieve this, we trained LSTM models using 20, 40, 60, and 80 time frames to study their performance in 
predicting the latent microstructural features. As shown in Figure 4B, the top four feature values predicted 
by the LSTM models trained on 60 time frames exhibit perfect agreement with the true feature values from 
original 2D microstructure images. This suggests that the LSTM models can effectively leverage 60 training 
frames to predict the future microstructure sequences in Ostwald ripening. When the number of training 
time frames is reduced to 40, some discrepancies begin to appear between the LSTM-predicted feature 
values and true values [Figure 4C]. This difference becomes even more pronounced with 20 training time 
frames [Figure 4D], where the LSTM-predicted feature value curves deviate significantly from the true 
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Figure 4. Training performance of LSTM models in predicting the evolution of reduced microstructure with different training time 
frames. The training loss of LSTM models for predicting the top four autoencoder-reduced microstructural features of compositional 
field, c, using (A) 80 time frames, (B) 60 time frames, (C) 40 time frames, and (D) 20 time frames as the training dataset. The grey 
dashed lines indicate the starting time frame for LSTM prediction, and the dotted lines after grey dashed lines represent the LSTM-
predicted feature values of reduced microstructure evolving as time frames until the last 100 time frame. LSTM: Long short-term 
memory.

feature values. Based on these observations, we conclude that the optimal training time frames for LSTM 
models is between 40-60 for Ostwald ripening.

With the optimal time frames, we next evaluate the accuracy of reconstructed microstructure images based 
on the LSTM-predicted latent representations. To do this, we adopt well-trained autoencoders to decode the 
latent features back into high-dimensional space and compare the reconstructed images with the original 
2D microstructural images. Figure 5 shows a series of reconstructed microstructural images over time for a 
representative c field based on LSTM-predicted latent features using different time frames. When LSTM 
models are trained with 70 time frames, the reconstructed microstructures using LSTM-reduced features are 
almost identical to the original 2D images. This similarity is supported by the pointwise error plots in the 
third row of Figure 5B, which shows that the LSTM-predicted microstructures exhibit small differences 
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Figure 5. Comparison of microstructural evolution predicted by LSTM models trained with different time frames. The microstructural 
evolution of composition field c in reduced 4 × 4 space and autoencoder-reconstructed 2D space predicted by LSTM models using (B) 
70 time frames, (C) 50 time frames, and (D) 30 time frames. The original phase-field-simulated microstructure images at each timestep 
are shown in panel (A) for comparing the performance of each LSTM model. In panels (B-D), the third rows are pointwise error plots to 
visualize the differences between the LSTM-predicted microstructure images and original images as a result of the autoencoder (training 
and predicted frames) and LSTM (predicted frames only). LSTM: Long short-term memory; 2D: two-dimensional.

compared to original one [Figure 5A]. This finding aligns well with our prior analysis, where the LSTM-
predicted feature values have perfect agreement with true feature values when time frame is above 60 
[Figure 4B]. Moreover, we also adopt LSTM models with 70 training time frames to predict the evolution of 
four η fields, and the near-perfect match between LSTM-predicted microstructures and true phase-field 
simulations shown in Supplementary Figure 4 further demonstrates the superior performance of LSTM 
models in accurately predicting the microstructure evolution of Ostwald ripening problem.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jmi5023-SupplementaryMaterials.pdf


Page 13 of Gesch et al. J. Mater. Inf. 2025, 5, 42 https://dx.doi.org/10.20517/jmi.2025.23 20

As the training time frames decrease to 50, it becomes more likely for differences to appear between the 
LSTM-predicted 2D microstructures and the true images [Figure 5C], especially at later time steps such as 
t = t85 and t = t95. Furthermore, when using only 30 training time frames, the LSTM-predicted 
microstructures start to deviate significantly from the true evolution as early as t = t35, and frequently 
diverges completely from the ground-true phase-field simulations [Figure 5D]. This large difference can be 
clearly seen in the pointwise error plots in Figure 5D. Based on the above microstructural analyses, we can 
conclude that the optimal training time frames for LSTM models lie between 40 and 60, which is once again 
consistent with our prior analysis about feature values [Figure 4].

