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Abstract
Machine learning models demonstrate remarkable capabilities in predicting properties of novel material. The 
optimal model can theoretically be obtained through an exhaustive search of data subsets, algorithms, and 
hyperparameters. However, the fundamental challenge lies in identifying the most efficient pathway through this 
immense search space. In this paper, we address this challenge by proposing an active learning-based data 
screening and model retrieval framework, which can develop enhanced models based on internal data while 
incorporating additional external data to further improve model performance. Systematic validation studies were 
conducted using four datasets, comprising both classification and regression data. Superior models were obtained 
within 10 iterative cycles for all cases, achieving a 3.3%-10.3% improvement compared to state-of-the-art results 
in current literature. Among the results, the framework reduced modeling error by 10.3% for AlCoCrCuFeNi 
hardness internal data and achieved a more significant error reduction of 42.6% through the integration of 
additional external hardness data. The framework achieves an ideal balance between computational efficiency and 
predictive accuracy while enabling deeper data exploration, with its low-code implementation and user-friendly 
characteristics making it a promising tool for materials design.
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INTRODUCTION
A data-driven approach has the potential to significantly reduce the cost and time associated with materials 
development processes[1-3]. Researchers can use machine learning models to predict the properties of novel 
materials and identify trends, even in the absence of a full understanding of the underlying physical 
mechanisms[4,5].

However, most existing studies merely generate locally optimal models based on limited data and specific 
algorithms, failing to fully exploit the dataset’s information. For example, Wen et al. found that the support 
vector regression (SVR)-radial basis function (rbf) model was best suited to the AlCoCrCuFeNi hardness 
dataset, achieving a root mean square error (RMSE) of 68 HV, which was subsequently used as a baseline 
model for active learning[6]. Building upon this work, Li et al. enhanced the dataset, resulting in a reduced 
RMSE of 53 HV for the SVR-rbf model[7]. Furthermore, Zhang et al. demonstrated that a stacking algorithm 
based on a combination of CatBoost and LightGBM outperformed the SVR model when evaluated on the 
expanded dataset[8]. Overall, even with the same system, changing the combinations of data and algorithms 
may lead to different results. In theory, exploring the combinations of data subsets, algorithms, and 
hyperparameters can yield the optimal model.

Datasets are typically represented in matrix form, where rows represent samples and columns stand for 
features. The selection of both samples and features determines the final model’s performance. Feature 
selection methods are well-established, such as tree-based importance analysis[9], which assesses a feature’s 
contribution to model performance by its impact on split nodes; recursive feature elimination (RFE) 
repeatedly trains a model[10], gradually removing the redundancy features based on model performance or 
feature importance, until an optimal subset is left; principal component analysis (PCA) reduces high-
dimensional feature set by mapping it to fewer principal components while preserving the most important 
information[11,12]. In addition, some researchers have integrated common methods. For instance, Zhang et al. 
combined correlation screening, recursive elimination, and exhaustive search to extract key features for 
copper alloys, establishing a new Hall-Petch relationship[13,14]. However, sample selection is more complex 
and tedious. It requires not only collecting representative samples to maintain their distribution in high-
dimensional space but also carefully filtering noise to preserve model robustness. Unlike feature selection, 
which directly provides feature importance, the importance of individual samples emerges through a 
“contextual” effect in combination with other samples.

The mainstream of existing research methods for sample optimization contains noisy sample filtering, 
unbalanced data processing and active learning data sampling. Noisy sample filtering works by identifying 
and removing samples in the dataset that are clearly anomalous or mislabeled, but may mistakenly remove 
samples that do not fit the regular pattern but are critical to model learning[15]. Unbalanced data processing 
can address the dominance of majority class samples and improve the prediction performance of minority 
class samples. However, it may lead to issues such as excessive oversampling repetition or insufficient data 
quantity in undersampling[16]. Active learning data sampling selects the most representative subset of 
samples from the entire dataset based on their contribution to model training. Li et al. used an uncertainty-
based active learning approach to reduce redundancy in several authoritative large datasets, creating a 
smaller yet equally informative dataset[17]; Chen et al. developed the active learning-based data screening 
(ALDS) framework based on active learning, utilizing a high-quality internal small dataset to filter multi-
source external data and expand the small dataset into a larger one[18]. However, current research 
approaches overlook two critical issues. First, methods that rely exclusively on elimination fail to consider 
the potential “contextual” relationships between external samples and the internal dataset, while addition-
only strategies cannot effectively evaluate the distribution quality of existing internal samples. Second, the 
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practice of data evaluation using limited algorithmic approaches fails to address the varying effectiveness of 
different algorithms across diverse scenarios.

This paper proposes a data screening (DS) and model retrieval (MR) framework based on active learning 
(DSMR), distinguished by its integration of sample optimization through elimination/addition and 
standardized MR methods, aimed at recommending the most suitable data and algorithm for designers. The 
DS methods in the DSMR framework are based on a “leave-one-out” approach for gradual elimination and 
addition, incorporating the concept of cross-validation to maintain the original data distribution. The MR 
methods also integrate most mainstream regression and classification machine learning algorithms, utilizing 
Bayesian optimization to effectively explore potential combinations of algorithms and hyperparameters, 
while employing common evaluation metrics to assist in model exploration. The effectiveness and 
robustness of DSMR in DS and MR have been validated across various classification and regression datasets, 
including perovskites, steel, and high-entropy alloys (HEAs). The DSMR framework can develop enhanced 
models based on internal data while incorporating additional external data to further improve model 
performance.

MATERIALS AND METHODS
Overview and architecture
The primary goal of DSMR is to assess the importance of each row in the data matrix (i.e., each sample) and 
provide materials scientists with the optimal combination of data subsets and models. To train predictive 
models on DSMR, users need to upload a CSV file containing the feature matrix X and the target variable 
Y. The feature matrix X includes material compositions and processing information, while the target 
variable Y contains one or more material properties, with each sample corresponding to its respective X and 
Y. As shown in Figure 1, the DS module achieves data enhancement through a “leave-one-out” approach for 
data elimination and addition, preserving the original sample distribution during the elimination process 
and recovering valid samples during the addition process. The MR module is based on generic algorithm 
integration and Bayesian autotuning for optimal model selection, enabling comprehensive evaluation of 
algorithmic suitability while maintaining standardized hyperparameter optimization. This module supports 
nearly all widely used algorithms, such as linear model, support vector machine, random forest, and 
XGBoost, each with its own advantages, ensuring comprehensive data evaluation. The MR module 
incorporates Bayesian hyperparameter optimization, using surrogate models in conjunction with 
acquisition functions to select the best hyperparameters. This approach accelerates the global optimization 
of model parameters while minimizing human intervention[19,20]. Additionally, the evaluation metrics for 
MR are based on the RMSE and R2 for regression models, along with Accuracy for classification models, 
ensuring fairness and min-max normalization in the evaluation.

