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Abstract
Hypertrophic cardiomyopathy (HCM) is a highly common cardiomyopathy and is characterized by left ventricular 
hypertrophy and diastolic dysfunction. In half of the cases, HCM is associated with mutations in genes encoding 
sarcomere proteins, while the remaining cases occur without identifiable genetic mutations. Disrupted bioenergetic 
homeostasis has increasingly been recognized as a key feature of HCM pathophysiology. In this review, we 
summarize and critically evaluate studies addressing cardiometabolic alterations in HCM, with a particular focus 
on human-based research. These include non-invasive imaging studies, blood-based analyses, and molecular and 
functional assays of myocardial tissue. We also explore the therapeutic potential of targeting metabolic pathways 
in HCM and highlight promising directions for future studies.
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INTRODUCTION
Hypertrophic cardiomyopathy (HCM) is the most frequently inherited cardiomyopathy, with a prevalence 
of 1 to 3 out of 500 individuals[1]. HCM is clinically characterized by diastolic dysfunction and hypertrophy 
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of the left ventricle (LV; typically within the interventricular septum) that cannot be attributed to abnormal 
loading conditions such as hypertension or arterial disease[2,3]. A common complication in HCM is 
obstruction of the LV outflow tract (LVOT) caused by hypertrophy of the interventricular septum and 
systolic anterior motion of the mitral valve[4]. This obstruction increases afterload, leading to elevated LV 
systolic pressure and wall stress, while exacerbating diastolic dysfunction, promoting hyperdynamic 
contraction, and increasing the risk of heart failure and sudden cardiac death[5]. These patients with LVOT 
obstruction are classified as obstructive HCM (oHCM)[5].

Approximately 50% of all patients with HCM harbor a heterozygous pathogenic or likely pathogenic (P/LP) 
mutation in sarcomere protein-encoding genes, most frequently in thick filament genes (e.g., MYH7, 
MYBPC3) and less often in thin filament genes (e.g., TNNT2, TNNI3)[6-8]. These patients are termed 
genotype-positive (G+). The other half of patients do not test positive for any causative gene variant 
(including gene variants associated with HCM phenocopies such as Noonan syndrome, Fabry disease, and 
Barth syndrome[9]) and are commonly referred to as genotype-negative (G-)[6]. Despite expanded diagnostic 
testing, most newly diagnosed HCM patients are now G-[10,11]. Some studies, particularly in Asian HCM 
cohorts, have reported mutations in mitochondrial DNA and mitochondrial-related nuclear genes 
associated with supercomplex proteins, transfer RNA, and ribosomal RNA, but the clinical significance of 
these findings remains poorly understood[12].

In recent years, it has become increasingly evident that impaired bioenergetic homeostasis is a central 
hallmark of HCM pathophysiology, irrespective of the presence of sarcomere pathogenic variants. Here, we 
summarize and critically evaluate studies on cardiac metabolism in human HCM. Additionally, we explore 
the therapeutic potential of metabolic therapy in HCM and highlight avenues for future research.

PERTURBED MYOFILAMENT FUNCTION RAISING ENERGETIC DEMAND IN HCM
HCM is characterized by multiple functional alterations at the myofilament level that result in sarcomere 
inefficiency and hypercontractility, elevating adenosine triphosphate (ATP) consumption [Figure 1]. This 
imposes dramatic consequences on energetic demand, which is thought to be an important upstream driver 
of metabolic and cardiac remodeling. In brief, sarcomere inefficiency and hypercontractility lead to a state 
of chronically elevated mitochondrial workload and oxidative stress, rewiring cardiac metabolism and 
promoting cardiac remodeling via activation of hypertrophic and fibrotic pathways[13,14].

A key component underlying high ATP consumption is increased Ca2+ sensitivity of the myofilaments[15-19]. 
High Ca2+ sensitivity activates the myofilaments at comparatively low diastolic Ca2+ levels and slows the 
dissociation of Ca2+ from cardiac troponin C, prolonging cross‐bridge activation and impairing relaxation. 
In G+ patients, high myofilament Ca2+ sensitivity may be caused directly by P/LP variants in sarcomere 
genes, particularly MYH7 and TNNT2[15,18,19]. Additionally, reduced phosphorylation of myofilament 
proteins, most notably troponin I, due to β-adrenergic desensitization is a major driver of elevated 
myofilament Ca2+ sensitivity in both G+ and G- patients[16,18]. Posttranslational modifications such as 
S-glutathionylation, resulting from oxidative stress that is apparent in HCM[20-22], additionally impact 
myofilament contractility[23,24]. Impaired capacity to buffer adenosine diphosphate (ADP) levels[25] may lead 
to further sensitization of the myofilaments to Ca2+[26]. Finally, cardiomyocytes from patients with HCM 
display a blunted increase in Ca2+ sensitivity and maximal force generation in response to sarcomere 
lengthening[18], further underpinning inefficient sarcomere function.

Disruption of the super-relaxed (SRX) state of myosin is a well-recognized defect in G+ HCM[27,28]. In the 
SRX state, the myosin heads are in the OFF state and folded back onto the filament backbone, during which 
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Figure 1. Hypercontractility is central to the pathophysiology of hypertrophic cardiomyopathy. Sarcomere proteins are affected by 
mutations, redox modifications, and hypophosphorylation, imposing a multitude of functional consequences on the myofilaments. These 
lead to hypercontractility, increasing adenosine triphosphate (ATP) consumption and raising mitochondrial workload. Sustained 
elevated mitochondrial workload causes oxidative stress, inducing activation of hypertrophic and fibrotic pathways. Created in 
BioRender. Nollet E. (2025) https://BioRender.com/ntotvnr. SRX: Super-relaxed myosin; DRX: disordered-relaxed myosin; β-AR: 
β-adrenergic receptor; ROS: reactive oxygen species.

ATP consumption is low, thereby conserving energy [Figure 2][29]. In HCM, myosin heads disproportionally 
favor the disordered relaxed state (DRX)[27,28,30,31], during which myosin heads are in an unstable 
energy-consuming state, leading to an increase in ATP consumption as ATP turnover is 10-fold higher 
when myosin heads are in the DRX state compared to the SRX state[32]. This imposes a significant burden on 
the energetic demand in HCM. The implications of disruption of the SRX state have mostly been described 
in the context of thick filament mutations[30,31]. Its involvement in patients harboring thin filament 
mutations has only been shown for the HCM-associated cTnT-Ile79Asn mutation[33]. In a small set of G- 
patient tissue (N = 3), no changes in the myosin SRX state were reported[27]. However, these findings were 
obtained under tightly controlled permeabilized conditions, where elevated ADP levels or 
afterload-dependent mechanical strain, both potential drivers of DRX mobilization[34], are not adequately 
represented. Thus, further study is warranted to gain more insight into the implications of disruption of the 
SRX state of myosin in HCM linked to thin filament mutations and G- HCM.

