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Abstract
Machine learning interatomic potentials (ML-IAPs) and machine learning Hamiltonian (ML-Ham) have 
revolutionized atomistic and electronic structure simulations by offering near ab initio accuracy across extended 
time and length scales. In this Review, we summarize recent progress in these two fields, with emphasis on 
algorithmic and architectural innovations, geometric equivariance, data efficiency strategies, model-data co-design, 
and interpretable AI techniques. In addition, we discuss key challenges, including data fidelity, model 
generalizability, computational scalability, and explainability. Finally, we outline promising future directions, such as 
active learning, multi-fidelity frameworks, scalable message-passing architectures, and methods for enhancing 
interpretability, which is particularly crucial for the field of AI for Science (AI4S). The integration of these advances 
is expected to accelerate materials discovery and provide deeper mechanistic insights into complex material and 
physical systems.

Keywords: Machine learning interatomic potentials, machine learning Hamiltonian,  ab initio molecular dynamics, 
density functional theory, AI for science

INTRODUCTION
Density functional theory (DFT) and molecular dynamics (MD) underpin modern computational materials 
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science, offering rigorous control over thermodynamic variables alongside atomistic spatial and temporal 
resolution. In DFT, the electronic structure is obtained by solving the Kohn-Sham self-consistent field 
(SCF) equations and diagonalizing the Hamiltonian matrix to extract its eigenvalues. By contrast, both 
geometry optimization and MD rely on potentials: geometry optimization locates minima to identify stable 
atomic configurations, whereas MD integrates Newton’s equations of motion to simulate the real-time 
evolution of atomic positions and velocities. Despite their widespread use, these techniques face inherent 
limitations. The cost of DFT scales as O(N3) (or worse) with the number of atoms N due chiefly to 
Hamiltonian diagonalization, thereby constraining studies to relatively small quantum systems[1]. 
Conversely, classical MD, though orders of magnitude faster, depends on empirical interatomic potentials 
(IAPs) [or force fields (FFs)] that often lack the transferability and accuracy required for complex 
chemistries.

Bridging the gap between accuracy and scalability has emerged as a central challenge. Machine learning 
(ML) offers a transformative pathway by leveraging high-fidelity ab initio data to construct surrogate 
models that operate efficiently at extended scales. ML interatomic potentials (ML-IAPs), or ML force fields 
(ML-FFs), implicitly encode electronic effects through training on quantum reference datasets, enabling 
faithful recreation of the potential energy surface (PES) across diverse chemical environments without 
explicitly propagating electronic degrees of freedom. Their robustness hinges on accurately learning the 
mapping from atomic coordinates to energies and forces. In parallel, ML Hamiltonian (ML-Ham) 
approaches seek to predict electronic potentials using methods such as ML-derived Kohn–Sham 
potentials[2], deep Hamiltonian neural networks (DHNNs)[3], Hamiltonian graph neural networks (GNNs)[4] 
and deep tight-binding models[5]. Different from conventional ML approaches (structure-property), ML-
Ham methods (structure-physics-property) provide clearer physical pictures and explainability, delivering 
near-ab initio accuracy for quantities ranging from band structures and Berry phases to electron–phonon 
couplings.

In this Review, we survey recent algorithmic and architectural advances in ML-driven IAPs and 
Hamiltonian models, with particular emphasis on symmetry-aware GNNs, data-efficient training strategies 
and interpretability techniques and their successful applications. Moreover, we highlight the critical 
challenges in this field, including data fidelity, model generalizability and computational scalability. Finally, 
we also outline promising future directions poised to extend ML-accelerated simulations from small 
molecules to complex, multiscale materials systems.

ML-IAPS
ML-IAPs or MLFFs have emerged as a transformative approach in computational materials science, offering 
a data-driven alternative to traditional empirical FFs[6,7]. By leveraging deep neural network architectures, 
ML-IAPs directly learn the PES from extensive, high quality quantum mechanical datasets[8], thereby 
obviating the need for fixed functional forms, such as conventional Lennard-Jones or bond-order potentials, 
and instead optimizing large parameter spaces via automatic differentiation[7].

The principal advantage of ML-IAPs lies in their capacity to reproduce atomic interactions, including 
energies, forces and dynamical trajectories, with high fidelity across chemically diverse systems[8]. When 
trained on ab initio molecular dynamics (AIMD) trajectories, these models facilitate accurate simulations 
over extended temporal and spatial scales[9], achieving superior accuracy relative to conventional potentials 
while maintaining the computational efficiency required for large-scale materials modeling[10].
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Material representation
Early ML-IAPs relied on handcrafted invariant descriptors to encode the potential-energy surface by using 
bond lengths and subsequently bond angles and dihedral angles [Figures 1 and 2A]. The advent of GNNs 
has transformed this landscape by enabling end-to-end learning of atomic environments. In particular, 
equivariant architectures preserve rotational and translational symmetries, while large language models 
(LLMs) such as ChemBERTa[12] and MolBERT[13] have been repurposed to generate chemically informed 
embeddings. Together, these advances have driven the development of a suite of state-of-the-art (SOTA) 
ML-IAP frameworks that combine symmetry-aware message passing with data-driven feature 
representations[10] [Figure 1].

Embedding physical symmetries directly into network architectures, rather than applying symmetry 
constraints only to final invariant outputs, has been instrumental in advancing ML-IAPs. Equivariant layers 
maintain internal feature representations that transform under rotations and translations according to the 
underlying symmetry group, guaranteeing that scalar predictions (for example, total energy) remain 
invariant while vector and tensor targets (such as forces and dipole moments) exhibit the correct 
equivariant behavior[14] [Figure 2]. By unifying invariant and equivariant features throughout the model, 
these architectures achieve both greater data efficiency and improved accuracy across downstream tasks, as 
exemplified by NequIP exploration of higher-order tensor contributions to performance[14]. Furthermore, 
this approach parallels classical multipole theory in physics, encoding atomic properties as monopole, 
dipole and quadrupole tensors and modeling their interactions via tensor products, integrating long-
standing theoretical formalisms into a modern deep-learning framework[15].

Equivariant models (also named geometrically equivariant models) explicitly embed the inherent 
symmetries of physical systems, which is critical for accurately modeling tensorial quantities such as spin 
Hall conductivity and piezoelectric coefficients[16]. Many materials problems exhibit three-dimensional 
translation, rotation and/or reflection invariances, corresponding respectively to the Euclidean groups 
SO(3) (rotations), SE(3) (rotations and translations) and E(3) (including reflections). Unlike approaches 
that rely on data augmentation to approximate symmetry, equivariant architectures integrate these group 
actions directly into their internal feature transformations, ensuring that each layer preserves physical 
consistency under the relevant symmetry operations. However, enforcing strict equivariance throughout the 
network is not universally necessary: judicious relaxations of equivariance constraints have been shown to 
enhance model generalization and computational efficiency in certain applications[17].