The two modules of the DSMR framework work together during the iteration process, continuously 
recombining data and exploring models, and finally determining whether to continue iteration based on 
evaluation metrics. In this process, the DS module only provides possible data combinations, while the MR 
module is responsible for standardized machine learning modeling. The detailed hyperparameter 
adjustment range of the DSMR framework is shown in Supplementary Table 1.

As shown in Figure 2, the DSMR framework explores the three-dimensional space of optimal data subsets, 
algorithms, and hyperparameters. The MR module of the framework acts similar to a child seeking a path, 
exploring the three-dimensional space to find the optimal combination. Guided by Bayesian optimization, 
the child possesses the ability for global exploration. Meanwhile, evaluation metrics act as a compass, 
guiding the gradual optimization of the model, while the DS module adjusts the data to provide the child 
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Figure 1. Overview and architecture of DSMR. (A) The DS module employs a “leave-one-out” approach for gradual elimination and 
addition, extracting key data samples while preserving the overall data distribution; (B) The MR module integrates algorithm ensemble, 
automatic parameter tuning, and evaluation ranking, providing a unified modeling and evaluation process to ensure comprehensive and 
fair assessment of data subsets. DSMR: Data screening and model retrieval framework based on active learning.

with suitable learning materials. During the iterative process, the dataset (X, Y) first undergoes a round of 
random shuffling, followed by step Figure 2A, where it is divided into subsets of size N, with each subset 
eliminating a different portion to prevent excessive differences in data distribution. Next, each subset enters 
the MR module in step Figure 2B, where normalization is applied, and Bayesian optimization is used to 
globally explore the hyperparameter combinations of the chosen algorithms. Then, step Figure 2C employs 
cross-validation to evaluate the results, ranking all models by performance, retaining the best model and 
data subset combination, and selecting the optimal subset K for the next round. If data elimination reaches a 
performance bottleneck, the framework switches to step Figure 2D to recycle samples, similarly dividing 
and re-adding the eliminated data by size N, and entering the MR module for model exploration. Finally, 
step Figure 2E continues to evaluate and rank the models, terminating the process when model performance 
reaches a bottleneck or data can no longer be divided.

DSMR provides a comprehensive workflow for data sampling and MR, as shown in Figure 2. The 
abbreviations of the specific machine learning methods and materials systems used are shown in Table 1. 
Implementing the full DSMR process requires attention to several details in data processing and model 
construction, including data normalization, Bayesian optimization, cross-validation evaluation, and the core 
“leave-one-out” strategy for the gradual elimination and addition of data.

Data preparation
This study employs min-max normalization as a data processing method. As given in

Here, x represents a single feature. This approach involves iterating through each column of the input 
features to record the maximum and minimum values, then scaling the data to a range of 0 to 1 using a 
specific formula. Normalizing the data aims to accelerate the speed of gradient descent during the training 

(1)
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Figure 2. Flowcharts of subset selection and model construction in DSMR. (A) Subset partitioning rules for data elimination; (B) The 
MR module retrieves in the three-dimensional space of data subsets, algorithms, and hyperparameters using Bayesian optimization and 
standardized evaluation; (C) Data elimination subset ranking and iterative assessment; (D) Subset partitioning rules for data addition; 
(E) Data addition subset ranking and iterative assessment. DSMR: Data screening and model retrieval framework based on active 
learning.

process while potentially improving accuracy, all without disrupting the underlying distribution of the 
original data[24]. In machine learning or deep learning, most models’ loss calculations assume that all features 
have a mean of zero and the same variance. This uniformity allows for consistent processing of all feature 
attributes during loss computation. If two sample attributes have significantly different scales, the attribute 
with the larger scale can dominate the distance calculations, which may not reflect the true relationships in 
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Table 1. Abbreviations of machine learning methods and materials systems

Nomenclature

LR[21] Logic regression SVR[21] Support vector regression

XGBR[22] XGBoost regression ETR[21] Extra trees regression

MLPR[21] Multi-layer perception regression KNNR[21] K-nearest neighbor regression

RFR[21] Random forest regression CBR[23] CatBoost regression

SVC[21] Support vector classification DTC[21] Decision tree classification

RFC[21] Random forest classification XGBC[22] XGBoost classification

CBC[23] Gradient boosting classification BTC[21] Bagging tree classification

R2 Determination coefficient RMSE Root mean squared error

LOO Leave one out HV Vickers hardness

TE Total elongation PCF Polycrystalline ceramic formability

the data. To address this issue, min-max normalization is applied to scale the feature attributes to a 
common dimension, helping to mitigate the impact of scale differences.

Machine learning method
Leave-one-out cross-validation (LOO) and K-fold cross-validation are widely used for model 
validation[25,26]. The core mechanism of LOO involves removing one data point at a time, using the 
remaining N - 1 points as the training set and the removed point as the validation set. For a dataset with N 
points, LOO repeats this process N times, each time with a different point as the validation set. This method 
decreases the training set size by one point in each iteration while incrementally increasing the validated 
data points back into the training set. The training set for each round can be expressed as D - Di and the 
validation set as Di, iterating over all i ∈ [1, N]. LOO’s strength lies in utilizing all available data for 
validation; however, because it only removes one point at a time, its computational cost is O(N2), making it 
expensive for large datasets. K-fold cross-validation, on the other hand, works by dividing the dataset into K 
subsets. Each time, K - 1 subsets are used as the training set and the remaining one as the validation set. 
This process is repeated K times, with each subset being used as the validation set at least once. The training 
set can be denoted as Dtrain = D - Di and the validation set as Di, with the final validation error averaged 
across all rounds. The rationale behind K-fold is that by partitioning the data, it reduces both variance and 
bias while ensuring that each sample is used for both training and validation. Its time complexity is O(N), 
providing higher computational efficiency for medium to small-sized datasets.

In regression tasks, the coefficient of determination (R2) and the RMSE are key indicators of model 
performance. R2 measures the model’s ability to explain the variance in the data, with values closer to 1 
indicating better fit. RMSE quantifies the average error between predicted and actual values. In classification 
tasks, accuracy reflects the overall predictive performance of the classifier across all samples.

(2)

(3)
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Here, y represents the observed values, y denotes the predicted values, and n is the number of samples. TP 
and TN refer to the true positives and true negatives, respectively, while FP and FN indicate the false 
positives and false negatives.

