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The utilization of highly reactive supports in constructing supported-metal catalysts is a promising choice 
for achieving efficient heterogeneous catalysis in chemical industries[1], including the H2 production from 
the methanol-reforming reaction (MRR), the water-gas shift (WGS), etc. Specifically, the support with a 
high reactivity could promote reactants adsorption-activation by offering additional catalytic sites, and shift 
the catalysis from a competitive adsorption-activation mechanism over supported-metal catalysts to a non-
competitive model owing to the formation of the metal-support interfacial sites[2]. This substantial alteration 
in catalytic pathways could unlock unparalleled reactivity with a superior catalytic performance[3]. For 
example, as for Pt/α-MoC proposed by Lin et al. in MRR, the reactive α-MoC support shows high water-
dissociation activity, and could produce abundant surface -OH groups for the MRR[4]. In comparison to the 
common Pt/β-MoC (i.e., a competitive adsorption-activation between methanol and water on the Pt site), 
Pt/α-MoC has two types of reactive site for the adsorption-activation of methanol and water, respectively 
(i.e., Pt is for the methanol adsorption/activation, while α-MoC is for the water dissociation). It induces an 
MRR at the interfacial sites of Pt/α-MoC, offering an average turnover frequency (average TOF, ATOF) of 
1.805 × 104 h-1 to the H2 productivity over 0.2 wt% Pt/α-MoC at 150-190 °C.

https://creativecommons.org/licenses/by/4.0/
https://www.oaepublish.com/cs
https://orcid.org/0000-0001-7980-1561
https://orcid.org/0000-0001-8474-0652
https://dx.doi.org/10.20517/cs.2025.42
http://crossmark.crossref.org/dialog/?doi=10.20517/cs.2025.42&domain=pdf


Page 2 of 6 Wang et al. Chem. Synth. 2025, 5, 58 https://dx.doi.org/10.20517/cs.2025.42

Beyond achieving superior activity with excellent selectivity, enhancing the durability of a catalyst is one of 
the most challenging and crucial objectives in catalyst design, especially for supported-metal catalysts with 
highly reactive support, as the possible metal sintering and reactive support deterioration intensively 
shorten their lifespan[5,6]. Currently, the problem of metal sintering can be well-solved by introducing a 
strong metal-support interaction effect that stabilizes metal species on the surface of support[7,8]. However, it 
is worth noting that the deterioration of reactive support has not been well-resolved. It seriously damages 
the active metal-support interfacial sites, leading to a reversion from the previously constructed non-
competitive mechanism to a competitive adsorption–activation model. For example, highly dispersed Pt on 
α-MoC and/or γ-Mo2N catalysts are well-known for their exceptional activities in the field of H2 production 
from low-temperature MRR and WGS reaction, owing to the excellent H2O dissociation activity of α-MoC 
and γ-Mo2N[4]. However, the methanol conversion over Pt/α-MoC dramatically declines by 62% within 11 h, 
which is caused by a damage of α-MoC crystal structure from the deep oxidation during water 
dissociation[4]. It indicates that the protection of vulnerable crystal structure of highly reactivity supports 
(e.g., α-MoC) is significant. Even though Zhang et al. proposed a strategy of crowding Pt on α-MoC to keep 
partial H2O reactant away from the surface of α-MoC and obtained improved catalytic stability remaining 
~70% in about 260 h of reaction, the deactivation of Pt/α-MoC reveals that such strategy cannot eliminate 
the decomposition of highly reactive α-MoC support[9]. Therefore, a new strategy that enhances the stability 
of highly reactive support towards a practical application of such catalysts, while maintaining their superior 
activity and selectivity, is highly desired, however, with a great challenge and rare exploration.

Recently, Gao et al. filled some of these gaps by proposing a novel and universal strategy, which shields a 
partial surface of reactive support by constructing an inert nano-overlays that acts as a “nano shielder” to 
keep the reactive support away from deterioration, without a negative effect on the catalytic activity of 
metal/support interfaces[10]. The superiority of this new strategy was fully displayed by using an interfacial 
catalyst of Pt/γ-Mo2N in the H2 production from the probe reaction of MRR, which performs a non-
competitive adsorption-activation between water and methanol over Pt/γ-Mo2N [Figure 1A]. In detail, a 
lanthanum (La) oxide nano-overlay was immobilized on γ-Mo2N by the following procedure: (1) La2O3 and 
MoO3 are mechanically mixed and calcined in a muffle furnace at 500 °C for 10 h; (2) a nitridation 
treatment is performed on the obtained sample in NH3 (flow rate: 200 mL·min-1) under a temperature 
program from room temperature to 350 °C (rate: 10 °C·min-1), then to 450 °C (rate: 0.5 °C·min-1), then to 
785 °C (rate: 2 °C·min-1) and staying at 785 °C for 4 h, finally cooling down to room temperature with a 
passivation in 0.5% O2/Ar (flow rate: 60 mL·min-1) overnight to obtain La-γ-Mo2N (labeled as La-Mo2N). 
After that, Pt was loaded on to La-Mo2N by a simple impregnation method (Pt/La-Mo2N). They reported 
that the “nano shielder” of La oxide promotes an efficient and robust performance for H2 production over 
Pt/La-Mo2N, with an ATOF of 1 wt% Pt / 2 wt% La-MoN (1Pt/2La-Mo2N) maintaining above 7 × 
103 molH2·molmetal