Furthermore, as the scale and complexity of materials datasets continue to grow, the computational burden 
of fully E(3)-equivariant models increases steeply. An emerging strategy is to construct “lightweight” 
architectures that disentangle rotational and translational symmetries by employing only SO(3)-equivariant 
operations alongside translation-invariant scalar and vector features[18]. By partitioning high-order tensor 
products into rotationally equivariant and purely invariant components, these models markedly reduce the 
cost of tensor contractions without sacrificing the symmetry-preserving properties essential for accurate 
ML-IAP development[11].

Beyond atomic force vectors, spin degrees of freedom likewise transform as vectors under three-
dimensional Euclidean symmetries, motivating the extension of ML-IAPs to magnetic materials. MagNet[19] 
learns magnetic force vectors by mapping combined atomic and spin configurations to forces computed via 
DFT, embedding E(3)-equivariance within its network layers to ensure physically consistent 
transformations. In parallel, SpinGNN[20] introduces two specialized architectures [the Heisenberg edge 
graph neural network (HEGNN) and the spin distance edge graph neural network (SEGNN)] to represent 
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Figure 1. An overview of deep IAP development and outlook on associated data, models, and optimization strategies. IAP: Learning 
interatomic potential.

Figure 2. (A) Structural representations: integrating structural features into GNNs, including distance only, both distance and angles, and 
all distance, angles, and dihedral angles. The concepts of different structural representations within the context of energy (scalar) and 
force (vector) prediction[11]. The d, α, and Φ represent the bond length, bond angle, and dihedral angle, respectively; (B) Schematic 
diagram of massage passing and aggregation in equivariant representations of crystalline structures under a rotation operation. GNNs: 
Graph neural networks.

Heisenberg exchange and spin-lattice couplings through equivariant message passing, thereby capturing 
multi-body and higher-order spin interactions with high fidelity.
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Deep potential molecular dynamics (DeePMD)[21] formulates the total potential energy as a sum of atomic 
contributions, each represented by a fully nonlinear function of local - environment descriptors defined 
within a prescribed cutoff radius. The DeePMD framework, implemented in DeePMD-kit, has been trained 
on extensive DFT datasets of the order of 106 water configurations, achieving energy mean absolute errors 
(MAEs) below 1 meV per atom and force MAE under 20 meV/Å. By encoding smooth neighboring density 
functions to characterize atomic surroundings and mapping these descriptors through deep neural 
networks, Deep Potentials attain quantum mechanical accuracy with computational efficiency comparable 
to classical MD, thereby enabling atomistic simulations at spatiotemporal scales hitherto inaccessible.

Data representation: balance between quality and quantity
Notwithstanding these advancements, the predictive accuracy of even SOTA ML models remains 
fundamentally limited by the breadth and fidelity of available training data. Publicly accessible experimental 
materials datasets are orders of magnitude smaller than those in image or language domains, impeding the 
construction of universally transferable and highly precise potentials. DFT datasets with meta-generalized 
gradient approximation (meta-GGA) exchange-correlation functionals offer markedly improved 
generalizability compared to semi-local approximations[22], and thus provide a solid foundation for training 
universal models[23] [Table 1].

However, the majority of current repositories remain at Perdew–Burke–Ernzerhof (PBE) level accuracy[37], 
highlighting the need to incorporate more sophisticated electronic treatments (for example, Hubbard U 
corrections or meta-GGA/hybrid functionals) to capture complex many-body interactions. Recent work 
exemplifies this strategy: the high-fidelity data–based M3GNN framework leverages meta-GGA datasets 
alongside an SE(3)-equivariant GNN to resolve subtle structural and electronic features, establishing a new 
benchmark for materials-property prediction accuracy[38] [Figure 1].

Model efficiency is equally critical for scaling ML-IAPs to large-system simulations. A linearized NequIP 
architecture[39] reduces the complexity of tensor contractions while preserving core equivariant operations, 
yielding substantial decreases in inference cost with no measurable loss in force-prediction accuracy. This 
demonstration confirms that judicious architectural simplifications can reconcile high fidelity with practical 
throughput. In a complementary advance, the Meta ML-IAP framework[40] couples comprehensive data 
curation pipelines with a modular network design to enhance both generalizability and computational 
performance. By leveraging curated high-fidelity datasets alongside streamlined equivariant layers, this 
approach extends ML-driven potentials to multicomponent and structurally intricate materials systems 
without sacrificing efficiency.

Although MD simulations yield atomistic trajectories, the resulting datasets remain constrained by both 
label noise and limited sampling[41]. Classical or semi-empirical potentials introduce systematic errors in 
energy and force labels, while the high cost of MD restricts simulations to nanosecond-microsecond 
timescales and nanometre-micrometre lengthscales, impeding the observation of rare events and long-range 
phase transitions. Furthermore, trajectories typically originate from a single initial configuration, yielding 
uneven phase-space coverage and restricted structural diversity[42]. To overcome these challenges, data 
quality may be enhanced by adopting higher-fidelity potential models or experimental calibration, and 
dataset size expanded via enhanced sampling techniques, multiscale simulations or integration with 
experimental measurements, thereby producing ML-IAPs that are both robust and generalized.

Effective data-sharing initiatives are critical for accelerating materials discovery and model development. 
The findable, accessible, interoperable and reusable (FAIR) framework[43], and platforms such as the 
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Table 1. Overview of common benchmark datasets for ML-IAPs

Dataset Description Data scale Benchmark tasks URL

QM9[24] Stable small organic molecules 
(C, H, O, N, F; ≤ 9 heavy atoms)

134 k molecules 
(~1 × 106 atoms)

Molecular property 
prediction (energies, 
HOMO/LUMO, dipoles)

https://figshare.com/collections/
Quantum_chemistry_structures_and_
properties_of_134_kilo_molecules/
978904

MD17[25] MD trajectories for 8 small 
organic molecules (e.g., benzene, 
ethanol)

~3-4 M configurations 
(~1 × 108 atoms)

Energy and force prediction http://quantum-machine.org/
datasets/#md-datasets

MD22[26] Large molecules/biomolecular 
fragments (42-370 atoms)

0.2 M configurations (~1 
× 107 atoms)

Energy and force prediction 
for large systems

https://www.openqdc.io/datasets/
md22

ANI-1[27] Small organic molecules [C, H, N, 
O; (CNO) ≤ 8 atoms]

20 M DFT 
conformations 
(~5 × 106 atoms)

Molecular potential 
training; energy prediction

https://figshare.com/collections/_/
3846712

ANI-1x[28] Small organic molecules (C, H, N, 
O)