Bayesian hyperparameter optimization is introduced, whereby the ability to select the best hyperparameters 
is provided using a surrogate model combined with an acquisition function. The pseudo-code of Bayesian 
hyperparameters optimization is provided in Table 2.

cycles. Initially, hyperparameter data and results are obtained, followed by T cycles. Each cycle calculates the 
surrogate model’s function representation and selects hyperparameters based on it and the acquisition 
function[19,20].

RESULTS AND DISCUSSION
Regression verification
Hardness prediction of HEAs
The hardness data of cast HEAs is often used in conjunction with machine learning methods to recommend 
high-hardness compositions, as it is less influenced by processing conditions and is easy to validate[7,8,27,28]. In 
2019, Wen et al. obtained the best baseline model SVR-rbf with an RMSE error of 68 HV by manually 
tuning parameters based on 155 sets of AlCoCrCuFeNi hardness data and 8 algorithms[6]. Supplementary 
Table 2 shows the basics of the Wen’s data, with features consisting only of components, modeled with 
Vickers hardness as the target value.

In this paper, the same dataset (designated as Wen-HV) was integrated with the regression algorithm in the 
DSMR framework, through which an optimized data-algorithm combination was obtained, yielding a cross-
validation RMSE of 61 HV and reducing the error by 10.3%. The model’s generalization capability was 
validated using an independent test set, achieving an RMSE of 61 HV. Figure 3A illustrates the processing 
and evaluation of data subsets in the DSMR framework. The blue background represents data elimination, 
with a step size N of 10, constructing 10 different data subsets by eliminating 10% in each round. The white 
dots represent models customized by the MR module for each data subset, while the red indicates the best 
combination for that round, corresponding to the optimal subset K for the next iteration. In the second 
iteration, a cross-validation combination achieves an RMSE of 60 HV. After continuing the elimination, the 
error increases, prompting a transition to the orange background addition phase, where some potentially 
critical samples are re-added to the dataset for evaluation. However, the error still rises after re-addition, 
leading to process termination. Comparison of all combinations shows that the mean error remains nearly 
constant in each iteration; however, the results from the second iteration indicate that slight differences in 
data can lead to significant performance variations in models. Figure 3B presents the RMSE errors for the 
best models from six algorithms on the validation set (20%) and an independent test set (5%) during the 
second iteration. Under the same algorithmic conditions, the SVR model optimized by the DSMR 
framework has an RMSE of 52 HV on the validation set, outperforming the SVR-rbf baseline model 
constructed by Wen, but demonstrating weaker generalization with an RMSE of only 78 HV on the 
independent test set. In contrast, the ETR model performs excellently on both the validation and 
independent test sets. Thus, Figure 3C shows a comparison of true and predicted values for the ETR model 

(4)

where f stands for the hyperparameter-loss function relationship, X represents the search space, and D is the 
dataset. Each pair (x, y) denotes a hyperparameter x and its corresponding result y. S selects x using an 
acquisition function, and M is the model fitted to D. The optimization process iterates through several 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jmi5020-SupplementaryMaterials.pdf
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Figure 3. Data sampling and model construction for the Wen-HV dataset. (A) Exploration of Wen-HV data subsets and algorithm 
combinations, along with the performance of the original baseline model. The white dots denote the performance of each data subset-
algorithm pairing, whereas the red dot highlights the optimal combination achieved in this iteration. The black, blue, and red lines 
represent the article’s baseline model’s 10-fold accuracy, the data elimination process, and the data addition process, respectively; (B) 
Error performance of six algorithms on the validation and test sets; (C) Comparison of true and predicted values for the best 
generalization model, ETR, on the training and test sets; (D) Comparison of true and predicted values for the ETR model on the test set. 
ETR: Extra trees regression.

on the training and validation sets, with points in the training set closely aligned along the perfect fit line 
and a validation RMSE of 60 HV. To further validate the model’s generalization capability, we randomly 
select 5% of the data as a test set for validation in Figure 3D, ensuring the test set is not involved in training 
or model tuning. The results indicate that the ETR model maintains high predictive capability on unknown 

Table 2. Bayesian hyperparameter optimization pseudo-code

Algorithm 1  Sequential Model-Based Optimization

Input: f, x, S, M
D ← INITSAMPLES (f, x)
for i ← |D| to T do
p(y|x, D) ← FITMODEL (M, D)
xi← arg maxx∈xS(x,p(y|x, D))
yi ← f(xi) • Expensive step
D ← D U (xi, yi)
end for
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data, achieving an RMSE of 61 HV. Overall, the ETR model outperforms the Wen-optimized baseline 
model on both the validation and independent test sets.

Total elongation predicted for reduced activation ferritic-martensitic
Reduced activation ferritic-martensitic (RAFM) steel has been developed from conventional 9Cr-1Mo steel 
and is considered a promising structural material candidate for fusion reactors due to its excellent 
thermophysical, thermomechanical, and radiation resistance, especially compared to austenitic steels[29,30]. In 
2024, Ma et al. utilized 274 RAFM steel total elongation (TE) data points, over 11 regression algorithms 
from the MLMD regression module, and the NSGA-II algorithm from the surrogate optimization module 
to design RAFM steel with high strength and excellent ductility[28]. The best baseline model achieved a cross-
validation R2 of only 0.7760. Supplementary Table 3 shows the basic situation of Ma’s data; the 
characteristics include basic conditions such as composition and temperature, and the TE is modeled as the 
target value.

In this paper, the same dataset (designated as Ma-TE) was integrated with regression algorithms from the 
DSMR framework, through which an optimized data-algorithm combination was achieved, yielding a cross-
validation R2 of 0.8270 and improving accuracy by 6.6%. The model’s generalization capability was 
subsequently validated using an independent test set, achieving an R2 of 0.8843. Figure 4A illustrates the 
processing and evaluation of data subsets by the DSMR framework. The blue background indicates the data 
splitting section, with a step size N of 10, where 10 different data subsets are constructed by eliminating 10% 
in each round. The white dots represent models customized by the MR module for each data subset, while 
the red dot indicates the combination with the highest R2 for that round, corresponding to the best subset K 
for the next iteration. In the fourth iteration, a combination was found that achieved a cross-validation R2 of 
0.8270. However, further elimination in the blue background or addition in the orange background did not 
lead to performance improvements, resulting in process termination. Comparing all combinations shows 
that the average accuracy increases with each iteration, indicating improved model quality. Then, after two 
attempts at data addition, the accuracy of the combinations did not significantly rise, suggesting a lack of 
effective data that connects the retained samples with those removed. Figure 4B presents the R2 for six 
algorithms, showcasing the best model from the second iteration on a validation set (20%) and an 
independent test set (5%). Since Ma-TE did not specify the algorithm used for its baseline model, a direct 
comparison under the same conditions was not possible. Nevertheless, the XGBR model optimized by the 
DSMR framework achieved an R2 of 0.9412 on the validation set and 0.8843 on the test set, significantly 
outperforming the Ma-TE baseline model’s R2 of 0.7760. Figure 4C compares the true and predicted values 
for the training and validation sets of the XGBR model, showing that the adjusted model effectively learns 
the data patterns in the training set, with points mostly falling on the perfect fit line. The R2 for the 
validation set reached 0.9412, with an RMSE of 1.55%. To further validate the model’s generalization 
capability, we randomly selected 5% of the data as a test set, which was not involved in training. Figure 4D 
compares the true and predicted values of the XGBR model on the test set, achieving an R2 of 0.8843, 
indicating high predictive power in unknown data. It can be concluded that the Ma-TE baseline model has 
undergone meticulous optimization, suggesting that without changing the data, the optimization limit is the 
performance level reached by the MLMD framework. However, through DSMR’s DS and MR, it is possible 
to efficiently obtain models with superior performance, and this process is not limited to mere model 
adjustments.

