
Dababneh et al. Art Int Surg 2024;4:XX   Artificial
Intelligence Surgery

DOI:10.20517/ais.2024.50

Review Open Access

    

Artificial intelligence as an adjunctive tool in hand
and wrist surgery: a review

Said Dababneh1, Justine Colivas2, Nadine Dababneh2, Johnny Ionut Efanov3 

1Center for Clinical Attitudes and Skills Training (CAAHC), Medical Simulation Center, University of Montreal, Montreal H3C
3J7, Quebec, Canada.
2Faculty of Medicine, University of Montreal, Montreal H3C 3J7, Quebec, Canada.
3Plastic and Reconstructive Surgery, Department of Surgery, University of Montreal Hospital Center (CHUM), Montreal H2X
3E4, Quebec, Canada.

Correspondence to: Dr. Johnny Ionut Efanov, Plastic and Reconstructive Surgery, Department of Surgery, University of Montreal

Hospital Center (CHUM), 1051 Rue Sanguinet, Montreal H2X 3E4, Quebec, Canada. E-mail: johnny.ionut.efanov@umontreal.ca

How to cite this article: Dababneh S, Colivas J, Dababneh N, Efanov JI. Artificial intelligence as an adjunctive tool in hand and

wrist surgery: a review. Art Int Surg 2024;4:XX. https://dx.doi.org/10.20517/ais.2024.50

Received: 15 Jul 2024 First Decision:12 Aug 2024 Revised: 17 Aug 2024 Accepted: 26 Aug 2024 Published: xx Aug 2024

Academic Editor: Andrew A. Gumbs Copy Editor: Pei-Yun Wang Production Editor: Pei-Yun Wang

©The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/),which permits unrestricted use,sharing,
adaptation,distribution and reproduction in any medium or format,for any purpose,even commercially,as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons

license,and indicate if changes were made.

https://www.oaepublish.com/ais

Abstract
Artificial intelligence (AI) is currently utilized across numerous medical disciplines. Nevertheless, despite its
promising advancements, AI’s integration in hand surgery remains in its early stages and has not yet been widely
implemented, necessitating continued research to validate its efficacy and ensure its safety. Therefore, this review
aims to provide an overview of the utilization of AI in hand surgery, emphasizing its current application in clinical
practice, along with its potential benefits and associated challenges. A comprehensive literature search was
conducted across PubMed, Embase, Medline, and Cochrane libraries, adhering to the Preferred reporting items for
systematic reviews and meta-analyses (PRISMA) guidelines. The search focused on identifying articles related to
the application of AI in hand surgery, utilizing multiple relevant keywords. Each identified article was assessed
based on its title, abstract, and full text. The primary search identified 1,228 articles; after the application of
inclusion/exclusion criteria and manual bibliography search of included articles, a total of 98 articles were covered
in this review. AI’s primary application in hand and wrist surgery is diagnostic, which includes hand and wrist
fracture detection, carpal tunnel syndrome (CTS), avascular necrosis (AVN), and osteoporosis screening. Other
applications include residents’ training, patient-doctor communication, surgical assistance, and outcome
prediction. Consequently, AI is a very promising tool that has numerous applications in hand and wrist surgery,
though further research is necessary to fully integrate it into clinical practice.
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INTRODUCTION
Recent advancements in artificial intelligence (AI) have significantly driven its integration into numerous
medical and surgical fields, enhancing diagnostic accuracy and improving patient care. The notion of AI
was initially introduced by John McCarthy, an American computer scientist, in 1956[1]. Since then, AI has
branched out into various fields, such as machine learning (ML), deep learning (DL), natural language
processing (NLP), and robotics[2]. ML makes predictions based on the detection of patterns in data. When
trained on labeled data, it is considered supervised learning and its implications in medicine include data
classification for diagnostic purposes and outcome predictions. On the other hand, unsupervised learning
consists of ML algorithms trained with unlabeled data. The goal of unsupervised learning is to identify
hidden patterns within the data without predefined outcomes[3]. Clinical applications for such algorithms
include the identification of disease risk factors[4]. Given these various applications and the significant
potential of ML in improving care, extensive efforts are underway to facilitate its integration in clinical
settings[5]. As for DL, it is a branch of ML that uses multiple layers of neural networks to enhance the
accuracy of pattern recognition[2]. It is particularly useful in the analysis of medical images, facilitating the
diagnosis process[6]. Therefore, to date, medical imaging is the medical field that has benefitted the most
from AI development[7,8]. In this area, ML is used to enhance diagnostic accuracy and efficiency. Finally,
NLP, another branch of ML, has the potential to understand and interpret words and provide a response[2,6].

In surgical fields, AI has been shown to increase precision, reduce errors, and optimize preoperative
planning and operating room workflow[9]. Furthermore, it has the capability to predict surgical outcomes
and postoperative complications[10]. Considering its significant potential to improve patient care, increased
research is currently being done to determine its application in different surgical fields, including plastic
surgery. AI is becoming increasingly valuable in plastic surgery, especially for tasks requiring visual
diagnosis, such as assessing preoperative and postoperative aesthetics[11]. Similarly, ML algorithms have also
been used to improve outcome assessments in various procedures, such as rhinoplasty[12,13]. Additionally,
facial recognition tools, a subtype of supervised learning in ML, have the potential to demonstrate the
projected results of aesthetic surgeries, thereby assisting in managing patient expectations[2,14].