5 M DFT conformations 
(~5 × 106 atoms)

Molecular potential 
training; energy prediction

DOI: 10.6084/m9.figshare.c.4712477.
v1

ANI-1ccx[29] Subset of ANI-1x recalculated at 
CCSD(T)/CBS level

0.5 M high-accuracy 
conformations 
(~5 × 105 atoms)

High-precision energy 
prediction

DOI: 10.6084/m9.figshare.c.4712477.
v1

ANI-2x[30] Organic molecules including S, F, 
Cl (H, C, N, O, S, F, Cl)

9,651,712 conformers 
(~9.7 × 106 atoms)

Energy and force prediction 
across extended chemistry

https://zenodo.org/records/10108942

ISO17[31] C7H10O2 isomer dynamics 0.645 M configurations 
(~1 × 107 atoms)

Energy/force generalization 
over chemical and 
conformational changes

DOI: 10.1038/sdata.2018.75

SPICE[32] Bio-relevant molecules and 
complexes (15 elements)

1.1 M conformers 
(~1 × 108 atoms)

Energy/force prediction for 
biomolecular interactions

DOI: 10.5281/zenodo.7338495

OC20[33] Adsorbate-surface combinations 
on transition-metal facets

1.28 M DFT relaxations 
(~2.65 × 108 single-point 
evaluations)

Adsorption energy, reaction 
pathway, structure 
optimization

https://fair-chem.github.io/catalysts/
datasets/oc20.html

OC22[34] Oxide electrocatalyst surfaces 
and adsorbates

62,331 DFT relaxations 
(~9.85 M single-point 
calculations)

S2EF, IS2RE, IS2RS for oxide 
catalysts

https://fair-chem.github.io/catalysts/
datasets/oc22.html

Materials 
Project[35]

Bulk inorganic crystals (all 
element combinations)

130 k optimized crystal 
structures

Formation energy, band 
gap, elastic moduli

https://materialsproject.org/

13 derived property tasks from 
Materials Project

312-132 k samples per 
task (~3 × 105 total)

Multi-property materials 
predictions (energy, gap, 
moduli)

https://github.com/hackingmaterials/
matbench

The listed datasets are widely used public databases that span small organic molecules, large biomolecular fragments, gas-surface adsorbate 
systems and bulk inorganic crystals. For each database it reports the scale, typical benchmark tasks, and a URL for download or access. ML-IAPs: 
Machine learning interatomic potentials; MD: molecular dynamics; DFT: density functional theory.

Materials Data Facility[44], the Materials Project, OQMD, NOMAD and 2DMatPedia now host extensive 
collections of crystal structures, simulation outputs and derived properties. Leveraging these repositories 
enables the assembly of diversified, high-quality training sets, streamlines data curation and facilitates 
benchmarking against standardized datasets. Active learning monitoring model uncertainty and selectively 
incorporating high-uncertainty samples into the training set has proven effective in exploring chemical 
space more efficiently, reducing labeling effort and improving generalizability in materials modeling[45,46]. 
Likewise, pretraining on lower-fidelity structural databases offers a promising route to broaden coverage 
with manageable computational costs[47].

Defining the chemical and structural breadth of a training dataset establishes its “target space”, and different 
coverage regimes give rise to distinct modeling strategies ranging from general purpose zero shot 
frameworks to fine-tuned and bespoke potentials. General purpose approaches, however, face two intrinsic 
limitations. First, existing materials databases do not uniformly sample the periodic table, resulting in 
pronounced element wise imbalances and variable data quality. Second, these models often struggle to 
represent or relax complex architectures such as reconstructed surfaces, defect networks or low symmetry 

Matbench[36]
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phases with the fidelity required for quantitative predictions. For example, although total energy estimates 
for surface geometries may achieve moderate accuracy, they frequently fail to resolve surface specific 
energetics (for instance, cleavage or adsorption energies), underscoring a shortfall in generalization across 
disparate datasets and property domains[48].

One avenue to redress dataset imbalance is data augmentation, in which underrepresented regions of 
chemical and structural space are populated by additional configurations generated through high-
throughput simulations[49]. Concurrently, tailored IAPs designed for structurally complex materials have 
demonstrated markedly improved performance. For example, DefiNet augments the host graph with 
vacancy markers and employs defect-aware message passing to capture interactions between vacancies, 
substitutions and pristine atoms, while fine-tuned MLFFs for defected crystals revise local‐environment 
descriptors and network capacity to accommodate disrupted periodicity[50]. Through systematic refinement 
of descriptor schemes or the integration of higher-capacity, symmetry-preserving architectures, these 
bespoke models extend the applicability of ML-IAPs to materials with intricate defect landscapes.

ML-IAPs models: balance between complexity and efficiency
Although advanced network architectures and sophisticated optimization schemes have propelled ML-IAPs 
to unprecedented accuracy, they also introduce notable challenges. As models become more complex, they 
may overfit the training data, while simpler models may lose important details[51]. Iterative optimization 
routines further complicate matters by permitting error accumulation across successive parameter updates, 
which can undermine predictive consistency. A compelling strategy to mitigate these issues may be the 
development of fully differentiable, high-precision end-to-end frameworks, in which the final loss can be 
backpropagated through every component of the modeling pipeline, ensuring uniform gradient flow and 
reducing the potential for both overfitting and numerical drift. Fully differentiable architectures have 
become foundational to modern GNN‐based IAPs, replacing fixed structural descriptors with highly 
parameterized functions that are optimized end-to-end via stochastic gradient descent. By enabling gradient 
signals to propagate through every model component, this paradigm avoids arbitrary handcrafted features 
and ensures that learned representations adapt dynamically to diverse atomic environments. The DeepMind 
Allegro framework exemplifies this strategy, leveraging fully differentiable message‐passing layers and 
learned radial functions to accelerate convergence and enhance both energy and force accuracy[52]. End-to-
end differentiability thus underpins improved training efficiency, model adaptability and generalizability 
across complex materials systems.

A recent paradigm, termed effective MD, offers a compelling route to reconcile the trade‐off between 
fidelity and throughput in atomistic simulations[53]. In this framework, high‐accuracy AIMD data are used to 
parameterize streamlined force‐evaluation kernels via tailored optimization routines. By distilling complex 
force‐field representations into efficient surrogate models, effective MD delivers robust dynamical 
trajectories with significantly lower computational cost than full AIMD, while keeping predictive accuracy. 
This approach thus exemplifies how judicious integration of high‐fidelity training data and optimized 
model architectures can extend the reach of IAPs to time‐ and length‐scales previously accessible only to 
classical MD.