SVM prediction of coupled phase fields in latent space
Although LSTM models demonstrate exceptional performance in predicting the dynamic features of 
multiple fields, they are not transferable across different fields. More specifically, the LSTM model must be 
trained separately for each field by using their individual database. These processes significantly limit the 
efficiency of LSTM models for predicting the microstructural evolution for more complex systems, 
especially involving a large number of coupled fields. As such, we investigate the correlations between 
different fields and explore the potential of using machine learning techniques to predict the 
microstructural evolutions among these coupled fields.

Here, we employ SVM models to predict latent features of one field by using the reduced features of other 
coupled fields as input parameters. For instance, Figure 6A shows a parity plot of the SVM-predicted latent 
features of c field by using the other four η fields as the input parameters. The perfect linear correlation 
between the SVM prediction and actual feature values, along with the low MSE values, suggests the high 
accuracy and effectiveness of the SVM predictions. Using this SVM model, we can easily predict the 
reduced microstructure of any c field. For example, the inset of Figure 6A compares the 4 × 4 latent features 
of a representative c field obtained from the autoencoder with those predicted by the SVM model. The 
excellent agreement between them further highlights the promising performance of the SVM models in 
predicting the latent microstructure evolution of the c field.

Similarly, SVM models can be used to predict the latent representation of any of the η fields by using the 
remaining fields as the input parameters. Figure 6B-E shows the parity plots which compare the SVM 
prediction with the actual feature values for each η field. The perfect linear correlations observed in these 
plots further verify the high accuracy of the SVM models in predicting η parameters. By comparing the MSE 
values, Figure 6 indicates that the c field has a lower MSE value than the four η parameter fields. The lower 
MSE in the c field is likely due to the non-redundant latent features contributed by the four individual η 
parameters. In contrast, the latent representation of the c field may already embed information from the 
reduced η fields, making the SVM predicting of these individual η fields less accurate.

To further assess the performance of SVM in predicting microstructural evolution across different fields, we 
use well-trained autoencoders to reconstruct the SVM-predicted latent space of each field and compare the 
results with reconstructed images using the ideal latent features. As shown in Figure 7, the reconstructed 
microstructures using SVM-predicted microstructure exhibit perfect agreement with actual c and first two η 
parameter fields (η1 and η2). Yet, the prediction performance is less accurate for the microstructures of η3 and 
η4 fields. This can be seen in the relatively large pointwise errors between autoencoder-reconstructed image 
and original microstructure images in the rightmost column in Figure 7. The slightly lower performance in 
predicting the η3 and η4 fields is indeed due to the autoencoder reconstruction process rather than the SVM 
prediction, as pointwise error plots shown in the second to last column in Figure 7 compare the 
reconstruction from the SVM-predicted latent representation to the reconstruction of the original latent 
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Figure 6. SVM performance in predicting the latent features of five couple fields. Parity plots of SVM-predicted feature values vs. AE-
reduced feature values of (A) solute compositional field, c, and (B-E) four structural order parameter fields, ηi (i = 1-4). The comparison 
of latent feature values between SVM prediction and AE-reduced values for a representative microstructure of each field is shown as the 
inset in each panel. SVM: Support vector machine; AE: autoencoder.

representation. This illustrates that for all fields, the SVM exhibits minimal discrepancies beyond the error 
introduced through the use of the autoencoder.

Despite its promising performance, it is still uncertain whether the SVM is the best method to predict the 
feature correlation between different phases in this Oswald ripening problem. Here, we selected two 
additional methods: multilayer perception (MLP) and random forest regression (RFR), to predict the 
feature correlation between different phases and to compare their performance with that of the SVM model. 
Supplementary Figure 5 shows the parity plots for predicting the c field using three models. It clearly shows 
that the SVM model exhibits the lowest MSE values among the three, highlighting its superior performance 
in feature predictions. This also suggests that SVM may be the optimal choice as a machine-learning model 
for predicting the correlation of latent features between coupled phase-field problems in the future.