Few systematic reviews have explored the role of AI in plastic surgery in recent years[2,3,11,13]. While these
reviews provide medical professionals with valuable insights into the emerging applications of AI across
various fields of plastic surgery, they also highlight the need for further research in certain areas. Notably,
Mantelakis et al. noted a significant gap in AI research related to hand surgery and the use of ML in this
domain[3]. In addition, three[2,3,11] of the four systematic reviews were limited to articles published up to 2020,
and the fourth[13] covered articles up to 2021. Given the rapidly increasing literature on the applications of
AI in medicine, the aim of this systematic review was to provide a comprehensive analysis of its application
within the field of hand and wrist surgery.

METHODS
A comprehensive literature search was conducted across PubMed, Embase, Medline and Cochrane
libraries, adhering to the preferred reporting items for systematic reviews and meta-analyses (PRISMA)
guidelines[15]. The search focused on identifying articles related to the application of AI in hand surgery,
using multiple relevant keywords. Each identified article was assessed based on its title, abstract, and full
text. The primary search was conducted on August 6, 2024, utilizing the following keywords in articles’
titles and abstracts: “Artificial Intelligence” OR “Computer-Aid” OR “Machine learning” OR “ChatGPT”
along with specific terms related to hand surgery such as “hand surgery” OR “wrist surgery” OR “plastic
surgery” OR “wrist” OR “finger” OR “Peripheral Nerve Surgery” OR “scaphoid” OR “carpal bone” OR
“thumb”. A variety of terms for AI were included to ensure comprehensive coverage of ML-related articles
in the field of hand surgery.

In total, 1,228 articles were identified and screened using the Covidence platform. Two reviewers initially
screened the articles based on the relevance of titles and abstracts. All articles that did not refer to the
application of AI to specific concepts related to hand or wrist surgery were excluded. Two hundred and
twenty-five articles advanced to full-text screening. The inclusion and exclusion criteria applied are
included in Table 1. Excluded articles included duplicates, letters to the editor, systematic reviews, non-
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Figure 1. Flowchart detailing the systematic review process showing the number of articles identified and screened and those included in
the final study.

Table 1. Inclusion and exclusion criteria of the systematic review

Inclusion criteria Exclusion criteria
Articles on the integration of AI in hand and wrist surgery
Articles published between 2014-2024

Letters to the editor
Systematic reviews
Articles not related to hand or wrist surgery
Languages other than English
Articles related to prosthetic hand or arm

AI: Artificial intelligence.

English publications, content unrelated to hand or wrist surgery, and articles published over a decade ago.
A full-text review conducted by a single reviewer led to the extraction of 90 articles, which were
subsequently confirmed by a second reviewer. Each included study then underwent a manual bibliographic
review to identify other relevant studies that were not included in the primary search. This process led to
the inclusion of eight additional articles, bringing the total number of articles covered in this review to 98.

The focus of this study was to explore the application of ML in the diagnosis and management of various
hand conditions, including hand and wrist fractures, peripheral nerve injuries, carpal tunnel syndrome
(CTS), osteoarthritis (OA), and triangular fibrocartilage complex (TFCC) disorders. By examining these
innovative technologies, this study seeks to assist hand surgeons in integrating ML into their practice.
Therefore, an emphasis is placed on evaluating the performance of AI as well as its potential to enhance
resident training and improve patient communication. However, this research does not address
rehabilitation or the use of prosthetic arms and hands following nerve injury or amputations [Figure 1].

RESULTS
Use of large language model in AI
This review identified ten articles that focused on AI’s performance in executing various tasks relating to
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hand surgery.

A common area in which AI’s performances were evaluated was answering hand surgery multiple-choice
exam questions. Thibaut et al. compared ChatGPT-3.5’s performance to Google’s Bard Chatbot[16]. Both
large language models (LLMs) were tasked with answering 18 questions from the European Board of Hand
Surgery (EBHS). This study showed that both platforms failed to obtain a passing score and did not adapt
their response even after the authors provided the correct answer. A similar study carried out in 2024
tasked ChatGPT-3.5 and ChatGPT-4 with answering the 2021 and 2022 Self-Assessment Examinations
(SAE) of the American Society for Surgery of the Hand (ASSH)[17]. ChatGPT-4 performed significantly
better, with an overall score of 68.9%, compared to ChatGPT 3.5’s 58.0%. These findings align with Ghanem
et al.’s study, which reported that ChatGPT-4 achieved an overall passing score of 61.98% in the ASSH 2019
exam[18]. Despite ChatGPT’s improvement with newer versions, most studies highlighted it is limited by its
incapacity to take clinical context into consideration[17-20].

In contrast to other studies, Leypold et al. showed that ChatGPT-4 was successful in understanding upper
limb surgical scenarios and in identifying relevant treatment options[21]. These results do not entirely align
with the findings of Seth et al., who showed that although the information provided by ChatGPT was
accurate, it was mostly superficial and limited to well-studied information[20]. This suggests that ChatGPT
might not be able to interpret more complex cases.