In all cases, a careful balance between computational expense and predictive accuracy is essential. SOTA 
equivariant and multi-fidelity GNN IAPs have pushed the limits of energy and force prediction accuracy 
across a breadth of materials and molecular systems. NequIP demonstrates exceptional data efficiency, 
achieving sub-meV energy errors and force errors on the order of tens of meV/Å in a complex reactive 
environment[14]. CHGNet, pretrained on over 1.5 M DFT trajectories, reaches energy MAEs below 30 meV/
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atom with force errors under 70 meV/Å for inorganic crystals[54]. SevenNet-MF leverages multi-fidelity 
training to deliver energy MAEs of ~10.8 meV/atom and force MAEs of ~18.3 meV/Å[38]. EquiformerV2 is 
an improved equivariant transformer, which achieves energy MAEs down to 9.6 meV/atom with force 
MAEs near 43 meV/Å when pretrained on OMat24 datasets, and maintains competitive errors (~20 meV/
atom) under Matbench-Discovery compliance[55]. Equivariant smooth energy network (eSEN) attains 
leading static test-set performance on molecular benchmarks, with energy MAEs around 0.13 eV/atom and 
force MAEs as low as 1.24 eV/Å[40], and achieves energy MAEs down to 18 meV/atom under Matbench-
Discovery compliance[55] which is considered to be the best performing model currently. These results 
underscore the potential of advanced equivariant models to deliver near-chemical accuracy while balancing 
computational costs [Figure 3]. Although these models are expected to achieve precision below 1 meV/atom 
on given datasets, most of them have a huge number of parameters. For example, the recent GNoME 
model[57] has 16.2 million parameters. The recent proprietary MatterSim model, trained on a 17-million-
structure dataset, can reach up to 182 million parameters[48]. The high computational demand of quantum 
mechanics calculations has traditionally limited their application in ML-IAPs. Thus, advanced training 
architectures should be considered in this domain to accelerate model training and prediction.

Model and hardware optimization
Hierarchical model architectures may address multiscale complexity by cascading predictors of increasing 
fidelity. For example, one can use initial modules with low-cost and coarse-grained networks to generate 
rough potentials, whereas subsequent stages apply high-resolution models to refine these predictions. This 
tiered strategy can markedly reduce computational costs without compromising accuracy[27]. In addition, 
mixed-precision computing smartly mixes single- and double-precision calculations during training, 
helping to reduce computation time and cost while still keeping the results accurate and stable. Finally, 
parallelization schemes through data-parallel or model-parallel across multicore CPUs and GPUs can 
enable near-linear throughput scaling, extending ML-driven simulations to larger and more structurally 
complex materials systems. Additionally, parallel computing techniques can significantly enhance 
computational efficiency. Utilizing high-performance computing clusters or GPU acceleration can process 
multiple tasks simultaneously, reducing overall computation time. Especially in training large models, 
parallel computing can significantly reduce training time. Furthermore, developing models suitable for 
quantum computers may break this limitation, though it remains controversial whether quantum bits or 
quantum computing can practically accelerate quantum chemistry calculations[58,59].

Additionally, transfer learning and multi-fidelity frameworks offer a potent means to alleviate the 
dependence on large, high-fidelity datasets [Figure 1]. Transfer learning accelerates adaptation to new 
chemical spaces by reusing representations learned from related tasks[45,49]. In practical terms, molecular 
potentials pretrained on datasets such as ANI-1 can be fine-tuned for materials systems, thereby reducing 
the volume of costly DFT annotations required[27]. Multi-fidelity approaches further decrease computational 
expense by integrating low-precision and high-precision data within a unified training hierarchy. More 
recently, AI-predicted structures have been employed as initial configurations for subsequent DFT 
relaxations, providing an efficient compromise between speed and accuracy. Finally, advanced robustness 
techniques, such as domain adaptation and meta-learning[60], are increasingly being incorporated into 
equivariant GNN architectures to bolster generalizability across diverse materials domains.

ML HAMILTONIAN
Although ML-driven IAPs have transformed atomic-scale simulations, an equally compelling frontier is the 
creation of machine-learning Hamiltonian, ML-Ham, for direct electronic-structure prediction 
[Figure 4A]. These “electronic-scale” networks aim to eliminate the costly SCF loops inherent to 
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Figure 3. Architectures of SOTA ML-IAP models. (A) NequIP, a data-efficient E(3)-equivariant GNN[14]; (B) CHGNet, a crystal 
Hamiltonian GNN[54]; (C) eSEN, a smooth, expressive ML- IAP[40]; (D) SevenNet-MF, a multi-fidelity equivariant GNN[38]; (E) 
EquiformerV2, an improved equivariant transformer[56]. SOTA: State-of-the-art; ML-IAP: machine learning interatomic potential; GNN: 
graph neural network; eSEN: equivariant smooth energy network.
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Figure 4. (A) Summary of ML-Ham architectures, models, and physical properties; (B) Examples of ML-Ham applications, including 
band gaps, charge densities[61], noncolinear magnetism, excited-state dynamics[62], EPC[63], quantum transport[64], spin-orbit 
coupling[65] and amorphous materials[66]. ML-Ham: Machine learning Hamiltonian; EPC: electron-phonon coupling.

conventional Kohn-Sham DFT, in which repeated updates of the electron density and Hamiltonian scale 
cubically with system size. DHNNs, trained on libraries of precomputed DFT Hamiltonian matrices, instead 
learn a direct mapping from atomic coordinates to the Hamiltonian operator, thereby bypassing iterative 
SCF convergence and delivering near–first-principles accuracy at a fraction of the computational expense.

However, the Hamiltonian is intrinsically a high-order tensor whose elements transform nontrivially under 
rotations, translations and spatial inversions, imposing strict equivariance requirements on any predictive 
model [Figure 5A]. Early neural approaches such as SchNorb[68] demonstrated that one could learn 
approximate Hamiltonians, but they achieved equivariance only indirectly by augmenting training data with 
random rotations, rather than embedding symmetry in the model itself. The true breakthrough arrived with 



Page 11 of Li et al. J. Mater. Inf. 2025, 5, 43 https://dx.doi.org/10.20517/jmi.2025.17 23

Figure 5. Equivariant DHNNs. (A) The fundamental physics of DHNNs is to predict the Hamiltonian rather than directly predicting 
electronic properties from structures. Equivariance ensures that symmetries, such as rotation, translation, and inversion, are explicitly 
preserved in Hamiltonian predictions; (B) Equivariance of the Hamiltonian under spatial rotations and spin-orbit coupling. Schematic 
wavefunctions and Hamiltonian matrices are shown for systems without SOC (structures a1 and a2, related by a 90° rotation) and with 
SOC (structures b1 and b2). In the non-SOC case, the hopping parameters transform into one another by a unitary rotation, illustrating 
the requirement that the Hamiltonian remains equivariant under spatial rotations. When SOC is included, spin and orbital degrees of 
freedom become entangled and must jointly transform under the same global rotations, as demonstrated by the corresponding rotated 
configurations[67]. DHNNs: Deep Hamiltonian neural networks.