Performance of accelerated frameworks for Ostwald ripening
Building on the excellent performance of both LSTM predictions of microstructural evolution in latent 
space and autoencoder reconstruction process, we next evaluate the overall effectiveness of this accelerated 
framework in speeding up the phase-field simulations for the Ostwald ripening problem. Table 1 
summarizes the LSTM training time (ttrain), LSTM prediction time (tprediction), and reconstruction time (treconst) 
required to transform the reduced microstructure back into 2D space using the autoencoder. Based on these 
times, we also estimate the computational gain achieved by using LSTM models trained with 20, 40, 60, and 
80 time frames. For the optimal time frame 60, the ttrain is only about 4.8 min to train an accurate LSTM 
model. Once trained, the tprediction for using this LSTM model to predict one microstructural evolution in 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jmi5023-SupplementaryMaterials.pdf
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Table 1. Performance of accelerated phase-field frameworks using different LSTM models

LSTM time frames ttrain (min) tprediction (s) treconst (s) Computational gain

20 4.3 0.046 0.772 3.54 × 105

40 4.8 0.042 0.589 3.44 × 105

60 4.2 0.033 0.400 3.35 × 105

80 2.6 0.018 0.246 2.74 × 105

ttrain is the time for training one LSTM model. tprediction is the time for predicting the future sequence using LSTM model. treconst is reconstruction 
time by using autoencoder to transform latent microstructure back to high-dimensional space. Computational gain is the speed up of using 
accelerated framework to generate a microstructure image as part of an evolution compared to phase-field simulations. LSTM: Long short-term 
memory.

Figure 7. Comparison of reconstructed microstructure using SVM-predicted latent features and autoencoder-reduced features. The 
original microstructure, SVM input parameters for predicting latent microstructural features, reconstructed microstructure prediction, 
pointwise error plots between reconstructed microstructures of SVM-predicted features and autoencoder-reduced features (ideal), and 
pointwise error plots between SVM-predicted features and original images for (A) compositional field, c, and (B-E) four structural order 
parameter fields, ηi (i = 1-4). SVM: Support vector machine.

latent space over the last 40 time steps takes only 0.033 s. Meanwhile, the treconst required to transform these 
reduced images back into high-dimensional 2D images is approximately 0.772 s. Overall, the total time 
required to predict the microstructural evolution in the original 2D space is about 0.818 s. As such, our 
accelerated framework achieves a computational speedup of 3.35 × 105 compared to high-fidelity phase field 
simulations [Table 1].

By comparing with the accelerated framework using an LSTM model with 40 training time frames, ttrain, 
tprediction, and treconst are all slightly longer than the 60 training time frames. This is expected, as the LSTM 
models trained on 40 time frames will need to predict the microstructual evolution of the remaining 60 time 
frames, increasing the overal computational load. Although the corresponding computational gain (3.44 × 
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105) is slightly higher than that achieved with 60 training frames, it comes at the cost of reduced predicting 
accuracy for microstructure evolution in latent space. Thus, we estimate the optimal computational gain of 
our accelerated framework to be approximately 3.35 × 105 for Ostwald ripening, which represents a 
significant speedup compared to high-fidelity phase-field simulations.

Furthermore, integrating SVM models into our accelerated phase-field framework improves the overall 
efficiency. For instance, once the framework is established for any four fields, SVM models can be employed 
to predict the latent dynamic features of the remaining field. Subsequently, these predicted latent 
representations can be reconstructed into the original 2D microstructure using the well-trained 
autoencoder. In this way, there is no need to develop an LSTM model for the remaining field, thereby 
significantly improving the overall computational efficiency of the accelerated phase-field framework.