A final aspect of inefficient sarcomere function entails lower cross-bridge force-generating capacity caused 
by P/LP sarcomere gene variants, which is associated with an increased detachment rate of myosin heads 
and a coincident higher ATP utilization[35-37]. Thus, more ATP is consumed to generate the force needed for 
contraction, increasing the energetic cost of cardiac work. This is also apparent from imaging studies 
showing reduced myocardial external efficiency in phenotype-negative carriers of pathogenic mutations in 
thin and thick filament proteins[38-40].

Taken together, elevated energetic demand in HCM stems from inefficient sarcomere function, which is the 
combined result of myofilament Ca2+ sensitization, perturbed myosin super-relaxation, and altered 
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Figure 2. Conformational states of relaxed myosin. In the disordered relaxed state (DRX), myosin heads are in a high adenosine 
triphosphate (ATP)-consuming unstable state. In the super-relaxed state (SRX), myosin heads are folded onto the myosin backbone 
and consume tenfold lower amounts of ATP. Created in BioRender. Nollet E (2025) https://BioRender.com/p5fg70j.

cross-bridging kinetics.

ENERGY METABOLISM IN THE HEART
Because of its relentless activity, the heart has a high metabolic demand and requires a continuous supply of 
energy in the form of ATP to fuel the cardiac cycle. In healthy hearts, this is achieved by the uptake and 
oxidation of energy substrates, of which fatty acids are the main source[41]. To a lesser extent, the heart uses 
glucose and lactate, and it can also use ketones and amino acids as fuel[42]. The heart demonstrates 
remarkable metabolic flexibility and may change substrate use based on local availability or abrupt changes 
in cardiac demand[43].

A schematic overview of energy metabolism in the normal heart is shown in Figure 3. The vast majority of 
cardiac ATP is produced via mitochondrial oxidative phosphorylation (OXPHOS)[44]. Production of ATP 
via OXPHOS relies on a proton gradient across the mitochondrial inner membrane that is used by complex 
V to regenerate ATP from ADP. The proton gradient is established via proton pumping by the proteins of 
the electron transferring system (ETS), which requires electron input via the reducing equivalents 
nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2). NADH enters the 
ETS via complex I and is generated during glycolysis, fatty acid β-oxidation and by the Krebs cycle 
dehydrogenase enzymes. The latter are predominantly fueled by acetyl-CoA input from fatty acid oxidation 
and glycolysis- and lactate-derived pyruvate, but also by anaplerotic enzymes that use amino acids as 
substrate. FADH2 produced by succinate dehydrogenase enters the ETS at complex II, while FADH2 derived 
from fatty acid oxidation feeds electrons into the ETS via electron transfer flavoprotein (ETF) and ETF 
dehydrogenase[45].

https://BioRender.com/p5fg70j
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A final crucial aspect of myocardial energy homeostasis is the creatine kinase (CK)/phosphocreatine (PCr) 
shuttle. Mitochondrial CK uses ATP from mitochondrial OXPHOS to phosphorylate creatine, generating 
PCr, which is, in turn, used by muscle CK at the sarcomere to locally phosphorylate ADP into ATP[46].

In healthy hearts, mitochondrial ATP production is tightly coupled to acute changes in cardiac workload. 
Increased ADP delivery via the CK shuttle directly stimulates ATP regeneration at complex V, which 
requires a proportional increase in electron input into the ETS (so-called “pull” condition)[47,48]. This per se 
causes oxidation of mitochondrial NADH and FADH2, which is rebalanced by raising levels of 
mitochondrial Ca2+, boosting the activity of mitochondrial dehydrogenases to match NADH and FADH2 
formation to the elevated demand (so-called “push” condition)[49].

In the following sections, we describe alterations in substrate utilization that have been reported in human 
HCM [Figure 4]. Subsequently, we discuss mitochondrial defects that have been described in myocardial 
samples from patients with HCM.

ALTERED SUBSTRATE UTILIZATION IN HCM
Fatty acids
Lipid metabolism relies on a delicate balance between fatty acid synthesis, uptake, and oxidation. In patients 
with HCM, the reduced usage of fatty acids as an energy substrate is well-established. This has been 

Figure 3. Cardiac energy metabolism. Glucose and fatty acids are the main substrates for mitochondrial energy production in the heart. 
Substrates are catabolized in order to enter mitochondria and subsequent input into cyclic pathways [tricarboxylic acid cycle (TCA); 
fatty acid β-oxidation], yielding nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2). NADH and FADH2 
feed electrons into the electron transfer system, generating a proton gradient across the inner mitochondrial membrane. This proton 
gradient enables the regeneration of adenosine triphosphate (ATP) from adenosine diphosphate (ADP) at the F¬1F0ATPase complex. 
The creatine kinase shuttle facilitates the rapid exchange of ATP and ADP between the myofilaments and mitochondria. Created in 
BioRender. Nollet E (2025) https://BioRender.com/5j35tv9. LDH: Lactate dehydrogenase; MPC: mitochondrial pyruvate carrier; PDH: 
pyruvate dehydrogenase; FAD: flavin adenine dinucleotide; NAD: nicotinamide adenine dinucleotide; SDH: succinate dehydrogenase; CI: 
complex I; CII: complex II; CIII: complex III; CIV: complex IV; ETFDH:  electron-transferring-flavoprotein dehydrogenase; CETF: electron 
transfer flavoprotein complex.
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Figure 4. Altered substrate utilization in the hypertrophic cardiomyopathy (HCM) heart. Metabolism in the HCM heart is characterized 
by a shift away from fatty acid uptake and oxidation toward increased glucose uptake. Fatty acid uptake and oxidation become 
increasingly impaired as cardiac remodeling and disease severity worsen, which is especially prominent in genotype-negative (G-) 
patients. Based on current literature, lipotoxicity does not appear to be an inherent feature of HCM, despite lowered fatty acid use. 
Glycolysis and glycogen turnover are elevated in HCM, although it is unknown how this may change throughout the disease. The 
preferred metabolic fate of glucose is incompletely understood. Multiomics studies suggest no increase in anaerobic lactate production 
and sustained input into the TCA. Glucose input into biosynthetic pathways such as the pentose phosphate pathway may be altered in a 
genotype-specific manner. Created in BioRender. Nollet E (2025) https://BioRender.com/53r16kv. TCA: Tricarboxylic acid cycle.

demonstrated in multiple studies using radiolabeled substrates. A positron emission tomography (PET) 
study using C11 palmitate was the first to observe reduced fatty acid uptake in the interventricular septum 
in mildly symptomatic non-obstructive patients with HCM[50]. Later studies performed in Japanese cohorts 
of patients with HCM using 123I-BMIPP (β-methyl-P-iodophenyl-pentadecanoic acid) and single-photon 
emission computed tomography consistently reported impairment of fatty acid metabolism[51-61]. 123I-BMIPP 
is a methyl branched-chain fatty acid that is resistant to fatty acid β-oxidation and is thus metabolically 
trapped in myocardial triglyceride pools[62]. Hence, its uptake in the myocardium is a reflection of 
myocardial fatty acid uptake and activation[63], and is a more indirect evaluation of global myocardial fatty 
acid metabolism compared to C11 palmitate PET. One study found that 123I-BMIPP uptake was most 
severely reduced in the interventricular septum[56]. Impaired 123I-BMIPP was moreover observed to occur in 
the absence of other metabolic abnormalities[55], indicating that decreased fatty acid metabolism is one of the 
first metabolic alterations in HCM. Uptake of 123I-BMIPP was furthermore reported to be negatively 
associated with LV ejection fraction[51], fractional shortening[53], and maximal wall thickness[59]. A study 
using proton magnetic resonance spectroscopy also found a negative correlation between myocardial 
triglyceride content and LV mass[64]. Altogether, these findings support the notion that fatty acid 
metabolism defects are most prominent in the hypertrophied regions of the HCM heart, and that the 
severity of these defects worsens alongside disease progression. Accordingly, the severity of lowered 
123I-BMIPP uptake was in several studies also linked to a worse prognosis in terms of cardiac function 
decline and overall mortality[53,57,61].