Similarly, Seth et al. conducted two more studies to evaluate ChatGPT’s knowledge and reliability for
common hand surgery conditions, focusing on CTS[22] and scaphoid fracture management[23]. The same
methodology was used to assess both conditions. The authors concluded that the algorithm showed a good
understanding of the questions and provided logical answers that were easily understandable. Nevertheless,
some responses were deemed superficial, lacking detailed explanations, and occasionally, the AI model
included references to nonexistent publications.

Ajmera et al. explored a different aspect of ChatGPT’s performance by assessing its performance in
generating anatomical images of six different joints, including the wrist[24]. This study concluded that
ChatGPT’s performance was below average, with significant anatomical errors such as incorrect
articulations, missing or fake bones.

AI-assisted fracture detection
The main application of AI in hand and wrist surgery remains the detection of fractures. Identified studies
predominantly addressed distal radius fractures, ulna styloid fractures, distal ulna fractures, and scaphoid
fractures.

In 2017, Olczak et al. were one of the first to demonstrate that DL networks performed similarly to senior
orthopedic surgeons in identifying fractures. Their study used a dataset of 256,458 wrist, hand, and ankle
radiographs to train and test five DL networks. The best-performing network achieved an 83% accuracy in
identifying fractures, comparable to senior orthopedic surgeons[25]. Similarly, Lee et al. found that AI
assistance improved inexperienced radiologists’ accuracy in scaphoid fracture detection[26]. Lindsey et
al. also used a DL network to detect wrist fractures, aiming to assist physicians in their diagnosis[27]. Overall,
there was a 47.0% reduction in misinterpretation rate. These findings are consistent with Cohen et al.’s
study, which noted an increase in wrist fracture detection by non-specialized radiologists when assisted by
AI[28]. While these studies show promise, it is important to note that the sensitivity of AI is not perfect and
that their performance might be reduced with more complex fractures. In 2022, Hardalaç et al. combined
five ensemble models to create the “wrist fracture detection-combo (WFD-C)”, which had the highest
detection rate compared to other models, with an 86.39% average precision[29].

Lysdahlgaard explored a different approach for AI automated fracture detection by investigating the
potential of heat maps[30]. Using the MURA dataset, 20 ML models were used to interpret heat maps
generated from X-rays. The overall accuracy for all the models combined was 81% for wrist radiographs.
Alammar et al. also used the MURA dataset to collect radiographs of the humerus and wrist to enhance the
performance of a pre-trained convolutional neural network (CNN) model, originally adapted from
ImageNet[31]. The proposed algorithm achieved an AUC of 0.856, thereby outperforming ImageNet models
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that did not receive additional training. Similarly, in 2024, Jacques et al. compared the performance of 23
radiologists with varying levels of experience with and without AI assistance[32]. BoneView (Gleamer), the
DL model used in this study, achieved an AUC of 0.764 for fracture detection. AI assistance enhanced
radiologists’ sensitivity by 4.5% but did not affect their specificity.

Distal radius fracture
Kim and MacKinnon were among the firsts to apply a CNN specifically to the detection of distal radius
fracture. In their study, a pretrained Inception v3 network was enhanced using a set of lateral wrist
radiographs[33]. While this study successfully demonstrated a proof of concept where the model achieved an
AUC of 0.954, researchers acknowledged that incorporating a second imaging view could potentially
improve the model’s diagnostic performance. In 2019, Gan et al. further explored the application of AI in
distal radius fracture detection by using anterior-posterior (AP) views instead of lateral projection[34]. They
trained the Inception-v4 model as a diagnostic tool and the Faster region-based convolutional neural
network (R-CNN) model as an auxiliary algorithm tasked with identifying regions of interest within the
radiographs. The Inception-v4 model achieved an AUC of 0.96 and an overall diagnostic accuracy of 93%.
Their findings also suggest that AI achieves detection rates comparable to those of an experienced
orthopedic surgeon when using AP radiographs. Similarly, Thian et al. utilized the Inception-ResNet and
the Faster R-CNN models, training them on 7356 postero-anterior (PA) and lateral wrist radiographs to
detect fractures[35]. The combined model achieved a diagnostic accuracy of 91.2% for radius fractures and
96.3% for ulna fractures on the PA and lateral projections, respectively. Oka et al. trained a different DL
model, VGG16, on 498 AP images and 485 lateral radiographs of the distal radius, as well as 491 images of
the styloid process of the ulna. The model demonstrated a diagnostic accuracy of 98.0% (AUC 0.991) for
distal radius fractures and 91.1% (AUC 0.991) for fractures of the styloid process[36].

Russe et al. also conducted a study evaluating various AI models for detecting distal radius fractures by
using three models: a classification model to recognize fractures images, a segmentation model to locate
precise fracture boundaries within images, and a detection model to identify fractures[37]. This model
achieved high accuracies, up to 97%, and effective fracture localization. Likewise, Zhang et al. developed
and evaluated a DL algorithm for diagnosing distal radius fractures based on X-ray images[38]. Their study
included a total of 3,276 wrist X-ray films. The DL model achieved a high accuracy of 97.03%, with a
sensitivity of 95.70% and a specificity of 98.37%, outperforming both orthopedic and radiology attending
physicians. Anttila et al. employed a segmentation-based U-net model, which accurately identified distal
radius fracture with an AUC of 0.97 for radiographs without casts[39]. Accuracy was better in PA views
compared to lateral views.