Classification verification
Binary classification prediction of formability in polycrystalline ferroelectric ceramics
Polycrystalline ferroelectric ceramics are important materials widely used in sensors, actuators, and storage 
devices, with their crystal structure significantly influencing ferroelectric properties[31]. These ceramics can 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jmi5020-SupplementaryMaterials.pdf
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Figure 4. Data sampling and model construction for the Ma-TE dataset. (A) Exploration of MLMD-TE data subsets and algorithm 
combinations, including the original baseline model’s 10-fold R2 value; (B) Presentation of error performance for six algorithms on the 
validation and test sets; (C) Comparison of true and predicted values for the best generalization model XGBR on the training and 
validation sets; (D) Comparison of true and predicted values for the XGBR model on the test set. R2: Determination coefficient; XGBR: 
XGBoost regression.

be broadly classified into two categories: perovskite and non-perovskite structures. Perovskite materials 
typically exhibit high dielectric constants and excellent ferroelectric performance, making them highly 
valuable in electronic devices[32,33]. In 2024, Ma et al. used 192 sets of polycrystalline ceramic moldability data 
combined with 6 algorithms in the MLMD classification module to design a classification model for 
distinguishing polycrystalline ferroelectric ceramic structures[28]. After MLMD optimization, the best 
baseline model achieved a cross-validation accuracy of 0.8650. Supplementary Table 4 shows the basics of 
Ma’s data, characterized by elements’ physicochemical properties such as tolerance factor, modeled with 
formability as the target value.

In this paper, the same dataset (designated as Ma-PCF) was integrated with classification algorithms in the 
DSMR framework, through which an optimized data-algorithm combination was achieved, yielding a cross-
validation R2 of 0.9490 and improving accuracy by 9.7%. The model’s generalization capability was 
subsequently validated using an independent test set, from which an R2 of 0.8000 was obtained. Figure 5A 
shows the processing and evaluation of data subsets in the DSMR framework. The blue background 
indicates the data partitioning section, with a step size of N equal to 10, and each round removing 10% to 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jmi5020-SupplementaryMaterials.pdf
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Figure 5. Data sampling and model construction for the Ma-PCF dataset. (A) Exploration of Ma-PCF data subsets and algorithm 
combinations, where the white dots represent each data subset and its corresponding best algorithm combination, the red dot indicates 
the model derived from the optimal data subset and algorithm combination, and the black, blue, and red lines represent the baseline 
model’s 10-fold accuracy, the data elimination process, and the addition process, respectively; (B) Performance of six algorithms shown 
in terms of errors on the validation set and test set; (C) Confusion matrices for the best generalization model, CBC, across the training, 
validation, and test sets; (D) ROC curve for the CBC model and the corresponding AUC values for different categories. CBC: Gradient 
boosting classification; ROC: receiver operating characteristic; AUC: area under the curve.

create 10 different subsets. The white dots represent the models customized for each data subset by the MR 
module, while the red indicates the highest Accuracy combination for that round, corresponding to the best 
subset K for the next iteration. In the sixth round, a cross-validation Accuracy of 0.9490 was achieved. 
Subsequent iterations showed no further performance improvements in either the blue background 
(elimination) or orange background (addition) regions, leading to process termination. Comparisons show 
that nearly all new models explored by DSMR have cross-validation Accuracy exceeding that of the Ma-PCF 
models, suggesting that model performance may depend more on data sampling than on hyperparameter 
optimization, given the same feature selection. Figure 5B illustrates the Accuracy for the best models from 
six algorithms during the second iteration, evaluated on the validation set (20%) and an independent test set 
(5%). In terms of model consistency with the Ma-PCF models, we replaced BTC with DTC, as RFC extends 
BTC by increasing feature randomness, thereby enhancing model robustness and generalization while 
reducing overfitting. Although DTC is a single tree model prone to overfitting, it offers strong 
interpretability. In terms of performance, DTC, RFC, XGBC, and CBC models outperformed the Ma-PCF 
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baseline model on the validation set, with CBC achieving 100% accuracy on both training and test sets. 
However, performance on the independent test set was relatively poor, likely due to the limited size of the 
randomly selected validation set (only 10 data points), significantly impacting results. Figure 5C presents the 
confusion matrix for the best CBC model across the training, validation, and test sets, showing a complete 
match between predicted and actual classifications. Despite the relatively unbalanced distribution of 
perovskite and non-perovskite structures, the validation set achieved 100% Accuracy, surpassing the Ma-
PCF baseline of 0.8650. To further validate generalization, we randomly selected 5% of the data as an 
independent test set not involved in training; the confusion matrix indicates the model maintains 80% 
accuracy on unseen data. Figure 5D depicts the ROC curve for the CBC model, illustrating the relationship 
between true positive rate (TPR) and false positive rate (FPR). TPR indicates sensitivity, while FPR is 
calculated as 1 minus specificity. The curve is plotted with FPR on the x-axis and TPR on the y-axis, where a 
curve close to the top left corner signifies good classification performance. The AUC value reflects overall 
model performance; the closer it is to 1, the better. For perovskite and non-perovskite structures, the ROC 
values reached 0.9200, indicating excellent classification performance.