A major limitation of the imaging reports cited here is that the patients who were studied mostly did not 
undergo genetic screening; thus, it is not certain whether these patients are all true patients with HCM or 
suffer from conditions that are a phenocopy of HCM. Furthermore, no distinctions were made between G- 
and G+ patients, or with respect to the type of gene variant patients may express. Mitochondrial function 
analyses in fresh myectomy tissue samples from patients with HCM revealed a more pronounced negative 
association between the capacity to oxidize C8:0-carnitine and septal hypertrophy in G- compared to G+ 
HCM[65]. In addition, metabolomics in HCM myectomy samples revealed strong negative correlation 
patterns between numerous acylcarnitines on the one hand and pathological cardiac remodeling and 
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diastolic dysfunction on the other hand in G- HCM, while in G+, such correlations were only observed for 
two acylcarnitine species[21]. Thus, the association between altered fatty acid metabolism and cardiac 
remodeling is different between G+ and G- HCM. In G- HCM, deterioration of fatty acid metabolism 
throughout disease progression appears to be strongly tied to progressive impairment of fatty acid oxidation 
capacity[21]. Within G+ HCM, the relation between fatty acid metabolism alterations and cardiac remodeling 
may be specific to the genotype. This is exemplified by a PET study using 14-fluoro-6-thiaheptadecanoic 
acid to evaluate fatty acid metabolism in patients with HCM carrying the pathogenic Asp175Asn variant in 
alpha-tropomyosin, which found that, compared to control subjects, these patients displayed increased fatty 
acid metabolism, which regressed with the development of LV hypertrophy[66].

Another constraint of using modified fatty acids such as 123I-BMIPP is the inability to distinguish between 
fatty acid uptake and fatty acid oxidation, making the specific nature of the observed impairment in fatty 
acid metabolism unclear. If the impairment predominantly lies in a lowered capacity to oxidize fatty acids, a 
mismatch is expected between fatty acid uptake and oxidation, leading to the accumulation of toxic lipid 
intermediates (i.e., lipotoxicity)[67]. Kinetics of C11 palmitate metabolism in mildly symptomatic patients 
with HCM were not found to be altered[50], suggesting that at early disease stages, lowered fatty acid 
metabolism in HCM is due to downregulation of myocardial fatty acid uptake rather than defects 
downstream in mitochondrial fatty acid β-oxidation capacity. Of note, this would be in contrast with the 
observation of increased fatty acid oxidation in early-stage HCM in Asp175Asn variant carriers[66]. However, 
these patients displayed elevated fasting serum free fatty acid levels compared to healthy controls, 
highlighting the importance of reporting basal metabolic parameters in study populations. Proteomic 
studies using myectomy samples from patients with oHCM consistently reported a lowered abundance of 
key enzymes of mitochondrial fatty acid β-oxidation while fatty acid uptake proteins were mostly 
unchanged[21,68-71], indicating a mismatch between fatty acid uptake and oxidation capacity to be expected at 
a more advanced disease stage. Two lipidomic studies in HCM myectomy samples indeed report elevated 
levels of lipotoxic species such as free fatty acids, ceramides, and diglycerides[71,72]. A recent study, however, 
found that these lipids were less abundant or unchanged in HCM compared to non-failing control hearts, 
and were negatively correlated with cardiac remodeling especially in G+ patients[21]. A key difference is that 
in this report, the average body mass index of patients was comparatively low and well matched to 
non-failing controls, in contrast to the two former studies. Thus, lipotoxicity is not an inherent feature of 
HCM and may rather be driven by the presence of comorbidities associated with elevated body weight. 
Impaired capacity to oxidize fatty acids appears to be accompanied by downregulation of fatty acid uptake. 
Whether this is regulated by changes in the localization and posttranslational modification of fatty acid 
transport protein CD36 should be a subject of future study[73].

Glucose
While imaging studies generally agree that fatty acid metabolism is impaired in patients with HCM, less 
consensus exists among PET imaging studies using F-18 fluorodeoxyglucose (18-FDG) to assess alterations 
in myocardial glucose metabolism. Uptake of 18-FDG was found to be reduced in mildly symptomatic 
patients with HCM compared to healthy controls[50], although it should be noted that it is unknown how 
well these patients were matched to controls in terms of age, sex, and comorbidities. In contrast, another 
study concluded that glucose uptake was elevated in symptomatic patients with HCM, based on the 
observation of normal 18-FDG uptake but reduced blood flow in hypertrophied segments of HCM 
hearts[74]. Other studies later reported that 18-FDG uptake was lower in hypertrophied compared to 
non-hypertrophied regions in the hearts of patients with HCM[75-77]. Under fasting conditions, HCM hearts 
demonstrated higher 18-FDG uptake than hearts in people with hypertension[78].
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More recently, it was reported that 18-FDG uptake was highest in the hypertrophied septal segments in 
patients with non-obstructive HCM[79]. In patients with oHCM, elevated 18F-FDG uptake was observed in 
non-hypertrophied regions, particularly in the lateral and posterior wall segments, extending beyond the 
hypertrophied myocardium[79]. Importantly, after septal reduction therapy in patients with oHCM, 18-FDG 
uptake was significantly lowered by 47% in the non-hypertrophied regions of the heart[79]. Thus, glucose 
uptake in non-hypertrophied segments of the HCM heart may be drastically elevated in response to 
increased cardiac workload resulting from augmented afterload due to LVOT obstruction. This may explain 
earlier findings of higher glucose uptake in non-hypertrophied versus hypertrophied regions in HCM 
hearts[75-77]. Notably, similar findings were observed in non-obstructive patients with HCM; however, 
18-FDG uptake in these patients was measured following a 75 g oral glucose load[76], while patients in the 
aforementioned study underwent 24 h of carbohydrate restriction[79]. Consequently, subsequent cardiac 
18-FDG uptake predominantly reflects insulin sensitivity, which may be different in hypertrophied and 
non-hypertrophied myocardium.