As for Mert et al., they evaluated ChatGPT 4’s capability in detecting distal radius fractures through
radiological images, comparing it with human specialists (a hand surgery resident, a medical student) and
an AI system (Gleamer BoneViewTM)[40]. The results indicate that ChatGPT 4 demonstrates good diagnostic
accuracy, significantly outperforming the medical student, but was outperformed by both the hand surgery
resident and Gleamer BoneViewTM.

Scaphoid fracture
Our review identified 11 articles focusing on the role of AI in detecting scaphoid fractures, with two
specially examining its potential in identifying occult fractures.

In 2020, Ozkaya et al. conducted a study to evaluate a CNN model’s ability to detect scaphoid fractures
using AP wrist radiographs[41]. The CNN model achieved an AUC of 0.840, performing comparably to the
less experienced orthopedic surgeon, and it surpassed the ED physician (0.760 AUC), but was
outperformed by the expert hand surgeon (0.920 AUC).

Similarly, Hendrix et al. compared a self-developed CNN model’s performance in detecting scaphoid
fractures on AP and PA hand radiographs to that of 11 radiologists[42]. The segmentation CNN achieved a
Dice coefficient of 0.974 while the fracture detection CNN achieved an AUC of 0.87, performing
comparably to the radiologists. It is important to note that in this study, radiologists were limited to a single
view for fracture detection, whereas multiple views are generally used in clinical settings.
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In a follow-up study, Hendrix et al. expanded on their previous work by using a larger dataset to train the
same CNN model and compared its performance to five MSK radiologists[43]. In this study, the CNN model
achieved an AUC of 0.88, slightly outperforming the radiologists. The inclusion of ulnar-deviated and
oblique views enhanced the model’s accuracy. The results also demonstrated that the CNN model reduced
the reading time for four out of five radiologists by 49.4%. Nevertheless, it was noted that AI integration did
not significantly improve most radiologists’ diagnostic accuracy.

In 2021, Tung et al. also published on this topic by comparing multiple CNN models in detecting scaphoid
fractures[44]. Among the models without additional transfer learning training, DN121 had the highest AUC
with 0.810, while VGG16 demonstrated the highest precision with 100% accuracy and 1.00 specificity. After
the application of transfer learning, RN101 achieved the highest AUC with 0.950. Yang et al. also proposed
a combination of two CNN models for scaphoid area segmentation and fracture detection[45]. The Faster R-
CNN was used to identify the fracture region, followed by ResNet to detect the presence of fracture. The
study utilized a dataset of scaphoid radiographs, which included 31 images of occult fractures. The
proposed algorithm achieved an AUC of 0.917 for scaphoid fracture detection.

Scaphoid fracture prediction
Bulstra et al. trained five ML models to calculate scaphoid fracture probability using clinical and
demographic features such as mechanism of injury, sex, age, affected side, and examination maneuvers[46].
All models achieved an AUC above 0.72, with Boosted decision tree outperforming the others with an AUC
of 0.77. Pain over the scaphoid on ulnar deviation and male sex were the predictors with the highest
correlation to scaphoid fractures. Using these features, an algorithm was developed suggesting that patients
with radial-sided wrist pain, negative radiographs, and a fracture probability of 10% or more should
undergo further imaging. When applied to the study’s patients, the algorithm achieved 100% sensitivity and
reduced the need for additional imaging by 36% without overlooking any fractures.

Occult fracture detection
Langerhuizen et al. advanced research in this field by exploring AI’s potential in detecting occult scaphoid
fractures, aiming to enhance radiologists’ detection capabilities[47]. The single-step pretrained CNN used in
this study achieved an AUC of 0.77, performing similarly to orthopedic surgeons but with a lower
specificity. The model was also able to detect five out of six occult scaphoid fractures that were missed by
human experts, but it struggled with detecting fractures that were obvious to human observers. Yoon et al.
also explored the detection of occult scaphoid fractures by developing a three-step model[48]. The first CNN
was tasked with segmentation, while the second model was used to detect scaphoid fracture. As for the
third, its role was to analyze the cases that were considered negative by the previous AI, aiming to detect
overlooked fractures. This CNN model successfully detected 90.9% of occult fractures, correctly identifying
20 out of 22 cases.

Raisuddin et al. published a study focusing on the detection of occult distal radius fractures, requiring CT
imaging for detection. In this study, the authors developed a DL model, Deep Wrist, and evaluated its
performance in challenging cases[49]. To validate the model’s efficacy, it was initially tested on a general
population test set, where it achieved a diagnostic accuracy of 99% and an AUC of 0.99. However, when
tested on the occult fracture dataset, the model’s accuracy dropped to 64%. The model performed slightly
better when both lateral and AP views were used together, compared to using the lateral view alone.