Triple classification prediction of phases in HEAs
The unique structure of HEA solid solutions is a major contributor to their exceptional properties[34-36]. For 
example, single-phase HEAs with a face-centered cubic (FCC) structure typically exhibit good ductility but 
relatively low strength[37], while those with a body-centered cubic (BCC) structure demonstrate high 
strength but often brittleness[38]. HEAs with a combination of FCC and BCC structures can achieve both 
strength and plasticity[38,39]. Therefore, exploring the solid solution phases (BCC, FCC, or FCC & BCC) in 
HEAs presents an intriguing scientific challenge. In 2022, Chang et al. utilized 656 data points on HEA 
phase classification and four classification algorithms to identify that the root mean square residual strain is 
the most critical parameter for predicting phase structures, resulting in a predictive model with an accuracy 
of 0.9522[40]. Supplementary Table 5 shows Chang’s alloy composition data. However, rather than using 
these composition data directly, the modeling actually employed HEA physicochemical descriptors, such as 
enthalpy of mixing, with phase type as the target value.

In this paper, the same dataset (designated as Chang-Phase) was integrated with classification algorithms in 
the DSMR framework, through which an optimized data-algorithm combination was achieved, yielding a 
cross-validation accuracy of 0.9850 and improving accuracy by 3.3%. The model’s generalization capability 
was subsequently validated using an independent test set, from which an accuracy of 0.9390 was obtained. 
Figure 6A illustrates the processing and evaluation of data subsets within the DSMR framework. The blue 
background represents the data splitting section, where the step size N remains 10, and 10 different data 
subsets are created by removing 10% of the data in each iteration. The white points denote models 
customized by the MR module for each data subset, while the red points indicate the highest accuracy 
combination for that round, which will enter the next iteration as the best subset K. In the sixth iteration, a 
combination with a cross-validation accuracy of 0.9820 was achieved. However, after continuing with the 
blue background data elimination, the accuracy of the best model declined, leading to the orange 
background data addition phase. By reintroducing the removed portion of the data into the previously 
optimized dataset, the fourth iteration yielded a best model with a cross-validation accuracy of 0.9850. 
Further additions caused accuracy to drop, prompting the termination of the process. Comparing all 
combinations shows that the average accuracy increased only slightly in each iteration, indicating that the 
quality of the original data was generally satisfactory. After combining and optimizing with DPMR, we can 
select models with better generalization capabilities. Figure 6B presents the Accuracy of the best model from 
the second iteration across six algorithms on the validation set (20%) and an independent test set (5%). In 
terms of model performance, the DTC, RFC, XGBC, and CBC models all fit well with the HEA phase 
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Figure 6. Data sampling and model construction for the Chang-Phase dataset. (A) Exploration of Chang-Phase data subsets and 
algorithm combinations, along with the 10-fold Accuracy of the baseline model; (B) Error performance of six algorithms on the validation 
and test sets; (C) Confusion matrix for the best generalization model, CBC, across the training, validation, and test sets; (D) ROC curve 
for the CBC model and corresponding AUC values for different classes. CBC: Gradient boosting classification; ROC: receiver operating 
characteristic; AUC: area under the curve.

classification data, whereas the LR model performed the worst, probably due to the non-linear relationships 
present within the classification data. Figure 6C shows the confusion matrix for the best model, CBC, across 
training, validation, and test sets from the cross-validation results. After optimization, the CBC model 
effectively learned the data patterns, achieving perfect classification accuracy on the training and validation 
sets, with the validation accuracy reaching 1, surpassing the baseline model’s 0.9522. To further validate the 
model’s generalization ability, we randomly selected 5% of independent data as the test set, which was not 
used for training or model adjustment. The confusion matrix for the test set indicates that the model 
maintained a classification accuracy of 0.9394 on unseen data, misclassifying only 2 out of 33 samples. 
Figure 6D displays the ROC curve for the CBC model, illustrating the relationship between TPR and FPR. A 
curve close to the upper left corner indicates strong classification performance. The AUC value reflects the 
model’s overall performance, with values approaching 1 indicating better performance; the ROC values for 
perovskite and non-perovskite structures exceed 0.99, signifying excellent classification capability.

To validate its feasibility and generalizability, DSMR optimized internal data with existing published results, 
showing strong capabilities across four datasets (two for regression and two for classification). The results 
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demonstrate that the DSMR framework can efficiently select the optimal combination of algorithms and 
data while effectively navigating the three-dimensional space of data subsets, hyperparameters, and 
algorithms. Its strength lies in integrating data elimination/addition strategies with Bayesian 
hyperparameter optimization and common statistical machine learning algorithms for global exploration. 
However, the primary focus of this study is not to challenge previous research, but rather to complement it. 
Prior studies have introduced various innovations; for example, Wen et al. employed active learning to 
design alloys with hardness values exceeding the dataset’s upper limit[6]. In contrast, the DSMR framework 
in this work primarily addresses the often-overlooked aspect of data quality optimization. This study adopts 
a different perspective from previous work, and further validation of the DSMR framework will be 
conducted in future research. Additionally, we evaluated the framework from two perspectives: model 
extension application and balance between accuracy and efficiency. The framework demonstrates excellent 
extension capability in external data, which we validated using the AlCoCrCuFeNi composition-hardness 
dataset that showed the best optimization results among internal datasets.

Model extension of external data
The DSMR framework demonstrates the dual capability to optimize models through homologous data 
while enabling model extension through the integration of additional external datasets. Machine learning 
models in materials science have traditionally been constrained by data limitations, operating optimally only 
within fixed data ranges. Even when these models demonstrate high accuracy with existing data, they often 
fail to effectively predict outcomes beyond their training data scope, such as extrapolating from low-
component to high-component systems. The volume of data in materials science continues to expand, 
facilitating the development of enhanced predictive models. The DSMR framework serves as an effective 
tool for model expansion, utilizing active learning iterations to ensure that the incorporation of external 
data enhances model performance.

Additional external data from previous studies on the AlCoCrCuFeNi HEA system was considered[6-8,27], 
leading to a more robust model for the hardness of HEAs, with an RMSE of 39 HV. Based on the existing 
data, additional external data were incorporated to construct a larger dataset for further model 
optimization. The external data were contributed by other researchers as supplements to Wen et al.’s 
internal dataset between 2019 and 2023[6]. The modeling dataset includes only alloys produced by vacuum 
arc melting and assessed in the as-cast condition to minimize the effects of production processes on quality. 
Among the HEA hardness data, we retained a total of 273 observations, including 77 senary alloys, 166 
quinary alloys, 28 quaternary alloys, and 2 ternary alloys. As shown in Figure 7A, we introduced this data 
into the framework for iteration, achieving the lowest error in the seventh round, after which the error 
increased. The data recovery process was performed using the subset from the seventh round, after which 
error reduction was achieved gradually, and the optimal model was obtained through two recovery rounds. 
A model with an RMSE of 39 HV was ultimately achieved, demonstrating significant improvement over 
previous studies. Figure 7B examines the distribution of the data after screening, showing that the retained 
data (blue line) exhibits a more balanced distribution than the original dataset, increasing the representation 
of high-hardness areas and thereby enhancing the model’s generalization capability across the full hardness 
range. It is important to note that when the volume of additional data is limited, the addition process can be 
conducted directly, which enhances efficiency. However, employing the complete DSMR framework for 
elimination and addition allows for a more comprehensive extraction of data information.