Overall, these reports suggest that HCM is characterized by increased glucose uptake both in hypertrophied 
and non-hypertrophied regions of the heart. In non-hypertrophied regions, high glucose uptake appears to 
be a consequence of elevated cardiac workload, whereas in hypertrophied myocardium, increased glucose 
uptake seems linked to cardiac hypertrophy. However, similar to the imaging studies into fatty acid 
metabolism discussed in the previous section, it is not known whether patients with HCM phenocopies 
were included in the studies cited here. Thus, comprehensive studies comparing clinically 
well-characterized patients with HCM to non-failing controls and studies addressing patient 
genotype-specific alterations are lacking. Additionally, understanding the impact of comorbidities and 
disease severity on glucose metabolism in HCM warrants further study.

Furthermore, it remains unclear what fate glucose undergoes in the HCM heart. Glucose may be stored as 
glycogen or enter glycolysis, resulting in pyruvate production, which can be directed toward the 
mitochondria for aerobic ATP production, or can be converted into lactate for anaerobic ATP production. 
In addition, glucose serves as input for metabolic pathways that facilitate cardiac hypertrophy, such as the 
pentose phosphate pathway and the hexosamine biosynthetic pathway[80,81].

Multiple studies provide insight into the metabolic fates of glucose via proteomic and metabolomic analyses 
of myectomy samples from patients with HCM[21,68-72]. At the protein level, several studies report no uniform 
increase or decrease in the abundance of glycolytic enzymes in HCM myocardium[68-70], while other papers 
found these enzymes to be mostly more abundant[21,71]. However, it should be noted that alterations in 
abundance do not necessarily reflect differences in enzymatic activity. Metabolomic findings are also 
inconsistent, with global depletion of glycolytic metabolites in one paper[72], while other studies report 
bidirectional changes[21] or accumulation of downstream glycolytic intermediates[71]. These discrepancies 
may be explained by cohort differences, such as symptomatic status and genotypic make-up, as well as 
variations in factors like age, sex, and the presence of comorbidities (e.g., hyperlipidemia and diabetes). 
These variables must be properly matched to controls to avoid introducing bias[21]. Nevertheless, while 
imaging studies seem to favor elevated glucose uptake in HCM, none of the studies cited here suggest this is 
associated with an overall increased abundance of glycolytic metabolites. Thus, caution is warranted when 
relying on metabolomic data to evaluate glycolytic pathway flux alterations in human myocardium.

Another pressing issue concerns whether pyruvate, the end-product of glycolysis, is preferably routed 
toward the mitochondria to sustain oxidative ATP production, or is anaerobically converted to lactate to 
maintain cellular ATP levels. In healthy hearts, lactate is a major source of pyruvate production both at rest 
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and during increased workload[42,67]. Lactate consumption has also been reported to be elevated in human 
heart failure[82]. Early studies in patients with HCM demonstrated that at rest, the HCM heart is a net 
consumer of lactate[83-85]. Following an acute increase in workload, lactate consumption in the HCM heart 
decreases, or the HCM heart may even release lactate[84-86]. This phenomenon is diminished after septal 
reduction therapy[86], suggesting that anaerobic conversion of pyruvate to lactate in the HCM heart occurs 
only under extreme conditions. Intriguingly, most studies report lowered levels of lactate in HCM 
myectomy samples[21,71,72], possibly indicating elevated lactate consumption in HCM to sustain pyruvate 
levels.

With respect to glucose entry into biosynthetic pathways, one study observed an apparent increased input 
from glucose[71], while others found the opposite[72]. Another study suggested that the abundance of 
biosynthetic intermediates depends on both genotype and severity of cardiac remodeling[21]; in G+ patients, 
biosynthetic metabolites were positively associated with septal hypertrophy and diastolic dysfunction, while 
these relationships were inverted in G- patients.

Increased storage of glucose as glycogen is to be expected should the uptake of glucose exceed its usage for 
ATP production and input into anabolic pathways. One study reported increased glycogen deposition on 
transmission electron microscopy images of myocardium from three exercise-intolerant patients with HCM 
without known genotype[87], suggesting glycogen accumulation in advanced HCM. Another research, 
however, found that, compared to non-failing donors, glycogen content was not elevated in myectomy 
samples from patients with HCM and even appeared to be lowered in cardiac tissue from patients with 
end-stage HCM[21], suggesting glycogen accumulation is not an inherent feature of HCM. In contrast, in 
glycogen storage diseases that mimic HCM[9], myocardial glycogen levels are elevated due to the inability to 
catabolize glycogen, leading to metabolic inflexibility and activation of pro-hypertrophic signaling[88].

Last, an understudied aspect of altered glucose metabolism in the HCM heart concerns the potential impact 
of myocardial insulin resistance. Hypertrophied hearts from non-diabetic patients with aortic stenosis were 
found to display lower glucose uptake during euglycemic-hyperinsulinemic clamp[89], indicating cardiac 
insulin resistance is an inherent feature of cardiac hypertrophy. Phosphoproteomic analyses in HCM 
myectomy samples revealed activation of the insulin-like growth factor 1 pathway[90], suggesting altered 
insulin signaling also occurs in HCM. Myocardial insulin resistance in the HCM heart may seem 
counterintuitive in the context of a metabolic shift toward glucose. A potential explanation underlying such 
a paradox may be a shift toward increased expression of the insulin-independent glucose transporter 
GLUT1, which has been reported to occur in various settings of heart failure[91]. The consequences of 
myocardial insulin resistance may particularly apply to episodes of elevated cardiac workload, during which 
the inability to increase cardiac glucose uptake may lead to failure to meet energetic demand.

Insights from blood-based metabolomic analyses
In recent years, multiple groups aimed to gain insight into metabolic changes in HCM by defining the 
metabolomic and lipidomic signature in plasma or serum samples from patients with HCM.

Altered levels of metabolites and lipids involved in fatty acid metabolism are frequently reported in studies. 
Finnish HCM patients carrying the MYBPC3-Gln1061X mutation displayed elevated plasma levels of 
multiple triglycerides, (ether)phospholipid species and branched-chain amino acids[92]. A subset of 
triglycerides and phospholipids were positively associated with septal thickness and diastolic dysfunction. 
Others observed that stearic acid, a relatively common fatty acid in human blood, and glutarylcarnitine were 
elevated in plasma samples from patients with HCM compared to carriers of P/LP variants not displaying 
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an HCM phenotype and healthy controls[93]. It was also found that a set of metabolites distinguished the 
groups, demonstrating the potential of serum metabolomics for the development of biomarker panels. In 
patients with HCM carrying founder mutations in MYBPC3, several acylcarnitines species were also 
elevated[94]. Moreover, in a follow-up study on these samples using targeted acylcarnitine metabolomics, 
multiple acylcarnitines were found to be positively associated with indicators of disease severity[95]. Another 
report compared the metabolomic plasma signature in oHCM and non-obstructive HCM and found that 
the latter group displayed higher plasma levels of branched-chain amino acids and two fatty acid species 
(arachidonic acid and palmitoleic acid)[96]. However, it should be noted that these patients also had a higher 
average body weight; thus, it is unclear if the findings in that study are truly related to disease severity or 
reflect comorbidity-related differences between the patient groups. Another study evaluated the plasma 
metabolome before and three months after myectomy in patients with oHCM and found that multiple 
acylcarnitine species were lowered after septal reduction therapy[97]. The most significantly altered 
metabolites were related to improved liver and kidney function, demonstrating the positive systemic impact 
of septal reduction therapy. A recent study reported that in a large cohort of patients with HCM (n = 420), 
total free fatty acid levels in plasma were negatively associated with LV ejection fraction, and positively 
associated with atrial dilatation and brain natriuretic peptide levels[98].