Reducing X-ray projections
Building upon the established efficacy of AI in detecting fractures on radiographs, Janisch et al. explored
CNN’s potential to reduce the standard X-ray requirements for diagnosing torus fractures of the distal
radius[50]. Currently, common practice often requires at least two complementary projections, AP and
lateral views of the wrist. This traditional approach, while thorough, results in increased radiation exposure
and patient discomfort. Three CNNs were trained on a pediatric dataset and achieved AUCs ranging from
0.945 to 0.980. EfficientNet-B4 emerged as the most accurate, outperforming radiologists and pediatric
surgeons.

Applications in pediatric
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Zech et al. have made significant contributions to the application of DL models in pediatric fracture
detection, publishing three articles. The first study analyzed the performance of an open-source AI
algorithm in the detection of pediatric upper extremity fractures based on 53,896 radiographs[51]. In this
study, attendings’ accuracy in detecting fractures improved slightly with AI. In contrast, radiology and
pediatric residents showed significant improvement with AI. AI showed its superiority especially in
identifying non-obvious fractures (non-displaced or non-angulated). The second study focused on wrist
injuries. The Faster R-CNN model accurately identified distal radius fractures with an AUC of 0.92[52].
Additionally, the use of AI significantly improved residents’ fracture detection rates from 69% to 92%. To
further enhance the model’s performance, Ilie et al. conducted a subsequent, more comprehensive study
utilizing a database of 58,846 upper extremity fracture images[53]. This successfully improved the model’s
diagnostic accuracy across various fracture types and anatomical regions, notably by an increase of the
AUC to 0.96.

A compilation of published articles focusing on AI-driven fracture detection in the hand or wrist (including
the distal radius and ulna, carpal bones, and fingers) is presented in Table 2.

AI as an adjuvant in ultrasound fracture detection
While X-rays remain the gold standard for diagnosing distal radius fractures, the use of ultrasound (US) in
emergency departments (ED) has gained popularity due to its accessibility, minimal training requirements,
and capacity to assess surrounding soft tissues.

Zhang et al. were the first to explore the potential of US for fracture detection, aiming to reduce
unnecessary radiation exposure for children without fractures[56]. In their study, they used a three-
dimensional ultrasound (3DUS) as a diagnosis tool for patients presenting with wrist tenderness before
undergoing X-rays. The findings demonstrated that 3DUS had a diagnostic accuracy of 96.5% for distal
radius fractures, establishing it as a reliable method for fracture detection in a pediatric setting. Moreover,
the CNN model trained to interpret US images detected all fractures with 100% sensitivity and 87%
specificity, matching the sensitivity of the pediatric MSK radiologist.

In 2023, Knight et al. also assessed the diagnostic accuracy of 3DUS for the detection of distal radius
fractures while also comparing it to two-dimensional ultrasound (2DUS)[57]. AI models, ResNet34 and
Densenet121, were trained on 16,865 images for 2DUS and 15,882 images for 3DUS. Densenet121 had a
higher accuracy than ResNet34 with 2DUS (0.94 vs. 0.89), while ResNet34 achieved perfect accuracy with
3DUS (1.00), compared to 0.94 for DenseNet121. Overall, AI’s ability to accurately read images was
demonstrated, performing comparably to experts in the field with over a decade of experience.

AI-assisted OA diagnosis and management
In Caratsch et al.’s study, an automated ML model was used for distal hand osteoarthritis (DIP-OA)
detection and classification on radiographs[58]. The ML platform used for this study was Giotto [learn to
forecast (L2F)], which achieved an overall accuracy of 75%, but its precision decreased for higher grades of
OA. Similarly, Overgaard et al. used a CNN-based model (U-Net++) to assess OA severity according to the
EULAR-OMERACT grading system (EOGS)[59]. The AI model achieved strong agreement with expert
judgments, slightly outperforming previous studies. Moreover, this model provided visual explanations by
marking bone (red), synovium (blue), and osteophytes (pink) on the images, aiding clinicians in
understanding how the AI arrived at its assessments.

Loos et al. published an article exploring the potential of AI in predicting pain and hand function
improvement one year post thumb carpometacarpal OA surgery[60]. Among the models used, Rain forest
showed superior performance in predicting pain outcomes using 27 variables, but it still produced a
relatively poor AUC of 0.59. On the other hand, gradient boosting machine (GBM) outperformed other
models in predicting hand function outcomes, achieving an AUC of 0.74.