E(3)-equivariant neural networks, which incorporate group-theoretical symmetry operations directly into 
their layers [Figure 5B]. PhiSNet[69], for example, enforces exact E(3) equivariance by construction, ensuring 
that its predicted Hamiltonian matrices transform correctly under all rigid motions and thereby delivering 
greater accuracy and transferability.

Despite achieving impressive accuracy, the early E(3) DHNNs faced significant computational bottlenecks. 
This was because they directly encoded E(3) or SE(3) symmetries through the tensor field network (TFN) 
approach[70]. The tensor product operations in this approach rely on Clebsch-Gordan coefficients, resulting 
in O(L6) computational complexity. This limitation severely restricted their practical application to systems 
with higher tensor orders or larger atomic numbers. Recent architectural innovations have addressed these 
efficiency challenges primarily through tensor product optimization. A key insight from the equivariant 
spherical channel network[71] demonstrated that aligning the primary axis with interatomic bond directions 
dramatically simplifies calculations by reformulating SO(3) convolutions as SO(2) operations, reducing 
complexity to O(L3). This SO(2) approach has become central to several SOTA models, e.g., the 
architecture design of DeepH-2[72], SLEM[73] and WANet[74] [Figures 4 and 5A].
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Beyond architectural innovations, accuracy improvements have also come from better loss function design. 
WANet introduces the physically-motivated Wavefunction Alignment Loss (WALoss), which surpasses 
simple element-wise error metrics by directly enforcing alignment between predicted and ground-truth 
wavefunctions. Additionally, TraceGrad[75], a lightweight plug-in module, enhances accuracy using SO(3)-
invariant trace quantities as supervisory signals which have been integrated with QHNet[76] and DeepH-E3[67] 
[Figure 6A]. This approach guides the development of high-quality equivariant representations, achieving 
good prediction performance.

Looking ahead, the evolution of DHNNs will hinge on three interlinked challenges. First, achieving true 
universality and scalability demands that DHNNs generalize across the full periodic table and extend to very 
larger systems. This is a goal that will require innovations in strictly local message passing, hierarchical 
graph decompositions and delta-learning schemes to drive computational cost toward linear scaling. 
Second, broadening the applicability of these architectures to encompass richer physical phenomena from 
spin-orbit coupling and non-collinear magnetism to excited state dynamics and quantum transport 
[Figure 4B]. This will call for modular and multi-task frameworks capable of integrating additional 
Hamiltonian terms and perturbative operators without sacrificing symmetry rigor. Finally, unlocking the 
full scientific potential of DHNNs rests on enhancing interpretability and trust, which is essential for 
mechanistic insight, model validation and widespread adoption. It needs embedding physics-informed 
constraints, developing graph-based explainability tools and rigorous uncertainty quantification [Table 2].

Deep Hamiltonian model: generality and scalability
DHNNs have rapidly emerged as a transformative approach for surmounting the steep computational 
demands of conventional quantum-mechanical methods such as Kohn-Sham DFT [Table 2]. Yet despite 
their promising accuracy and efficiency, DHNNs remain in an infant stage. Their evolution into a truly 
universal tool for materials science and quantum chemistry depends on overcoming two intertwined 
challenges. One is the generality that the capacity to learn Hamiltonians across the full breadth of chemical 
space and structural complexity. The other is the scalability, which is the ability to maintain accuracy and 
computational efficiency as system size grows. Addressing these twin imperatives is essential to unlock 
DHNN potential as a high-throughput, first-principles surrogate for large-scale quantum simulations.

Despite significant progress by architectures such as DeepH and HamGNN toward broader material 
coverage, existing DHNNs still struggle with true generality [Figure 6A and B]. To date, these models have 
been developed and validated almost exclusively on well-ordered crystalline systems, leaving out inherently 
disordered amorphous networks[88], defected materials[89] and high-entropy alloys[90], that pervade real-world 
materials. Disordered systems, for example, are ubiquitous in technologically relevant materials. However, 
these systems lack the long-range translational symmetry characteristic of well-ordered crystals, and they 
typically exhibit high configurational entropy. This combination results in a vast and highly diverse 
landscape of local atomic environments, where each atomic neighborhood can be distinct. The current 
message-passing schemes predominantly employed by DHNNs inherently operate with limited receptive 
fields. These schemes are designed to learn relationships by primarily considering local atomic structures 
when mapping to Hamiltonian matrix elements. Consequently, such models struggle to effectively capture 
the nuances of structural disorder that extend beyond these local regions. Such structural disorder poses a 
formidable challenge: without mechanisms to capture the irregular local environments and stochastic 
atomic arrangements characteristic of these systems, DHNNs risk losing both robustness and transferability. 
Closing this gap by integrating disorder aware descriptors, adaptive message passing schemes and targeted 
data augmentation will be essential for DHNNs to become universally reliable electronic structure 
surrogates.
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Table 2. Summary of DHNNs, including model name, model type, code repository, data source and link, and a brief description of their usage

Model Type Code repository Data source Usage Data link

DeepH[4] Message-passing DFT Hamiltonian 
network; dense invariant GNN

https://github.com/
mzjb/DeepH-pack

Zenodo Uses DFT Hamiltonian matrices & energies generated on Materials Project (via 
ABACUS, OpenMX, FHI-aims, SIESTA) to train a direct mapping from crystal 
structure to Hamiltonian

https://zenodo.org/
records/6555484

DeepH-
E3[67]

E(3)-equivariant attention 
transformer

https://github.com/
Xiaoxun-Gong/DeepH-E3

Provided with paper Uses Materials Project DFT structures & energies released alongside the 
publication to train an equivariant attention/Transformer architecture - achieving 
strict rotational & translational equivariance

https://www.nature.com/
articles/s41467-023-
38468-8

E(3)-equivariant convolutional 
GNN for tight-binding Hamiltonian

https://github.com/
QuantumLab-ZY/
HamGNN

Zenodo (pretrained 
models and 
datasets)

Trained on DFT-generated tight-binding Hamiltonian matrices for QM9 
molecules, carbon & silicon allotropes, SiO2 polymorphs, and BixSeγ compounds - 
enabling high-accuracy transfer to large-scale systems (e.g., Moiré bilayer MoS2, 
Si dislocation supercells)

Pretrained models: 
DOI: 10.5281/zenodo.
8147631 
Training data: 
DOI: 10.5281/zenodo.
8157128

DeepH-
hybrid[78]

Hybrid-functional DFT Hamiltonian 
predictor

https://github.com/
aaaashanghai/DeepH-
hybrid

Zenodo Uses hybrid-functional Hamiltonian & frequency-response (χxx) data covering 
various twist angles of Moiré bilayer MoS2; bypasses SCF iterations to directly 
predict hybrid-functional Hamiltonians

https://zenodo.org/
records/13444159

DeepH-
DFPT[79]