Taken together, the reports cited here consistently demonstrate that symptomatic HCM is associated with 
distinct circulatory metabolic signatures. The exact alterations that are reported differ substantially between 
studies, which may be due to the specific method used (e.g., targeted versus untargeted metabolomics), 
patient cohort differences, and sub-optimal matching to control groups in terms of sex and body mass 
index. Overall, these studies suggest symptomatic HCM is associated with systemic elevations of fatty acids, 
acylcarnitines, and branched-chain amino acids. However, it cannot be excluded that these differences are 
in part related to overall metabolic health status rather than cardiac disease.

Potential of arteriovenous sampling in patients with HCM
Due to the observational nature of the blood metabolomics studies cited above, it cannot be inferred 
whether plasma metabolite levels are due to reduced uptake or increased release by the heart. A powerful 
approach to overcome this is invasive arteriovenous blood sampling followed by metabolite analysis[99]. Such 
studies were performed in patients with HCM in the 1980s[83-86]; however, these studies were limited by small 
cohort sizes, lack of control subjects, limited throughput of metabolites and mainly addressed alterations 
induced by pacing, medication, or septal reduction therapy. Aided by high-throughput metabolomics and 
lipidomics analysis, enabling quantitative evaluation at the level of individual metabolites, arteriovenous 
sampling has made a comeback in recent years[82,99,100].

Recently, a study performed arteriovenous sampling and metabolomics in patients with HCM and 
compared these to controls, i.e., people with no LV hypertrophy and patients with severe aortic stenosis[101]. 
Arteriovenous metabolite gradients in patients with HCM did not clearly differ from controls and patients 
with aortic stenosis on clustering analysis, suggesting only modest differences in cardiac uptake and release 
of metabolites between groups. Hearts of patients with HCM displayed reduced extraction of pyruvate, 
glutamate, and branched-chain amino acid breakdown products compared to control hearts, which may be 
indicative of reduced entry into the tricarboxylic acid cycle (TCA) cycle of these metabolites[101]. It was not 
reported whether arteriovenous gradients of glucose and lactate differed between HCM and controls. While 
fatty acid uptake and release were not measured, no apparent acylcarnitine release by the HCM heart was 
reported[101]. These findings suggest that elevated plasma acylcarnitine levels in HCM are not caused by 
cardiac acylcarnitine efflux and are in line with the absence of evidence for a mismatch between fatty acid 
uptake and oxidation capacity in HCM[21]. Additionally, it was assessed whether the HCM heart relies more 
on ketones as an alternative fuel, which has been reported to occur in various settings of cardiac 
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disease[82,100,102,103]. Remarkably, however, a net elution of β-hydroxybutyrate was reported, which is in 
disagreement with early findings of net uptake of β-hydroxybutyrate in the HCM heart[83]. As pointed out by 
the authors, differences in blood flow between the aortic root and coronary sinus could not be taken into 
account, which diminished the accuracy of arteriovenous metabolite gradients[99]. The study was 
additionally constrained by the presence of mild LV hypertrophy in control subjects, possibly obscuring 
metabolic alterations in HCM hearts. Nevertheless, the study discussed here demonstrates the potential of 
measuring arteriovenous metabolite gradients in patients with HCM. Further research is warranted in 
clinically well-characterized patient cohorts, including local blood flow measurements and using mass 
spectrometry platforms that detect a wide range of metabolites and lipids.

MITOCHONDRIAL DEFECTS IN HCM
Bioenergetic impairment is a well-recognized feature in patients with HCM. This is evident from 
31-phosphorus magnetic resonance spectroscopy imaging studies showing the ratio of PCr over ATP or the 
ratio of PCr over inorganic phosphate is lowered in the hearts of patients with HCM[25,104-107]. This imbalance 
worsens during exercise[108]. Moreover, symptomatic HCM is characterized by lowered myocardial oxygen 
(O2) consumption[38,39], thus suggesting mitochondrial impairment is a key factor underlying disrupted 
bioenergetic homeostasis. As outlined in section 3, mitochondrial O2 consumption is the combined action 
of substrate uptake and subsequent catabolism in mitochondria, enabling electron input via NADH and 
FADH2, channeling of electrons by the ETS, and ATP regeneration from ADP by complex V. The latter 
largely depends on the proper functioning of the CK shuttle. Defects anywhere in this multilayered process 
may contribute to reduced O2 consumption in HCM myocardium. Part of the observed impairment in O2 
consumption may thus be related to impaired (i.e., less flexible) substrate use, as described in section 4. In 
this section, we discuss mitochondrial alterations that have been described in human HCM, which are 
schematically depicted in Figure 5.

High-resolution respirometry represents a powerful tool to evaluate mitochondrial function. This method 
relies on sequential titration of substrates, uncouplers, and inhibitors to provide insight into the functioning 
of total OXPHOS and its individual components[109]. By reconstituting the TCA cycle and supplying 
saturating levels of ADP, this method bypasses O2 consumption limitations by upstream substrate 
catabolism and the functioning of the CK shuttle. However, a drawback of this technique is its requirement 
for fresh myocardial tissue, which has restricted its application to just two studies involving myocardial 
samples from patients with HCM[65,72]. The first of these studies reported lower O2 consumption in isolated 
mitochondria following stimulation of NADH-dependent complex I respiration with glutamate, malate, and 
ADP in a small number of myectomy samples (n = 5) relative to non-failing donor samples[72]. The later 
study applied a more extensive experimental protocol in a large number of HCM myectomy samples 
(n = 59)[65]. In G- HCM patients, mitochondrial dysfunction - particularly impaired NADH-linked complex 
I respiration and octanoylcarnitine oxidation - was tightly linked to septal hypertrophy. This demonstrated 
that the involvement of mitochondrial dysfunction in cardiac pathophysiology is different in G- and G+ 
HCM.