CTS diagnosis and management
CTS, the most prevalent compressive mononeuropathy, significantly impacts patients’ quality of life. This
justifies hand surgeons’ exploration of AI applications to enhance the diagnostic accuracy and management
of this condition which frequently requires surgical decompression to improve symptoms.
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Table 2. Compilation of published articles focusing on automated fracture detection in the hand or wrist using ML models

Study Fracture site Dataset size
(view)

ML model used AUC Sensitivity Specificity

Olczak et al.
(2017)[25] Wrist or hand or

ankle
256,000 Multiple DL

networks (BVLC
Reference CaffeNet
network, VGG CNN
S network, VGG
CNN, Network-in-
network)

0.83 - -

Lee et al.
(2023)[26] Distal radius, ulnar

styloid or scaphoid
5,618 (AP, lat, and
oblique)

e-CRF, self-
developed AI model

Distal radius: 0.903
Ulnar styloid: 0.925
Scaphoid: 0.808

Distal radius: 0.97
Ulnar styloid:0.98
Scaphoid: 0.87

Distal radius: 0.83
Ulnar styloid:0.87
Scaphoid: 0.74

Lindsey et al.
(2018)[27] Wrist 34,990 (PA, lat) Self-developed

deep neural
network

0.954 0.94 0.95

Cohen et
al. (2023)[28] Distal radius or

ulnar styloid or
distal ulna or
metacarpal or
scaphoid or carpal
bone

1,917 (AP, lat,
oblique, specific
views of the
carpus)

BoneView
(Gleamer) DCNN
algorithm

- 0.83 0.96

Hardalaç et al.
(2022)[29] Distal radius or

distal ulna
542 WFD-C, deep-

learning-based
object detection
model

0.864 - -

Alammar et al.
(2023)[31] Humerus or wrist 10,558 TL adaption of

ImageNet models
Humerus: 0.879
Wrist: 0.856

Humerus: 0.87
Wrist: 0.89

Humerus: 0.87
Wrist: 0.93

Jacques et al.
(2024)[32] Distal radius or

distal ulna or carpal
bones or scaphoid
or finger

788 BoneView
(Gleamer)

0.764 0.70 0.89

Kim and
MacKinnon.
(2018)[33]

Distal radius or
distal ulna

1,489 (lat) Inception v3
network, DCNNs

0.954 0.90 0.88

Gan et al.
(2019)[34] Distal radius 2340 wrist (AP) Inception-v4 0.96 0.90 0.96

Oka et al.
(2021)[36] Distal radius,

styloid process of
ulna

1,464 (AP, lat) VGG16 Distal radius: 0.99
Ulna: 0.96

Distal radius: 0.99
Ulna: 0.92

Distal radius: 0.97
Ulna: 0.90

Russe et al.
(2024)[37] Distal radius 2,856 (AP, lat) Xception 0.97 0.95 0.95

Zhang et al.
(2023)[38] Distal radius 6,536 (AP, lat) Ensemble model of

RetinaNet, Faster
RCNN and Cascade
RCNN

0.97 0.96 0.98

Anttila et al.
(2023)[39] Distal radius 3,785 (PA, lat) Self-developed DL

algorithm
developed as
standalone
MATLAB
application

0.95 0.86 0.89

Mert et al.
(2024)[40] Distal radius 150 (AP, lat) ChatGPT 4 0.93 0.88 0.98

Ozkaya et al.
(2022)[41] Scaphoid 390 (AP) Pre-trained

ResNet50 network
0.84 0.76 0.92

Hendrix et al.
(2021)[42] Scaphoid 4,229 (AP, PA) Self-developed

fracture detection
and segmentation
CNN

0.87 0.78 0.84

Hendrix et al.
(2023)[43] Scaphoid 19,111 (AP, PA, ulnar-

deviated and
oblique)

Self-developed
fracture detection
and segmentation
CNN

0.88 0.72 0.93

Tung et al.
(2021)[44] Scaphoid 356 VGG16, VGG19,

RN50, RN101,
RN152, DN121,
DN169, DN201, Inv,
ENB0

RN101: 0.950
DN201: 0.910

RN101: 0.889
DN201: 0.944

RN101: 0.889
DN201: 0.861

Yang et
al. (2022)[45] Scaphoid 361 ResNet 0.917 0.735 0.920

Langerhuizen et al.
(2020)[47] Scaphoid 300 (scaphoid

series)
Open source
pretrained CNN
(Visual Geometry
Group, Oxford,
United Kingdom)

0.77 0.84 0.60

Yoon et al.
(2021)[48] Scaphoid 11,838 (PA,

scaphoid view)
DCNN based on the
EfficientNetB3
architecture

Fracture detection:
0.955
Occult fracture
detection: 0.81

0.87 0.92
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Raisuddin et al.
(2021)[49] Distal radius 4,497 (AP, lat) DeepWrist General test: 0.990

Occult fractures:
0.84

General test: 0.97
Occult fractures:
0.60

General test: 0.87
Occult
fractures:0.92

Zech et al.
(2023)[51]* Distal radius 395 (AP) Faster R-CNN

model
0.92 0.88 0.89

Ilie et al. (2023)[53] Finger, hand, wrist,
forearm, elbow,
humerus, shoulder,
clavicule

58,846 Faster R-CNN 0.96 0.91 0.89

Watanabe et al.
(2019)[54] Distal radius or

distal ulna
7,356 (PA, lat) Inception-ResNet

Faster R-CNN
0.918 (PA)
0.933 (lat)

0.957 (PA)
0.967 (lat)

0.825 (PA)
0.864 (lat)

Orji et al.
(2022)[55] Finger 8,170 ComDNet-512

(deep neural
network-based
hybrid model)

0.894 0.94 0.85

*Pediatric studies. ML: Machine learning; AUC: area under the receiver operator characteristic curve; CNN: convolutional neural network; AP:
anterior-posterior radiograph projection; lat: lateral radiograph projection; AI: artificial intelligence; PA: posterior-anterior radiograph projection;
WFD-C: wrist fracture detection-combo; DCNN: deep convolutional neural network; R-CNN: region-based convolutional neural network.