It is worth noting that external data are collected from literature and databases. Initially, it is sufficient to 
ensure consistency in features for data inclusion, after which optimization is performed using the DSMR 
framework. The main principle is to maintain the same data format; however, better results are achieved 
when the external and internal data are generated using the same preparation processes and testing 
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Figure 7. The DSMR framework further integrates multivariate heterogeneous HEA hardness data with the Wen-HV dataset to build a 
high-performance model. (A) Exploration of the optimal data subsets and algorithms; (B) Distribution analysis of the complete dataset, 
retained data, and eliminated data. DSMR: Data screening and model retrieval framework based on active learning; HEA: high-entropy 
alloy.

methods. Additionally, the process of data removal essentially acts as a sampling procedure, in which the 
most valuable samples are selected for modeling. This approach not only reduces computational resource 
consumption but also minimizes noise and other irrelevant information in the data, thereby improving 
model accuracy. As demonstrated in Supplementary Figure 1, using only about 50% of the training data can 
still achieve satisfactory accuracy, while Supplementary Figure 2 further confirms that the retained data are 
of higher quality.

Trade-off between accuracy and efficiency
The model guides more appropriate data sampling, efficiently identifying better combinations of data 
subsets, algorithms and hyperparameters. Although data sampling and Bayesian optimization with limited 
parameter ranges are still local searches within a larger context, DSMR significantly improves retrieval 
efficiency compared to the exponential explosion of combinations seen in global searches. As shown in 
Figure 8, theoretical computation times of the DSMR method were calculated for different sample sizes with 
step sizes N of 100 and 10, based on a presumed selection of 10 algorithms, while actual computation times 
were determined for N set to 10. The traversal method randomly selects at least 2 data points to form 
subsets from a dataset of 100, with the total number of subsets determined by the combination formula 
Σ2

100Ck
100, where k ranges from 2 to 100. This approach can uncover all combinations, but its significant 

drawback is the exponential explosion of combinations; calculating all combinations for 100 data points 
results in approximately 1031 possibilities. In contrast, the DSMR approach employs a “leave-one-out” 
strategy, gradually eliminating and adding data. Assuming 100 samples and a step size N of 100, each round 
removes 1% of the data to construct a subset, and after modeling and evaluating all subsets, the worst 1% is 
eliminated. This process repeats until only one data point remains. Similarly, in the gradual addition 
process, 1% of the data is added each round for evaluation, ultimately reaching a total of 100 data points. 
The total number of possible combinations for the 100 data points calculated using DSMR is on the order of 
105.

While traversal allows for a wider range of data selection and combination methods, DSMR has the 
advantage of utilizing an active learning approach to data calibration, where samples that do not contribute 
much to the model are not involved in subsequent combinations, and therefore the number of 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jmi5020-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jmi5020-SupplementaryMaterials.pdf


Page 16 of Chen et al. J. Mater. Inf. 2025, 5, 40 https://dx.doi.org/10.20517/jmi.2025.2019

Figure 8. DSMR framework retrieval efficiency analysis diagram. DSMR: Data screening and model retrieval framework based on active 
learning.

combinations will be smaller. The step size N in DSMR can be adjusted to achieve a balance between 
accuracy and efficiency. In theory, a larger step size N will result in greater accuracy, but at the cost of 
reduced computational efficiency. When the quantity of data is considerable, a step size of N equal to 10 
computes approximately two to three orders of magnitude fewer combinations than N equal to 100. In 
practice, when the algorithms and hyperparameter optimization methods are consistent, the data sampling 
can be bootstrapped by model evaluation. This is demonstrated by the four validation examples, which 
show that the best model can be found in 10 rounds of iterations. In the practical case where N is 10 and 10 
algorithms are available, the total number of computations is only of the order of 103. The efficiency of the 
DS module data sampling is contingent upon the coupled efficacy of the MR module Bayesian automatic 
parameter tuning and unmanned intervention. The accuracy and generalization ability of the tuning 
parameters must be considered, as traversal methods will inevitably result in a certain degree of precision 
loss. To circumvent this, the data will be randomly disrupted in each iteration for multiple calculations. 
These results will then be combined with cross-validation to identify the optimal outcome, thereby ensuring 
that the data is fully explored. In conclusion, the DSMR framework employs an active learning-based 
reduction/increase data sampling strategy, which effectively identifies the most effective samples for the 
model by reducing redundant samples, selecting data points with high information gain, and optimizing the 
data distribution to maximize the learning effect, accelerating the learning process of the model and 
improving the generalization performance, particularly in the case of scarce data or expensive annotations. 
The iterative process of active learning enables the updating of decision boundaries and the calibration of 
confidence in samples. This then permits the selection of the most valuable samples from the unlabeled 
dataset for the next round of training.

Besides, the framework can be used in a low-code, automated way. Users only need to input data in CSV 
format, select algorithms, evaluation metrics, and data optimization steps, and then output performance 
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metrics and model ontology. The framework uses statistical machine learning algorithms and Bayesian 
optimization based on scikit-learn, a machine learning library that comes with Python. DSMR performs 
computations using the CPU (Intel i7-14700KF), and its computational efficiency depends on the data 
volume, the range of hyperparameters, and the number of data splits. The larger or broader these factors 
are, the more computation time is required. For example, using the Wen-HV dataset with 273 entries, a 
relatively small hyperparameter range, and splitting the data into only 10 subsets, a single iteration takes 
approximately 8 h. Typically, the relatively optimal model (compared to the baseline models in the 
literature) can be found within 10 iterations. The statistical machine learning approach is suitable for 
material datasets with limited data volume, and we will continue to improve it by introducing deep learning 
to make the framework suitable for different levels of data. In conclusion, we are dedicated to the 
continuous improvement and distribution of DSMR, with the objective of resolving the issues associated 
with model construction in materials design. This encompasses the selection of high-quality data subsets, 
the automation of model construction through low-code techniques, and the optimization of materials data 
management. We posit that DSMR has the potential to become a vital tool for materials design, particularly 
for researchers lacking in programming expertise, and to drive advances in materials informatics.