Mitochondrial respiratory impairment was closely related to disruption of mitochondrial organization as 
evaluated via transmission electron microscopy, presenting as abnormal mitochondrial clusters or 
misaligned to sarcomere structures[65]. Such organizational perturbations can also be appreciated in early 
electron microscopy studies[110,111]. In a Japanese cohort of patients with HCM, impaired contractile reserve 
was linked to abnormal mitochondrial organization[87], suggesting proper mitochondrial organization is 
required to adequately respond to elevated workload. Mitochondria require proximity to the myofilaments 
for efficient energy recycling[112], which is likely affected by mitochondrial disorganization in HCM. In 
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Figure 5. Mitochondrial defects in the hypertrophic cardiomyopathy (HCM) heart. Mitochondrial ultrastructure in the HCM heart is 
characterized by fragmentation and disorganization relative to the myofilaments. Dampening of mitophagy and mitochondrial 
biogenesis underlie impaired mitochondrial quality control. Functionally, mitochondria in HCM exhibit defects in fatty acid oxidation 
capacity, total oxidative phosphorylation (OXPHOS) capacity, and nicotinamide adenine dinucleotide (NADH)-linked respiration, which 
are strongly linked to cardiac remodeling in genotype-negative (G-) patient tissue. Respiratory impairment may be caused by NAD 
depletion, impaired supercomplex formation, and lower levels of OXPHOS proteins. Impaired Ca2+ homeostasis due to perturbed 
crosstalk between the sarcoplasmic reticulum (SR) and mitochondria and disproportional loading of Ca2+ to the mitochondria relative to 
the myofilaments further affect mitochondrial respiration and redox defense. Reduced mitochondrial protein synthesis and impaired 
maintenance of mitochondrial DNA (mtDNA) may additionally impact overall mitochondrial homeostasis. Dysfunction of the creatine 
kinase shuttle thwarts efficient energy provision to the myofilaments and compromises ADP buffering capacity. Created in BioRender. 
Nollet E (2025) https://BioRender.com/cnpuycj. TCA: Tricarboxylic acid cycle; ADP: adenosine diphosphate; ATP: adenosine 
triphosphate; FAD: flavin adenine dinucleotide; NAD: nicotinamide adenine dinucleotide; SDH: succinate dehydrogenase; CI: complex I; 
CII: complex II; CIII: complex III; CIV: complex IV; ETFDH:  electron-transferring-flavoprotein dehydrogenase; CETF: electron transfer 
flavoprotein complex.

addition, mitochondrial activity and antioxidant defense are regulated by Ca2+ levels[49], which are mediated 
by crosstalk between mitochondria and the sarcoplasmic reticulum[113]. Thus, disrupted mitochondrial 
organization may perturb mitochondrial Ca2+ homeostasis and cause bioenergetic and oxidative stress. This 
may be worsened further by high myofilament Ca2+ sensitivity in HCM, causing a disproportional amount 
of cytosolic Ca2+ to be directed toward the myofilaments instead of toward the mitochondria[13,114]. As a 
result, mitochondrial energy production and antioxidative capacity are insufficiently stimulated to meet the 
elevated ATP demand caused by hypercontractility linked to heightened Ca2+ sensitivity[14]. In fact, it was 
recently observed that this energetic mismatch induces oxidative stress, which in turn triggers ventricular 
arrhythmias in HCM mice[114]. It is important to note that these alterations occur before any dysfunction of 
mitochondria per se occurs, indicating that the defective mitochondrial function observed in more advanced 
human oHCM samples may be secondary, but potentially related to the oxidative stress induced by the 

https://BioRender.com/cnpuycj
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energetic mismatch[114]. Furthermore, a recent study reported changes in the expression of the 
mitochondrial Ca2+ uniporter complex and related proteins in HCM myectomy samples[115], representing an 
additional factor potentially contributing to impaired mitochondrial Ca2+ uptake.

Ultrastructural alterations other than disrupted organization of mitochondria have also been reported in 
myectomy samples from patients with HCM. Other studies reported a decrease in average mitochondrial 
size[65,72], indicative of a disbalance between mitochondrial fusion and fission. This may be linked to failure 
to upregulate mitochondrial biogenesis and mitochondrial clearance via mitophagy[72,116]. Mitochondrial size 
was not related to overall mitochondrial respiratory function[65]; however, it is possible that other 
mitochondrial processes essential for cardiac homeostasis are perturbed by abnormal fusion and fission, 
e.g., mtDNA maintenance and regulation of apoptosis[117], both of which have been found to be affected in 
HCM[72,116,118]. Disrupted cristae formation is associated with mitochondrial respiratory impairment[119] and 
has been observed in electron microscopy images of HCM myocardium[72]. However, another paper found 
no indications for this in electron microscopic and proteomic analyses of HCM myectomy samples[65]. A 
recent study in myocardial biopsies from patients with heart failure with preserved ejection fraction 
(HFpEF) reported that aberrant cristae structure was most frequently seen in obese patients[120]. Thus, cristae 
disruption in HCM myocardium may be associated with the presence of comorbidities and is not an 
inherent feature of HCM. Of note, total mitochondrial abundance was reported to be unchanged in HCM 
hearts compared to non-failing hearts and was not related to mitochondrial respiratory function[65,72,116], 
further substantiating the concept that mitochondrial quality rather than quantity underlies respiratory 
capacity.

Proteomic analyses have also provided significant insight into mitochondrial defects in HCM. All proteomic 
studies observed a lowered abundance of OXPHOS protein subunits in HCM myocardium[21,68-71]. The 
notion that this negatively affects mitochondrial function is apparent from the observation that total 
OXPHOS capacity was positively associated with the abundance of a subset of OXPHOS protein 
subunits[65]. Another common finding among proteomic studies concerns lowered levels of key enzymes in 
fatty acid oxidation, which may likewise contribute to impairment of fatty acid oxidation capacity in HCM 
myocardium[21,68-71]. Recently, high-coverage proteomics revealed that levels of mitochondrial ribosomal 
subunits were widely lowered in HCM myectomy samples[21], implicating an overall impairment of 
mitochondrial protein synthesis in HCM. This may, in part, explain the lowered abundance of particularly 
complex I subunits and derailed NADH-linked complex I respiration in HCM[121].

Defects in the CK shuttle system have also been implicated in the bioenergetic derailment observed in 
HCM. Imaging studies have shown that the reductions in PCr/ATP are related to depressed energy transfer 
(i.e., flux through the CK shuttle)[122,123]. Part of this impairment may be explained by a lowered abundance 
of CK subunits, a finding consistently reported in proteomics studies[21,68-70]. In addition, CK activity may be 
further dampened by redox-linked modifications due to its susceptibility to oxidative stress[124].

TARGETING METABOLISM AS A THERAPEUTIC STRATEGY IN HCM
Conventional treatment of HCM comprises standard heart failure medication, i.e., β-blockers, Ca2+ channel 
blockers, diuretics, and blood pressure-lowering agents. Patients with persistent oHCM may undergo 
invasive septal reduction therapy via myectomy surgery, or via alcohol septal ablation[2,3]. While the benefit 
of these treatment options is substantial, they are centered around symptom relief and therapeutic strategies 
targeting the driving mechanisms of disease in HCM are thus direly needed. As discussed, metabolic and 
mitochondrial derailment are central hallmarks of disease and are tightly linked to cardiac remodeling in 
HCM. Thus, treatment aimed at correcting metabolic abnormalities and improving mitochondrial function 
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may hold the potential to halt and reverse disease. In this section, we discuss current therapeutic strategies 
that may confer bioenergetic benefits in HCM hearts, which are summarized in Figure 6.