Symptoms, physical examination and electromyography (EMG) remain the gold standard for CTS
diagnosis and severity assessment. Nevertheless, no widely used screening test has been implemented. In
2021, Watanabe et al. explored the accuracy of an application designed for CTS screening[54]. Their app
requires users to draw spirals using a stylus while a pretrained algorithm analyzes the trajectory and the
pressure applied during the drawing. The application achieved a sensitivity of 82% and a specificity of 71%
in diagnosing CTS, which was inferior to other previously developed apps.

Koyama et al. also developed an application programmed with an anomaly detection algorithm to screen
for CTS based on patients’ difficulty with thumb opposition[61]. The app, available for download on
smartphones, was able to diagnose CTS, achieving an AUC of 0.86, demonstrating a performance
comparable to traditional physical examination methods. To enhance the model’s accuracy, the data were
subsequently modified to focus only on the directions that corresponded with thumb opposition.

US is widely used for the diagnosis of CTS. Faeghi et al. explored the diagnostic accuracy of a computer-
aided diagnosis (CAD) system developed using radiomics features extracted from US images of the median
nerve[62]. The CAD system outperformed both radiologists in this study by achieving an AUC of 0.926.
Shinohara et al. also investigated the role of DL in diagnosing CTS using US images[63]. The primary focus
of their study was to bypass the traditional method of measuring the median nerve’s cross-sectional area
(CSA). The authors applied transfer learning to three pretrained AI models. The algorithm achieved an
accuracy of 0.96, thereby demonstrating its potential to detect CTS without relying on CSA measurements.
Despite these promising outcomes, the study faced limitations due to the lack of external validation and the
relatively small dataset. To address these limitations, Mohammadi et al. conducted a similar study to that of
Faeghi et al., incorporating a larger dataset of 416 median nerves extracted from two countries, Iran and
Colombia, which was used to train and evaluate multiple DL models[64]. The highest-performing algorithm
achieved an AUC of 0.910 in the internal validation test and an AUC of 0.890 in the external validation test.

In 2023, Kim et al. also published on this topic. Their study compared ML analysis to conventional
quantitative grayscale analysis of US images for diagnosing CTS[65]. The conventional quantitative analysis
evaluated the mean echo intensity (EI) by calculating mean thenar EI/mean hypothenar EI ratio. Their
findings indicate that hands affected by CTS had a higher EI ratio. However, this method had poor
performance metrics, achieving an AUC of 0.755. In contrast, the ML model significantly outperformed the
conventional method, achieving an AUC of 0.89.

Similarly, Kuroiwa et al. investigated the role of DL in US diagnosis of CTS[66]. Their study introduced an
innovative approach that focuses on measuring the volume of the median nerve to diagnose CTS on US
images in contrast to CSA measurement. The DL prediction model used achieved a Dice score of 0.80,
which is highly comparable to the manual tracing, which had a Dice score of 0.76. Additionally, compared
to a human reader, the DL model achieved a 0.99 accuracy rate with an AUC of 0.91 with the test data set.

Electrophysiological nerve conduction studies (NCS) have long been the gold standard in diagnosing and
classifying CTS. Tsamis et al. explored different AI models’ ability to automatically classify and accurately
diagnose this condition[67]. Five ML models were trained with common electrodiagnostic features, as well as
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additional physiological and mathematical characteristics. Support vector machine (SVM) achieved the
highest accuracy rate and demonstrated its superiority when classifying disease severity, outperforming
both NSC and clinical diagnosis.

Bakalis et al. conducted a study comparing AI’s role in diagnosing CTS through motor versus sensory nerve
conduction approaches[68]. For the motor approach, various CNNs were employed to analyze motor signals
recorded from the participants’ median nerve and to subsequently classify subjects into patients or controls.
CONV2D outperformed other CNNs, achieving an overall accuracy rate of 94%. In the sensory approach,
the RF model excelled with a 97.12% accuracy in diagnosing the severity of CTS and excluding other
mononeuropathies, making it the top performer in this section.

In 2023, Elseddik et al. published a study focusing on the development of a ML model designed to
determine CTS severity[69]. The proposed model demonstrated its ability to accurately diagnose CTS and
classify its severity, even when presented with data from other conditions with overlapping symptoms.
Additionally, the AI model was able to precisely predict patient improvement probability following median
nerve hydrodissection, making it a potentially useful tool for preoperative patient expectation management.
Similarly, Park et al. conducted a study to assess AI’s efficacy in classifying the severity of CTS using
personal, clinical, and imaging features[70]. All the models in the study had an overall accuracy rate of over
70%.

In 2022, Harrison et al. explored AI’s ability to predict which patients would benefit most from carpal
tunnel decompression (CTD)[71]. The highest-performing model for predicting functional and symptomatic
improvement was Extreme Gradient Boosting (XGBoost), which achieved an accuracy rate of 71.8% and
75.9% for functional and symptomatic improvement, respectively. Hoogendam et al. also focused on
developing a ML model to predict symptom improvement following CTD[72]. GBM was the highest-
performing model, achieving an AUC of 0.723.