DFPT-enhanced Hamiltonian 
network

interface code + datasets 
on Zenodo

Zenodo Includes FHI-aims computed DFPT phonon spectra & force-constant data to 
introduce phononic corrections into Hamiltonian predictions - improving accuracy 
for phonon-response properties

https://zenodo.org/
records/13943187

HarmoSE[80] Two-stage SO(3)-equivariance + 
expressiveness framework

N/A Materials Project Stage 1: group-theory neural layers extract SO(3)-equivariant baseline 
Hamiltonians; stage 2: non-linear 3D graph Transformer refines them for high 
accuracy

N/A

xDeepH[81] E(3)×{I,T}-equivariant spin-orbital 
GNN

https://github.com/
mzjb/xDeepH

Zenodo Uses constrained-DFT (OpenMX/DeepH-pack) Hamiltonian & overlap matrices 
for magnetic superstructures (e.g., CrI3, skyrmion lattices) to train a mapping from 
structure + spin to Hamiltonian

https://zenodo.org/
records/7669862

DeepH-
PW[82]

Real-space reconstruction of plane-
wave DFT → atomic-orbital 
Hamiltonian

https://github.com/
Xiaoxun-Gong/HPRO

Zenodo Provides reconstructed AO Hamiltonian datasets converted from PW DFT outputs 
for 300 bilayer-graphene and 256 MoS2 supercells - used to train the real-space 
reconstruction network

DOI: 10.5281/zenodo.
13377497

WANet[74] Scalable Hamiltonian prediction via 
SO(2) convolutions, Mixture-of-
Experts & MACE density trick

N/A PubChemQH 
dataset

Builds on eSCN convolutions (reducing complexity), sparse experts for different 
length scales, and many-body density trick to predict full Hamiltonian matrices for 
very large molecules

N/A

DeepH-
UMM[83]

Universal Materials Model for 
Hamiltonian

N/A N/A Built on > 10,000 Materials Project DFT Hamiltonian matrices spanning 89 
elements to create a universal model transferable across element combinations 
and crystal structures

N/A

MEHnet[84] Multi-task CCSD(T)-trained 
molecular Hamiltonian + properties 
predictor

https://github.com/
htang113/Multi-task-
electronic

FigShare Includes scripts to build the CCSD(T) training dataset, train the multi-task 
network on energies, dipoles, orbitals, etc., and apply it to both small hydrocarbons 
and QM9 benchmarks

DOI: 10.6084/m9.figshare.
25762212

HamGNN-
EPC[85]

Electron–phonon coupling workflow 
leveraging HamGNN

https://github.com/
QuantumLab-ZY/
HamEPC

N/A Uses HamGNN-predicted Hamiltonian matrices & gradients together with 
Phonopy/DFPT data to accelerate computation of electron–phonon coupling 
matrices, carrier mobilities, superconducting transition temperatures, etc.

N/A

HamGNN[77]

U- https://github.com/
QuantumLab-ZY/

Conducts unsupervised pretraining on a large unlabeled crystal-structure 
database to learn E(3)-equivariant representations, then fine-tunes on small 

Unsupervised pretrained E(3)-
equivariant HamGNN

Zenodo https://zenodo.org/
records/10827117HamGNN[61]

HamGNN labeled DFT Hamiltonian sets to boost initialization and generalization

https://github.com/mzjb/DeepH-pack
https://github.com/mzjb/DeepH-pack
https://zenodo.org/records/6555484
https://zenodo.org/records/6555484
https://github.com/Xiaoxun-Gong/DeepH-E3
https://github.com/Xiaoxun-Gong/DeepH-E3
https://www.nature.com/articles/s41467-023-38468-8
https://www.nature.com/articles/s41467-023-38468-8
https://www.nature.com/articles/s41467-023-38468-8
https://github.com/QuantumLab-ZY/HamGNN
https://github.com/QuantumLab-ZY/HamGNN
https://github.com/QuantumLab-ZY/HamGNN
https://zenodo.org/records/8147631
https://zenodo.org/records/8147631
https://doi.org/10.5281/zenodo.8157128
https://doi.org/10.5281/zenodo.8157128
https://github.com/aaaashanghai/DeepH-hybrid
https://github.com/aaaashanghai/DeepH-hybrid
https://github.com/aaaashanghai/DeepH-hybrid
https://zenodo.org/records/13444159
https://zenodo.org/records/13444159
https://zenodo.org/records/13943187
https://zenodo.org/records/13943187
https://github.com/mzjb/xDeepH
https://github.com/mzjb/xDeepH
https://zenodo.org/records/7669862
https://zenodo.org/records/7669862
https://github.com/Xiaoxun-Gong/HPRO
https://github.com/Xiaoxun-Gong/HPRO
https://doi.org/10.5281/zenodo.13377497
https://doi.org/10.5281/zenodo.13377497
https://github.com/htang113/Multi-task-electronic
https://github.com/htang113/Multi-task-electronic
https://github.com/htang113/Multi-task-electronic
https://doi.org/10.6084/m9.figshare.25762212
https://doi.org/10.6084/m9.figshare.25762212
https://github.com/QuantumLab-ZY/HamEPC
https://github.com/QuantumLab-ZY/HamEPC
https://github.com/QuantumLab-ZY/HamEPC
https://github.com/QuantumLab-ZY/HamGNN
https://github.com/QuantumLab-ZY/HamGNN
https://zenodo.org/records/10827117
https://zenodo.org/records/10827117
https://github.com/QuantumLab-ZY/HamGNN
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HamGNN-
Q[86]

E(3)-equivariant GNN for charged-
defect tight-binding Hamiltonian

N/A OpenMX Trained on TB Hamiltonian matrices for GaAs charged defects (vacancies, 
interstitials, substitutions at Q = 0, ±3) to learn structure + background-charge → 
Hamiltonian mapping with reciprocal-space band-energy regularization

N/A

SchNOrb[67] SchNet-based molecular orbital & 
wavefunction predictor

https://github.com/
atomistic-machine-
learning/SchNOrb

Quantum-
machine.org

Uses QM9 dataset [134 k small molecules at B3LYP/6-31G(2df,p)] to predict 
molecular orbital coefficients and electron densities

http://www.quantum-
machine.org/datasets/

DeepTB[87] Deep-learning Slater–Koster tight-
binding Hamiltonian; supports SOC

https://github.com/
deepmodeling/DeePTB

DeePTB examples Provides Slater–Koster TB parameters for graphene, MoS2 and bulk phases 
(VASP/Wannier90) to train deep TB models for large-scale, near-DFT-level 
simulations

https://github.com/
deepmodeling/DeePTB/
tree/main/examples

DHNNs: Deep Hamiltonian neural networks; GNN: graph neural network; DFT: density functional theory; SCF: self-consistent field; DFPT: density functional perturbation theory; EPC: electron-phonon coupling; SOC: 
spin-orbit coupling; VASP: Vienna Ab initio Simulation Package.