Modifying substrate utilization
As outlined in previous sections, energy metabolism in HCM hearts is characterized by a shift away from 
fatty acid oxidation to increased glucose utilization. Since glucose oxidation is more efficient than fatty acid 
oxidation in terms of ATP yield per unit of O2 consumed, such a shift has been proposed to be beneficial 
during episodes of elevated cardiac workload and stress[125]. Past and ongoing efforts aimed at boosting this 
shift using drugs that inhibit fatty acid oxidation have yielded mixed outcomes. Perhexiline, an antianginal 
agent that dampens mitochondrial fatty acid oxidation by inhibiting the transfer of fatty acids into 
mitochondria[126], improved myocardial energetics and exercise capacity in patients with non-obstructive 
HCM[127]. However, a clinical trial with trimetazidine, which inhibits the last enzyme (3-ketoacyl-CoA 
thiolase) in mitochondrial fatty acid β-oxidation[128], reported no therapeutic benefit in symptomatic patients 
with non-obstructive HCM[129]. Additionally, in asymptomatic carriers of a pathogenic mutation in MYH7 
or MYBPC3, trimetazidine did not improve myocardial efficiency[130]. More recently, a phase 2 trial testing 
the safety and efficacy of ninerafaxstat, which, similarly to trimetazidine, is a 3-ketoacyl-CoA thiolase 
inhibitor, found a positive effect on ventilatory efficiency and quality of life in patients with non-obstructive 
HCM[131]. The beneficial effects of perhexiline have been proposed to be predominantly mechanisms other 
than fatty acid oxidation inhibition, such as increased antioxidant enzyme activity and modification of 
membrane ion channel function[132,133]. Whether the differential effects of trimetazidine and ninerafaxstat are 
similarly mediated by yet undescribed off-target actions is unknown and warrants further investigation. 
Additionally, the therapeutic benefit of fatty acid oxidation inhibition may depend on overall metabolic 
health and disease severity. Patients treated with perhexiline displayed lowered circulating free fatty acid 
and glucose levels and a non-significant improvement in insulin sensitivity[127]; thus, its beneficial effects 
may be mediated by amelioration of peripheral metabolism. Although information on blood lipid and 
glucose levels and the presence of diabetes in patients in the ninerafaxstat trial is not provided, patients had 
an average body mass index (BMI) of 32, suggesting the presence of (pre-)diabetes in a significant part of 
the study population[131]. The therapeutic action of ninerafaxstat may thus be similarly mediated by its 
antidiabetic actions[134], i.e., whole body improvement of glucose metabolism. In the first trimetazidine trial, 
patients were not obese and were relatively symptomatic; a subset had already undergone septal reduction 
therapy, and smoking prevalence was high[129]. These factors are associated with severe impairment of 
mitochondrial function[65,135], which may limit the capacity to upregulate pyruvate entry into mitochondria 
to fuel oxidative ATP production. Taken together, the efficacy of fatty acid inhibition therapy likely depends 
largely on individual patient characteristics.

An unforeseen consequence of inhibiting cardiac fatty acid oxidation might be evoking a mismatch between 
cardiac fatty acid uptake and catabolism, inducing lipotoxicity[67]. An alternative strategy might, therefore, 
be restoring rather than inhibiting fatty acid utilization. In patients with heart failure with reduced ejection 
fraction, it was recently reported that cardiac energetics and contractility were improved following intralipid 
infusion, forcing a metabolic shift away from glucose toward fatty acids[136]. Therapy aimed at improving 
myocardial delivery of fatty acids may thus be effective as well in patients with HCM. As cardiac-specific 
fatty acid oxidation agonists are not available, further research using preclinical models of HCM is 
warranted to address the potential of fatty acid oxidation stimulation via genetic manipulation.

Improving mitochondrial respiration
A key component of proper mitochondrial OXPHOS functioning in the myocardium is the efficient 
transfer of electrons through the ETS. This is facilitated by the configuration of ETS complex proteins into 
respiratory supercomplexes, which is supported by the mitochondrial membrane-specific phospholipid 
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Figure 6. Metabolic therapy strategies in hypertrophic cardiomyopathy. NAD supplementation may boost mitochondrial function by 
increasing mitochondrial NAD availability and NADH-linked respiration. Elamipretide may ameliorate mitochondrial dysfunction by 
increasing the formation of respiratory supercomplexes, facilitating efficient electron transferring throughout the electron transport 
system and lowering reactive oxygen species (ROS) formation. Fatty acid oxidation inhibitors may improve myocardial efficiency by 
enhancing the metabolic shift away from fatty acids to glucose, which is typical in HCM hearts. However, results have been variable and 
may depend on patient-specific characteristics. Additionally, beneficial effects may be mediated by pleiotropy and off-target effects. The 
therapeutic potential of restoring the uptake and oxidation of fatty acids warrants investigation. Myosin inhibitors may confer metabolic 
benefits via relief of hypercontractility and concomitant lowered ATP consumption. Moreover, safeguarding whole-body metabolic 
health via exercise and antidiabetic drugs such as glucagon-like peptide 1 receptor agonists (GLP1-RA) and sodium-glucose 
cotransporter 2 inhibitors (SGLT2i) is vital to minimize metabolic stress in the HCM heart. The latter drug class potentially provides the 
additional benefit of increased ketone utilization. Created in BioRender. Nollet E (2025) https://BioRender.com/3uniy0h. HCM: 
Hypertrophic cardiomyopathy; ADP: adenosine diphosphate; ATP: adenosine triphosphate; NADH: nicotinamide adenine dinucleotide; 
FAD: flavin adenine dinucleotide; NAD: nicotinamide adenine dinucleotide; SDH: succinate dehydrogenase; CI: complex I; CII: complex II; 
CIII: complex III; CIV: complex IV.

cardiolipin[137]. However, it should be noted that under non-pathological conditions in mouse hearts, 
OXPHOS efficiency does not require stable structurally defined supercomplexes, but rather appears to 
depend on tight proximity between ETS complex proteins[138]. Cardiolipin is highly sensitive to oxidative 
stress-induced peroxidation[139], which has been reported to occur in HCM hearts[72,140]. As a result, the 
efficiency of electron flow and ATP regeneration are disrupted, while electron leak and reactive oxygen 
species (ROS) formation are promoted[137]. The latter has been demonstrated in feline HCM, in which 
mitochondrial OXPHOS dysfunction occurred alongside increased mitochondrial ROS formation[141]. 
Elamipretide is a mitochondria-targeted drug that stabilizes cardiolipin, thereby promoting respiratory 
supercomplex assembly and dampening mitochondrial ROS production[142]. In fresh myectomy samples 
from patients with HCM, ex vivo incubation with a high concentration of elamipretide resulted in 
amelioration of NADH-dependent complex I respiration[65]. This was associated with increased 
incorporation of complex I into respiratory supercomplexes.