-1·h-1 (i.e., turnover number, TON, of 1.028 × 107 molH2·molmetal
-1) at 200 °C after above 

1,300 h of reaction, 5 times higher than that of 1 wt% Pt/γ-Mo2N [Figure 1B]. Remarkably, lowing Pt to 
mere 0.26 wt% with a 5 wt% of La, 0.26Pt/5La-Mo2N shows a record-high TOF of 2.45 × 105 molH2·molmetal

-1·h
-1 (i.e., TON of 1.53 × 107 molH2·molmetal

-1). The superior H2 producibility with an excellent long-term stability 
over Pt/La-Mo2N reveals the success of such nano shielding strategy.

A key finding of this work is the identification of the significant role of rare-earth La oxide nano-overlays 
that act as a shielder for protecting Pt/γ-Mo2N[10]. They conclude three main functions: (1) partially cover 
the surface sites of γ-Mo2N and prevent the crystal structure of γ-Mo2N from the deterioration caused by the 
adsorption of excessive water, without a negative effect on the instinct water dissociation activity of the 
residual surface sites on γ-Mo2N [Figure 1C]; (2) separate the γ-Mo2N surface into isolated areas that settle 
the interface between Pt and γ-Mo2N [Figure 1A]; and (3) prevent the platinum aggregation during catalytic 
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Figure 1. (A) Schematic diagram of the non-competitive adsorption-activation mechanism in the MRR over Pt/La-Mo2N; (B) Catalytic 
stability test of the 1Pt/γ-Mo2N and 1Pt/2La-Mo2N catalysts under 200 °C, 5 bar and WHSV of 12.87 h-1 [10]; (C) Twice the ratio of H2 
production/H2O consumption acquired in H2O TKA experiments at 100 °C and (D) MRR catalytic activity under 250 °C, 10 bar and 
WHSV of 25.74 h-1 over the γ-Mo2N and 2M-Mo2N (M = La, Pr, Cs and Sr) catalysts [10]. MRR: Methanol-reforming reaction; WHSV: 
weight-hourly space velocity.

reaction. More importantly, the wide suitability of the proposed strategy by constructing “nano shielder” for 
enhancing the catalytic performance of Pt/γ-Mo2N was also verified by using various catalytically inert 
elements (i.e., Y, Pr, Ho, Ca, Sr, and Cs). All the catalysts with various of additives (i.e., 1Pt/2Pr-Mo2N, 1Pt/
2Sr-Mo2N, 1Pt/2Cs-Mo2N) have a similar H2 production rate as that of 1Pt/2La-Mo2N and 1Pt/γ-Mo2N 
(~200 μmol·gcat

-1·s-1 in Figure 1D). However, they both show a constant H2 production rate (i.e., 
~200 μmol·gcat

-1·s-1) after over 50 h of reaction, similar to that of Pt/La-Mo2N, but much superior to that of 
1Pt/γ-Mo2N (i.e., below 150 μmol·gcat

-1·s-1 after 25 h of reaction).
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As conclusions and perspectives, Gao et al. innovate a powerful and universal strategy of “nano shielder” for 
stabilizing the active metal-support interfacial sites in Pt/γ-Mo2N catalyst by introducing rare-earth La oxide 
overlays, reaching a record-high catalytic activity owing to the substantial alteration in reaction pathways 
following a non-competitive mechanism model[10]. However, several questions remain open. A key area for 
further investigation is elucidating the universality of such “nano shielder” in alternative highly reactive 
supports, other than MoC and Mo2N. Besides that, the metal-support interfacial sites need to be deeply 
explored, such as (1) the practical dimension of the isolated area segmented by the dispersion of La oxides 
nano-overlays on γ-Mo2N; (2) no electronic interaction between Pt and La species is simply concluded from 
the Pt4f XPS analysis, exploration on the state Pt in Pt/La-Mo2N (e.g., the X-ray absorption spectroscopy, 
CO-DRIFT), and on the mechanism of such no electronic interaction behavior on La-Mo2N surface (e.g., 
selectively electrostatic adsorption of Pt onto Mo2N, rather than La oxides nano-overlays, during 
impregnation synthesis) may show a great attractive in future study. More interestingly, the proposed non-
competitive mechanism model may also be suitable for the catalyst design in catalysis involving multi-
molecule reactions, such as butadiene semi-hydrogenation. All these questions are required to be addressed 
in future studies to set up the way for its further application to design effective and stable heterogeneous 
catalysts.
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