Limitations and future work
The accelerated framework demonstrates the feasibility of expediting the phase-field simulations for 
coupled microstructural evolution. Through the analysis of microstructure prediction performance, we 
found that autoencoder-based LSTM models exhibit high accuracy and efficiency in forecasting the 
microstructure evolution within the latent space. However, there are several limitations of this accelerated 
framework that should be acknowledged. First, as shown in Figure 7, the autoencoder sometimes has 
trouble recreating the 2D microstructures of the η fields from the latent space. This limitation is likely due to 
the relatively simple microstructure patterns presented in the η fields compared to the c field, as well as the 
limited size of microstructure database (200 simulations), which may be insufficient for training a robust 
autoencoder-based neural network. The second limitation is that LSTM models are heavily dependent on 
the number of time frames used for their training, as these models demonstrate lower performance when 
trained with a smaller number of time steps [Figure 4]. Thus, enhancing the predictive performance of 
LSTM models with fewer number of time frames is crucial for improving the overall efficiency of the 
accelerated phase-field framework.

It is worthy to note that an interesting direction for accelerating Ostwald ripening is the development of 
physics-informed models, such as PSDMs based on U-Net[51]. This approach is motivated by recent studies 
which demonstrate that the PSDMs can achieve very high accuracy in predicting the microstructural 
evolution with low prediction error and reduced error accumulation during autoregressive predictions[39]. 
According to a review article by Dingreville et al., the accelerated framework developed for Ostwald 
ripening falls in the category of LDM formulation, as the microstructure evolution is predicted within the 
latent space[39]. Since LDMs typically scale better with smaller dataset[39], we anticipate the accelerated 
framework will outperform the PSDMs in modeling Owstwald ripening. Yet, as the size of database 
increased or microstructural features become more complex, PSDMs are expected to outperform LDMs in 
predictive performance for coupled microstructure evolution.

Although the accelerated framework developed in this study is for 2D Ostwald ripening problem, it is 
anticipated that this framework can be easily extended to the 3D systems. This is because the 
microstructural features in both 2D and 3D cases always share similar evolutionary behaviors, which 
indicates that the key features in latent space demonstrate similar variations, making it easier for machine-
learning models to capture them. Additionally, our accelerated framework is applicable to the more 
complex, coupled phase-field problems by incorporating various physical coupling interactions between 
various fields, such as elastic strain, component diffusion heterogeneity, and inhomogeneous interface 
energy. Once the new microstructural database is developed, the accelerated framework can be readily 
retrained to capture the new microstructural features in latent representations and predict their evolution 
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over time sequences. This also indicates the high potential of this accelerated phase-field framework for 
adapting to new phase-field problems.

CONCLUSIONS
In this work, we developed an accelerated phase-field framework for Ostwald ripening problems. This 
framework integrates the high-throughput phase-field simulations for generating large datasets of 2D 
microstructure images, autoencoder-based image reduction techniques, and LSTM models as machine-
learning engine for predicting the microstructural evolutions in latent space. A high-quality database of 
microstructure evolution containing 200 Ostwald ripening trajectories was developed. Based on this large 
database, we found that the autoencoder can efficiently capture the key features of Ostwald ripening 
microstructure images in the low-dimensional dimensions for five different fields: including one solute 
compositional field and four structural order parameter fields. The reduced microstructures were 
subsequently fed into the LSTM models to predict the evolution of microstructures for all five fields. These 
models do not only exhibit high performance in accurately predicting the dynamics of coupled 
microstructures, but also achieve a significant speedup of 3.35 × 105 compared to high-fidelity phase-field 
simulations. Additionally, the SVM models were implemented to successfully predict the correlation 
between the difference fields, further improving the computational efficiency of our accelerated framework. 
The accelerated frameworks developed in this study are not only applicable to the 2D Ostwald ripening 
problems, but also have the potential to predict microstructural evolution in more complex systems 
involving multiple coupled fields in 3D space. As the datasets for microstructure evolutions continue to 
grow, the framework developed in this work may become less efficient. Therefore, the development of 
physics-informed PSDMs could represent a potentially future research direction for accelerating coupled 
phase-field problems.
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