Altered NAD+ homeostasis is another component that may underlie mitochondrial impairment in HCM. 
This is apparent from proteomic findings indicating major alterations in NAD+ synthesis and salvage 
pathways[69]. This may reduce the availability of NAD+ for conversion to NADH, which could contribute to 
impaired NADH-linked respiration via complex I. Stimulation with a high concentration of NAD+ in fresh 
HCM myectomy samples led to a major increase in NADH-linked respiration, especially in samples in 
which baseline NADH-linked respiration was most severely affected[65].

https://BioRender.com/3uniy0h
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These ex vivo observations in human myocardial samples are supported by in vivo data in mice, where 
treatment with elamipretide, but also the mitochondria-targeted coenzyme Q (Mito-Q), which scavenges 
superoxide radicals, prevented the slowing of electrical conduction and ventricular arrhythmias during 
β-adrenergic stimulation[114]. Collectively, these findings demonstrated that mitochondria in HCM are 
responsive to treatment strategies that acutely improve mitochondrial respiration, despite severe cardiac 
remodeling, supporting further study into the efficacy of mitochondria-targeted strategies as a treatment in 
HCM.

Lowering energetic burden by targeting hypercontractility
Hypercontractility lies upstream of cardiac remodeling in HCM, particularly in G+ patients, and thus 
represents an attractive therapeutic target. In HCM caused by P/LP variants, this may be achieved via gene 
therapy, correcting the primary mutation-induced myofilament defects underlying hypercontractility. 
While approaches using genome editing, gene replacement, and allele-specific silencing have shown 
promise in preclinical models, the translation of gene therapy to clinical applications is still in the early 
phases of development[143].

Mavacamten and aficamten represent a novel class of drugs that inhibit the myosin ATPase and thereby 
mitigate hypercontractility[144-146]. Mechanistically, mavacamten promotes the folding of myosin heads back 
onto the filament backbone into the SRX state, while aficamten stabilizes myosin in a weak-actin binding 
conformational state. In both cases, this results in lowered myosin ATPase activity, reducing mitochondrial 
workload[147]. In clinical trials in patients with oHCM, mavacamten and aficamten have been demonstrated 
to alleviate LVOT obstruction and improve cardiac structure, symptoms, functional capacity, and exercise 
tolerance[148-153]. The beneficial effect of myosin inhibition on myocardial energetics has so far been 
demonstrated only in preclinical models of HCM[28]. It would be valuable to investigate whether similar 
effects occur in humans with HCM. Such an effect is expected secondary to the unloading effect of reduced 
LVOT obstruction[86], but may also be a direct consequence of dampened hypercontractility. A potential 
constraint of myosin inhibition is that clinical responsiveness may vary based on the genotypic status of 
patients. In a retrospective clinical study, it was reported that both G- patients and G+ patients with 
mutations in MYH7 and MYBPC3 responded to mavacamten treatment, although the effect was more 
pronounced in G+ patients[154]. Further study is needed to define clinical responsiveness in varying patient 
groups and which mechanisms underpin such differences. These findings also underscore the need for the 
development of diverse treatment strategies that target different components of disease.

Mitigating the impact of cardiovascular comorbidities
Penetrance of disease and severity of clinical course in HCM are adversely associated with cardiovascular 
risk factors and comorbidities such as hypertension, aging, diabetes, hyperlipidemia, and obesity[155-165]. The 
presence of one or more of these factors can sensitize P/LP variant-related pathogenicity in G+ HCM[160,166]. 
Moreover, G- HCM may be particularly driven by cardiovascular comorbidities, given their exceptionally 
high prevalence in this patient population[10,11,164,165,167,168]. Proper management of these conditions is 
recommended[169] as this may prevent or ameliorate the clinical course of disease in a substantial portion of 
patients with HCM. Exercise is generally safe in patients with HCM and should be encouraged[170]. 
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists are 
effective in promoting weight loss, improving glycemic control, and enhancing clinical course in patients 
with HFpEF[171,172]. These drugs are currently recommended in patients with HCM and diabetes type II or 
obesity[169], although their efficacy has not been established. The benefit of these drugs may also apply to 
patients with HCM with pre-diabetes or mildly elevated body weight, given the linear association between 
metabolic health and HCM risk and severity[156,157,159]. The beneficial effects of SGLT2i in HFpEF are seen in 
both diabetic and non-diabetic individuals[171] and extend beyond positive impacts related to weight loss, 
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improved glycemic control and renal function[173]. SGLT2i increase plasma ketone levels[174], which may 
serve as an alternative fuel in the metabolically inflexible HCM heart. A study using a real-world dataset 
reported better survival, lower hospitalization rate, and improved cardiovascular symptoms in patients with 
HCM using SGLT2i[175]. A preclinical study in stem cell-derived heart models carrying HCM-related MYH7 
and TNNT2 variants showed improvement in relaxation upon treatment with SGLT2i[176]. Further study is 
warranted to evaluate whether the therapeutic benefit is seen across patient groups and is not solely related 
to improved management of diabetes.

CONCLUSION
Metabolism in the HCM heart is characterized by a shift away from fatty acids as the energy substrate, 
which progresses with cardiac remodeling and disease severity. Reduced fatty acid utilization in HCM is not 
necessarily met with lipotoxicity, but this may develop in the presence of obesity-related comorbidities. 
Glucose uptake is generally elevated in HCM; however, further study is warranted to assess how glucose 
uptake and metabolic fate are modified by genotype, disease severity, and the presence of comorbidities. 
Blood-based metabolomic analyses can yield significant insight into metabolic alterations and disease 
mechanisms in HCM, particularly when applied to arteriovenous blood samples. This will also uncover the 
possible involvement of altered ketone and amino acid metabolism in HCM. Furthermore, substrate flux 
analyses in isolated animal hearts may be useful in assessing cardiac substrate use and metabolic flexibility. 
Lastly, while the number of induced pluripotent stem cell-based models of HCM is growing rapidly, their 
usefulness in studying metabolic alterations is currently limited due to metabolic immaturity[177].

The therapeutic benefit of metabolic therapy may be specific to individual patient characteristics. Boosting 
glucose oxidation seems beneficial in patients who suffer from cardiovascular comorbidities. Further study 
is warranted to address the patient group-specific potential of correcting fatty acid oxidation in HCM. 
Mitigating the impact of cardiovascular comorbidities is vital in preventing and ameliorating disease.

Disrupted mitochondrial organization appears to be the most prominent known factor underlying 
mitochondrial impairment in HCM. Nonetheless, mitochondria are responsive to therapies aimed at 
improving NADH-linked respiration, encouraging follow-up studies into the potential of mitochondrial 
therapy as a treatment strategy. This might be particularly beneficial in G- patients, as mitochondrial 
impairment is tightly linked to cardiac remodeling in these patients. Myosin inhibitors may be effective in 
dampening hypercontractility and lowering cardiac energetic burden especially in G+ patients.

Cardiac metabolism in HCM is modified by genotype, disease severity, and the presence of cardiovascular 
comorbidities and risk factors; thus, information on these characteristics should be provided in studies into 
metabolic alterations in HCM. Integrating patient characteristics with multiomics, structural and functional 
analyses is a powerful approach to identify patient group-specific metabolic disease mechanisms in HCM.
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