Scalability poses a fundamental bottleneck for DHNNs. As the number of atoms grows, both the dimensionality of the Hamiltonian matrix and the complexity 
of interatomic couplings increase combinatorially. The strictly localized equivariant message-passing (SLEM) framework[73] [Figure 6C] overcomes this by 
enforcing a hard cutoff on each node’s receptive field, so that messages propagate only within a fixed local neighborhood. By confining interactions in this way, 
SLEM reduces the overall computational cost to scale linearly with system size, while its inherently local structure lends itself to straightforward parallelization. 
Thereby, it enables accurate Hamiltonian predictions for truly large and complex materials.

Regarding the gold-standard accuracy, two complementary strategies have emerged in DHNNs: delta learning and multi-task training. In the delta learning 
paradigm exemplified by the DeepKS framework[91], the network is trained to predict only the difference between a low-cost GGA (PBE) Hamiltonian and the 
corresponding high-accuracy hybrid (HSE06) result, thereby attaining hybrid-functional precision at a computational cost comparable to PBE[92]. In contrast, 
the multi-task electronic Hamiltonian network (MEHnet)[84] learns to map atomic geometries simultaneously to Kohn-Sham Hamiltonians across multiple 
levels of theory and basis sets, endowing the model with robust transferability. Although initially trained on small molecules, MEHnet has been shown to 
generalize seamlessly to much larger systems, such as polycyclic aromatics and semiconducting polymers, where even single-point CCSD(T) calculations are 
impossible.

Ultimately, the true impact of a universal DHNN will be measured by its seamless integration into end-to-end application workflows from quantum-transport 
and optical-response simulations to high-throughput materials screening. Realizing this vision demands the development of robust, modular interfaces and 
pipelines that permit straightforward fine-tuning and deployment of pretrained Hamiltonians across diverse computational tasks. By assembling such an 
interoperable software ecosystem, we can democratize access to first-principles accuracy and unlock new avenues for rapid, large-scale quantum mechanical 
discovery across the materials science community.

https://github.com/atomistic-machine-learning/SchNOrb
https://github.com/atomistic-machine-learning/SchNOrb
https://github.com/atomistic-machine-learning/SchNOrb
http://www.quantum-machine.org/datasets/
http://www.quantum-machine.org/datasets/
https://github.com/deepmodeling/DeePTB
https://github.com/deepmodeling/DeePTB
https://github.com/deepmodeling/DeePTB/tree/main/examples
https://github.com/deepmodeling/DeePTB/tree/main/examples
https://github.com/deepmodeling/DeePTB/tree/main/examples
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Figure 6. Architectures of SOTA DHNN models. (A) DeepH-E3, An E(3)-equivariant neural network representation of DFT 
Hamiltonian[67]; (B) HamGNN, a data-driven E(3) equivariant GNN for the electronic Hamiltonian matrix[77]; (C) DeePTB-E3, a novel 
deep learning model for predicting multiple quantum operators[73]. SOTA: State-of-the-art; DHNN: deep Hamiltonian neural network; 
DFT: density functional theory; GNN: graph neural network.



Page 16 of Li et al. J. Mater. Inf. 2025, 5, 43 https://dx.doi.org/10.20517/jmi.2025.1723

Deep Hamiltonian model for physical interpretation
DHNNs have rapidly established themselves as a transformative AI paradigm for materials discovery, 
achieving near-DFT accuracy across a spectrum of phenomena from MD and electron-phonon coupling 
(EPC) to quantum many-body interactions. By learning directly from high-fidelity training data and 
embedding core physical laws into their architectures, DHNNs offer a unified, data-driven alternative to 
conventional simulation workflows. Nevertheless, despite their outstanding predictive performance, these 
models remain largely “black boxes” with limited transparency into the mechanistic features driving their 
outputs. This opacity poses a significant barrier to scientific insight. Without interpretable representations 
of the learned Hamiltonian landscape, it is challenging to extract the underlying physics or to validate 
model predictions against established theoretical frameworks. Enhancing the interpretability of DHNNs is 
therefore essential to harness their full potential as tools for both prediction and discovery.

In contrast to the black-box nature often associated with deep learning, including DHNNs, traditional 
computational methods in physics, such as DFT, have long provided a framework for understanding 
physical phenomena through interpretable quantities. Recent advancements in the explainable GNNs offer 
a potential approach for the interpretability. GNN explainability methods, focusing on identifying the 
importance of nodes and edges within graph-structured data, have shown promise in attributing model 
predictions to specific structural features[93]. For instance, the ability to assign scientific meaning to nodes 
representing atoms and edges representing bonds in molecular graphs, as demonstrated in GNN explainer 
frameworks LRI and SubMT, highlights the potential to connect model interpretations to real-world 
scientific concepts[94,95]. Beyond GNNs, variational autoencoders (VAEs) offer a complementary path to 
interpretability for deep learning in physics. Visualizing VAE latent spaces, for example, via t-SNE, reveals 
physically meaningful representations learned in an unsupervised manner. Smooth trajectories and 
clustering in latent space, reflecting physical properties such as wavefunction smoothness and material 
similarity, demonstrate that VAEs can autonomously encode interpretable physical information[96]. This 
approach provides a crucial step towards bridging the interpretability gap in DHNNs, moving beyond 
“black box” predictions to deeper physical understanding.

Therefore, a crucial next step in the development of DHNNs lies in enhancing their explainability, moving 
beyond mere accuracy towards models that offer genuine scientific understanding, for example integrating 
interpretability techniques with DHNNs[97]. Exploring methods to map the learned Hamiltonian and its 
associated energy landscape within a DHNN to a graph representation, where nodes and edges could 
represent physical entities and interactions, could enable the application of GNN explainability tools. This 
could potentially reveal which physical components or interactions within the Hamiltonian learned by the 
DHNN are most salient for predicting specific physical phenomena. Furthermore, investigating the 
gradients of the DHNN’s energy function with respect to input features, and visualizing these gradients on a 
graph representation of the system, may unveil crucial physical insights driving the model’s predictions. 
Future research should prioritize the development of methods that integrate the predictive power of 
DHNNs with the interpretable scientific models. By fostering the creation of truly explainable DHNNs, we 
can unlock their full potential to accelerate scientific discovery, providing not only accurate simulations but 
also transparent and insightful tools for advancing our understanding of the physical world.
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Applications in complex physical systems
Early applications of DHNNs have already demonstrated dramatic acceleration in electronic structure 
calculations while achieving the accuracy of conventional DFT for key observables such as band-structure 
predictions [Figure 4]. However, these proof-of-principle results represent only the first step. DHNNs are 
now poised to move beyond benchmark systems and tackle a host of more demanding application-driven 
challenges, for example non-adiabatic excited-state dynamics, complex magnetic phases, large-scale 
quantum transport [Figure 4B]. Thus, it can push the frontiers of computational materials modeling into 
new regimes of scale and physical complexity.