CONCLUSIONS
In conclusion, the DSMR framework addresses the critical challenge of efficiently navigating the vast search 
space of data subsets, algorithms, and hyperparameters in materials science. Through active learning, it 
successfully identifies better models while restructuring complex external data. The framework 
demonstrated exceptional performance across diverse materials datasets, achieving 3.3%-10.3% 
improvement over state-of-the-art results in the literature, including a remarkable 10.3% error reduction for 
AlCoCrCuFeNi hardness prediction and 42.6% improvement through external data integration. DSMR 
strikes an ideal balance between computational efficiency and predictive accuracy, while its low-code 
implementation enhances accessibility for materials researchers. This framework represents a significant 
advancement in materials informatics, providing a powerful tool for accelerating materials design and 
discovery through intelligent data management and model optimization.

DECLARATIONS
Authors’ contributions
Conceived and designed the experiments, performed the experiments, analyzed the data, contributed 
materials/analysis tools, wrote the paper: Chen, J. (Jianhua Chen)
Analyzed the data, contributed materials/analysis tools: Chen, J. (Junwei Chen); Zhao, B.
Provided guidance on the editing and funding support: Fan, Y.
Conceived and designed the experiments, analyzed the data, contributed materials/analysis tools, wrote the 
paper: Yu, Z.
Conceived and designed the experiments, analyzed the data, contributed materials/analysis tools: Luan, J.
Conceived and designed the experiments, provided guidance on the editing and funding support: Chou, K.

Availability of data and materials
More raw details and tutorials are also available from Supplementary Materials. The program and source 
codes of the DSMR framework are available (https://github.com/Mat-Design-Yu/DSMR).

Financial support and sponsorship
The authors are especially grateful to the financial support by the Aeronautical Science Foundation of China 
(No. 2023Z0530S6005), the National Natural Science Foundation of China (No. 52274301), the National 
Key Research and Development Program of China (No. 2023YFB3712401), Academician Workstation of 
Kunming University of Science and Technology (2024), Ningbo Yongjiang Talent-Introduction Programme 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jmi5020-SupplementaryMaterials.pdf
https://github.com/Mat-Design-Yu/DSMR


Page 18 of Chen et al. J. Mater. Inf. 2025, 5, 40 https://dx.doi.org/10.20517/jmi.2025.2019

(No. 2022A-023-C) and Zhejiang Phenomenological Materials Technology Co., Ltd., China.

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
© The Author(s) 2025.

REFERENCES
Rao, Z.; Tung, P. Y.; Xie, R.; et al. Machine learning-enabled high-entropy alloy discovery. Science 2022, 378, 78-85.  DOI1.     
Chen, J.; Zhang, Y.; Luan, J.; et al. Prediction of thermal conductivity in multi-component magnesium alloys based on machine 
learning and multiscale computation. J. Mater. Inf. 2025, 5, 22.  DOI

2.     

Yuan, Y.; Sui, Y.; Li, P.; Quan, M.; Zhou, H.; Jiang, A. Multi-model integration accelerates Al-Zn-Mg-Cu alloy screening. J. Mater. 
Inf. 2024, 4, 23.  DOI

3.     

Chen, C.; Zuo, Y.; Ye, W.; Li, X.; Deng, Z.; Ong, S. P. A critical review of machine learning of energy materials. Adv. Energy. Mater. 
2020, 10, 1903242.  DOI

4.     

Hu, M.; Tan, Q.; Knibbe, R.; et al. Recent applications of machine learning in alloy design: a review. Mater. Sci. Eng. R. Rep. 2023, 
155, 100746.  DOI

5.     

Wen, C.; Zhang, Y.; Wang, C.; et al. Machine learning assisted design of high entropy alloys with desired property. Acta. Mater. 2019, 
170, 109-17.  DOI

6.     

Li, S.; Li, S.; Liu, D.; Zou, R.; Yang, Z. Hardness prediction of high entropy alloys with machine learning and material descriptors 
selection by improved genetic algorithm. Comput. Mater. Sci. 2022, 205, 111185.  DOI

7.     

Zhang, Y.; Ren, W.; Wang, W.; et al. Interpretable hardness prediction of high-entropy alloys through ensemble learning. J. Alloys. 
Compd. 2023, 945, 169329.  DOI

8.     

Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation importance: a corrected feature importance measure. Bioinformatics 
2010, 26, 1340-7.  DOI  PubMed

9.     

Darst, B. F.; Malecki, K. C.; Engelman, C. D. Using recursive feature elimination in random forest to account for correlated variables 
in high dimensional data. BMC. Genet. 2018, 19, 65.  DOI  PubMed  PMC

10.     

Abdi, H.; Williams, L. J. Principal component analysis. WIREs. Comput. Stat. 2010, 2, 433-59.  DOI11.     
Shlens, J. A tutorial on principal component analysis. arXiv 2014, arXiv:1404.1100. https://doi.org/10.48550/arXiv.1404.1100. 
(accessed 19 Jun 2025)

12.     

Zhang, H.; Fu, H.; He, X.; et al. Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via 
machine learning screening. Acta. Mater. 2020, 200, 803-10.  DOI

13.     

Jiang, L.; Fu, H.; Zhang, H.; Xie, J. Physical mechanism interpretation of polycrystalline metals’ yield strength via a data-driven 
method: a novel Hall–Petch relationship. Acta. Mater. 2022, 231, 117868.  DOI

14.     

Gupta, S.; Gupta, A. Dealing with noise problem in machine learning data-sets: a systematic review. Procedia. Comput. Sci. 2019, 
161, 466-74.  DOI

15.     

Mohammed, R.; Rawashdeh, J.; Abdullah, M. Machine learning with oversampling and undersampling techniques: overview study and 
experimental results. In 2020 11th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan. Apr 
07-09, 2020. IEEE; 2020. pp. 243-8.  DOI

16.     

Li, K.; Persaud, D.; Choudhary, K.; DeCost, B.; Greenwood, M.; Hattrick-Simpers, J. Exploiting redundancy in large materials 
datasets for efficient machine learning with less data. Nat. Commun. 2023, 14, 7283.  DOI  PubMed  PMC

17.     

Chen, S.; Cao, H.; Ouyang, Q.; Wu, X.; Qian, Q. ALDS: an active learning method for multi-source materials data screening and 
materials design. Mater. Design. 2022, 223, 111092.  DOI

18.     

Frazier, P. I. Bayesian optimization. In: Gel E, Ntaimo L, Shier D, Greenberg HJ, editors. Recent advances in optimization and 
modeling of contemporary problems. INFORMS; 2018. pp. 255-78.  DOI

19.     

Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R. P.; de Freitas, N. Taking the human out of the loop: a review of Bayesian 
optimization. Proc. IEEE. 2016, 104, 148-75.  DOI

20.     