One significant frontier lies in the field of magnetic materials. Magnetic superstructures, including 
phenomena such as altermagnets, magnetic skyrmions and spin-spiral magnets, are attracting immense 
interest due to their emergent quantum physics. However, investigating these complex magnetic phases 
traditionally with ab initio accuracy has been hampered by formidable computational costs. To surmount 
this bottleneck, an extended DFT Hamiltonian framework, termed xDeepH, has been developed. This 
framework integrates both atomic structures {R} and magnetic configurations {M}, while crucially adhering 
to the equivariance requirements dictated by Euclidean and time-reversal symmetries. This sophisticated 
architectural design is crucial in capturing the subtle magnetic effects that govern the spin dynamics of these 
materials, demonstrating a pioneering approach to magnetic materials research.

Beyond ground-state properties, DHNNs are making significant strides in simulating excited-state 
dynamics in solids. Non-adiabatic MD (NAMD) simulations are essential for understanding a wide range of 
excited-state phenomena, including the energy transfer processes in solar cells and ultrafast carrier 
dynamics in semiconductors. However, conventional DFT-based NAMD simulations are computationally 
demanding and often suffer from accuracy limitations associated with standard exchange-correlation 
functionals. Zhang et al. introduced N2AMD, a framework that leverages E(3)-equivariant deep neural 
Hamiltonians to address these challenges[98]. Validated on prototypical semiconductors of TiO2 and GaAs, 
N2AMD accurately simulates electron-hole recombination behavior at a hybrid functional level (HSE06). 
This framework hints at pathways to establish a more reliable and efficient paradigm for NAMD 
simulations in complex condensed matter systems.

The ability of DHNNs to accelerate the density functional perturbation theory (DFPT) calculations 
represents another pivotal advancement. Perturbation responses are fundamental to understanding a vast 
spectrum of material properties, including temperature-dependent band gaps, non-radiative carrier 
recombination, and electron-phonon driven phenomena such as thermal and electrical conductivity and 
superconductivity. Deep learning frameworks, such as HamGNN and DeepH, are now being deployed to 
streamline EPC calculations. These models achieve acceleration by training neural networks to predict key 
quantities such as the Kohn-Sham potential or Hamiltonian matrix from DFT data of (perturbed) atomic 
structures. The computationally expensive derivatives with respect to atomic displacements, crucial for 
DFPT, are then efficiently obtained via automatic differentiation of the neural network[79] or by 
differentiating the network’s Hamiltonian predictions[85]. This circumvents the need to solve the costly 
Sternheimer equations for each perturbation mode, which is the bottleneck in traditional DFPT. These 
models provide an efficient toolkit for investigating diverse EPC-related phenomena, enabling calculations 
for large-scale systems with advanced functionals under perturbation, which were previously 
computationally prohibitive. Furthermore, the success of DHNNs in DFPT for EPC calculations opens 
exciting possibilities for generalizing these frameworks to investigate other types of perturbations, such as 
strain and external fields.



Page 18 of Li et al. J. Mater. Inf. 2025, 5, 43 https://dx.doi.org/10.20517/jmi.2025.1723

Meanwhile, the realm of quantum transport in nanoelectronics is being revolutionized by DHNNs. 
Simulating electron transport in nanoscale devices, particularly using the non-equilibrium Green’s function 
(NEGF) method, is computationally intensive, hindering the design and optimization of advanced nano-
electronic components[99]. Zou et al. presented the DeePTB-NEGF[64], a novel deep learning framework that 
resolves this efficiency challenge. By integrating the DeePTB Hamiltonian approach with the NEGF 
method, DeePTB-NEGF achieves first-principles accuracy while circumventing the computationally 
expensive SCF iterations inherent in traditional DFT-NEGF methods. Validated through comprehensive 
simulations of break junctions and carbon nanotube field-effect transistors (CNT-FETs), DeePTB-NEGF 
demonstrates excellent agreement with experimental results and offers a powerful, high-throughput 
approach for simulating quantum transport across diverse nano-electronic devices.

Although significant progress has been made in above mentioned complex physics scenario, there are many 
complex physical systems for DHNNs, such as non-collinear magnets, topological quantum materials, high-
order anharmonic phonon interactions, superconductivity, amorphous structures and more. In non-
collinear antiferromagnets, DHNNs could improve the precision of modeling spin interactions and 
magnetic phase transitions by efficiently capturing the underlying energy landscapes[100]. Similarly, in 
topological materials, these networks are expected to reveal nuanced insights into the interplay between 
topology and electron dynamics, thereby supporting the design of quantum devices and spintronic 
applications[101]. Moreover, when dealing with complex electron-phonon interaction on thermoelectric 
properties[102], DHNNs have the potential to elucidate phonon behavior and energy dissipation mechanisms 
at multiple scales, offering a robust alternative to traditional simulation methods. These frontier 
applications represent the next wave of DHNN innovation, building upon the established successes in 
electronic structure, magnetic materials, excited-state dynamics, and quantum transport.

CONCLUSION AND OUTLOOK
ML-IAPs for MD and machine-learning Hamiltonian for electronic structure calculations have shown 
significant promise in advancing materials simulations, offering near ab initio accuracy while enabling 
access to larger length and time scales. The development of SOTA deep learning models has enabled more 
accurate and efficient predictions of interatomic and electronic properties. These advancements are crucial 
for the study and design of new materials, addressing the limitations of traditional methods such as MD and 
DFT.

Despite the progress, several challenges remain. The accuracy of ML-IAPs is heavily dependent on the 
quality and quantity of training data, which necessitates comprehensive data-sharing initiatives and 
improved DFT calculations. Additionally, the computational demands of these models, especially for large-
scale simulations, are significant. Incorporating physical constraints and leveraging active learning can 
enhance the performance of these models, but a balance between computational expense and accuracy must 
be struck. The future of ML-IAPs is promising, with several key areas for development. Enhancing the 
generality and accuracy of models through larger and more diverse training datasets is essential. The 
integration of physical constraints and the adoption of coarse-graining techniques can further improve the 
efficiency and applicability of these models. High parallel efficiency is another potential direction of ML in 
materials science.

DHNNs are promising tools for electronic structure prediction but face challenges in generalizing across 
diverse material systems and scaling to larger systems. Extending their applicability to encompass the entire 
periodic table remains an ongoing research endeavor. Beyond electronic structures, DHNNs hold potential 
in modeling complex physical systems such as non-collinear magnets, topological quantum materials, high-
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order anharmonic phonon interactions, and superconductivity. Enhancing the explainability of DHNNs is 
crucial for advancing scientific understanding, which could involve integrating interpretability techniques 
such as mapping learned Hamiltonians to graph representations. Future research should focus on 
combining the predictive power of DHNNs with interpretable scientific models to accelerate scientific 
discovery.
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