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; et al. Scikit-learn: machine learning in Python. J. Mach. Learn Res. 2011, 12, 2825-30. 
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?source=post_page. (accessed 19 Jun 2025)

21.     

https://dx.doi.org/10.1126/science.abo4940
https://dx.doi.org/10.20517/jmi.2024.89
https://dx.doi.org/10.20517/jmi.2024.34
https://dx.doi.org/10.1002/aenm.201903242
https://dx.doi.org/10.1016/j.mser.2023.100746
https://dx.doi.org/10.1016/j.actamat.2019.03.010
https://dx.doi.org/10.1016/j.commatsci.2022.111185
https://dx.doi.org/10.1016/j.jallcom.2023.169329
https://dx.doi.org/10.1093/bioinformatics/btq134
http://www.ncbi.nlm.nih.gov/pubmed/20385727
https://dx.doi.org/10.1186/s12863-018-0633-8
http://www.ncbi.nlm.nih.gov/pubmed/30255764
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157185
https://dx.doi.org/10.1002/wics.101
https://doi.org/10.48550/arXiv.1404.1100
https://dx.doi.org/10.1016/j.actamat.2020.09.068
https://dx.doi.org/10.1016/j.actamat.2022.117868
https://dx.doi.org/10.1016/j.procs.2019.11.146
https://dx.doi.org/10.1109/ICICS49469.2020.239556
https://dx.doi.org/10.1038/s41467-023-42992-y
http://www.ncbi.nlm.nih.gov/pubmed/37949845
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638383
https://dx.doi.org/10.1016/j.matdes.2022.111092
https://dx.doi.org/10.1287/educ.2018
https://dx.doi.org/10.1109/jproc.2015.2494218
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?source=post_page


Page 19 of Chen et al. J. Mater. Inf. 2025, 5, 40 https://dx.doi.org/10.20517/jmi.2025.20 19

Chen, T.; Guestrin, C. XGBoost: a scalable tree boosting system. arXiv 2016, arXiv:1603.02754. https://doi.org/10.48550/arXiv.1603.
02754. (accessed 19 Jun 2025)

22.     

Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A. V.; Gulin, A. CatBoost: unbiased boosting with categorical features. arXiv 
2017, arXiv:1706.09506. https://doi.org/10.48550/arXiv.1706.09516. (accessed 19 Jun 2025)

23.     

Jo, J. M. Effectiveness of normalization pre-processing of big data to the machine learning performance. J. Korea. Inst. Electron. 
Commun. Sci. 2019, 14, 547-52.  DOI

24.     

Wong, T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern. Recognit. 2015, 
48, 2839-46.  DOI

25.     

Fushiki, T. Estimation of prediction error by using K-fold cross-validation. Stat. Comput. 2011, 21, 137-46.  DOI26.     
Ye, Y.; Li, Y.; Ouyang, R.; Zhang, Z.; Tang, Y.; Bai, S. Improving machine learning based phase and hardness prediction of high-
entropy alloys by using Gaussian noise augmented data. Comput. Mater. Sci. 2023, 223, 112140.  DOI

27.     

Ma, J.; Cao, B.; Dong, S.; et al. MLMD: a programming-free AI platform to predict and design materials. npj. Comput. Mater. 2024, 
10, 1243.  DOI

28.     

Kano, S.; Yang, H.; Suzue, R.; et al. Precipitation of carbides in F82H steels and its impact on mechanical strength. Nucl. Mater. 
Energy. 2016, 9, 331-7.  DOI

29.     

Williams, C. A.; Hyde, J. M.; Smith, G. D.; Marquis, E. A. Effects of heavy-ion irradiation on solute segregation to dislocations in 
oxide-dispersion-strengthened Eurofer 97 steel. J. Nucl. Mater. 2011, 412, 100-5.  DOI

30.     

Haertling, G. H. Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 1999, 82, 797-818.  DOI31.     
Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nature. Photon. 2014, 8, 506-14.  DOI32.     
Correa-Baena, J. P.; Saliba, M.; Buonassisi, T.; et al. Promises and challenges of perovskite solar cells. Science 2017, 358, 739-44.  
DOI  PubMed

33.     

Chen, X.; Wang, Q.; Cheng, Z.; et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature 2021, 592, 
712-6.  DOI  PubMed

34.     

Zhang, R.; Zhao, S.; Ding, J.; et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature 2020, 581, 283-7.  
DOI  PubMed

35.     

Shi, P.; Li, R.; Li, Y.; et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science 2021, 
373, 912-8.  DOI  PubMed

36.     

Senkov, O.; Senkova, S.; Woodward, C. Effect of aluminum on the microstructure and properties of two refractory high-entropy 
alloys. Acta. Mater. 2014, 68, 214-28.  DOI

37.     

Guo, S. Phase selection rules for cast high entropy alloys: an overview. Mater. Sci. Technol. 2015, 31, 1223-30.  DOI38.     
Zhang, Y.; Wen, C.; Wang, C.; et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and 
machine learning models. Acta. Mater. 2020, 185, 528-39.  DOI

39.     

Chang, H.; Tao, Y.; Liaw, P. K.; Ren, J. Phase prediction and effect of intrinsic residual strain on phase stability in high-entropy alloys 
with machine learning. J. Alloys. Compd. 2022, 921, 166149.  DOI

40.     

https://doi.org/10.48550/arXiv.1603.02754
https://doi.org/10.48550/arXiv.1603.02754
https://doi.org/10.48550/arXiv.1706.09516
https://dx.doi.org/10.13067/JKIECS.2019.14.3.547
https://dx.doi.org/10.1016/j.patcog.2015.03.009
https://dx.doi.org/10.1007/s11222-009-9153-8
https://dx.doi.org/10.1016/j.commatsci.2023.112140
https://dx.doi.org/10.1038/s41524-024-01243-4
https://dx.doi.org/10.1016/j.nme.2016.09.017
https://dx.doi.org/10.1016/j.jnucmat.2011.02.029
https://dx.doi.org/10.1111/j.1151-2916.1999.tb01840.x
https://dx.doi.org/10.1038/nphoton.2014.134
https://dx.doi.org/10.1126/science.aam6323
http://www.ncbi.nlm.nih.gov/pubmed/29123060
https://dx.doi.org/10.1038/s41586-021-03428-z
http://www.ncbi.nlm.nih.gov/pubmed/33911276
https://dx.doi.org/10.1038/s41586-020-2275-z
http://www.ncbi.nlm.nih.gov/pubmed/32433617
https://dx.doi.org/10.1126/science.abf6986
http://www.ncbi.nlm.nih.gov/pubmed/34413235
https://dx.doi.org/10.1016/j.actamat.2014.01.029
https://dx.doi.org/10.1179/1743284715y.0000000018
https://dx.doi.org/10.1016/j.actamat.2019.11.067
https://dx.doi.org/10.1016/j.jallcom.2022.166149