Loos et al. compared the ability of hand surgeons to predict symptom improvement after CTD with that of
AI models[73]. The hand surgeons achieved an accuracy rate of 0.65 with an AUC of 0.62. In contrast, the AI
prediction model achieved a higher accuracy rate of 0.78 with an AUC of 0.77. It is important to note that
the AI prediction model had access to several patient-reported outcome measures to complete its task. This
information is not routinely compiled by hand surgeons, which could contribute to the difference in
performance noted between the two groups.

AI-assisted surgery
AI as an adjunctive in wrist arthroscopy
Orgiu et al. developed an AI algorithm to help identify carpal bone structures during wrist arthroscopy[74].
The researchers collected and labeled images from 20 procedures to train and test a DeepLabv3+
classification algorithm. Their model achieved an average Dice score of 89%, indicating that it can
effectively assist in identifying carpal bone structures during wrist arthroscopy. Nevertheless, the
algorithm’s performance varied among different bones, with some such as the capitate and triquetrum
achieving high accuracy rates, while others including the scaphoid and lunate showed moderate results.

Robotics in microsurgery
Henn et al. provide an overview of the current status, advancements, challenges, and future prospects of
robotic surgery in plastic surgery[75]. The da Vinci surgical system is highlighted as the most popular
platform, widely used across multiple surgical disciplines for its articulated robotic arms and enhanced
imaging capabilities. Specific applications in plastic and hand surgery include automated or assisted
microvascular anastomosis. Despite its benefits, there are several limitations to the adoption of robotic
surgery, including its high initial costs and the need for specialized training for its effective use, as well as
the ethical and legal concerns regarding accountability and patient safety.

Integrating AI in hand and wrist surgery training
In 2023, Mohapatra et al. explored the role of AI, specifically LLM, such as ChatGPT, in the training of
plastic surgery residents[76]. The authors identified several teaching assistant (TA) tasks that LLMs can
perform, including generating interactive case studies, simulating preoperative consultations, and
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formulating ethical considerations. ChatGPT was found to be capable of assisting faculty with classroom
instructions, grading papers, and providing feedback on assignments. Clarity and usefulness constituted
AI’s biggest strengths, particularly in simulating preoperative consultations. However, when analyzing
ChatGPT’s ability to provide step-by-step guidance for procedures such as microsurgical arterial
anastomosis, evaluators noted that while AI provided accurate steps, it omitted some critical components
and generated certain inaccurate statements, potentially leading to resident confusion.

AI-assisted patient education
Our review identified five articles focused on the use of AI for patient communication purposes. Jagiella-
Lodise et al. evaluated the widest variety of conditions, including CTS, Dupuytren contracture, De
Quervain tenosynovitis, trigger finger and metacarpal arthritis[77]. The authors looked to evaluate the
accuracy and the completeness of answers provided by ChatGPT 3.5 when questioned on symptoms,
pathology, management, surgical indications, recovery time, insurance coverage, and worker’s
compensation availability. Their findings suggest that ChatGPT’s overall answers were adequate, but not
complete, which led to a lack of comprehension. Amen et al. also tasked ChatGPT with answering common
questions asked by patients suffering from CTS[78]. The authors concluded that ChatGPT provided overall
reliable and easily understandable answers for patients. Moreover, the algorithm did not provide any
patient-specific advice, but instead directed individuals to consult healthcare professionals. Nevertheless,
some AI recommendations lacked evidence, and the “black box” concern, which refers to the lack of
transparency regarding the source of the information generated by AI, remains a challenge.

In 2023, Croen et al. compared ChatGPT 3.5’s answers to those of Google Web Search regarding frequently
asked questions about CTD[79]. Although ChatGPT’s answers were more detailed and were based on
multiple academic sources, they were significantly more difficult to understand. Pohl et al. highlighted
similar results when comparing ChatGPT’s answers to MedMD and Mayo Clinic regarding various types of
hand surgeries including CTD[80]. Similarly, when asked to provide answers at a fourth-grade reading level,
ChatGPT generated answers at an average of a tenth-grade reading level. Browne et al. also found that
ChatGPT-4 reduced the reading level of information related to hand procedures by a mean of two grade
levels, reaching a sixth-grade reading level[81].

Other diagnostic applications
Avascular necrosis detection
Avascular necrosis (AVN) of the lunate is a rare and potentially asymptomatic condition, but its delayed
diagnosis and treatment can lead to decreased hand function. To address this, Wernér et al. conducted a
study investigating a DL model’s potential to diagnose AVN of the lunate using radiographs[82]. A DL model
was developed by the authors within the AI environment Aiforia Create (version 5.5) and was trained to
detect AVN of the lunate. The model achieved an AUC of 0.94 and accurately detected AVN in 28 out of 30
cases. The model was outperformed by a hand surgeon and a radiologist but demonstrated significant
screening potential.

TFCC injuries prediction
Visualizing the TFCC remains a significant challenge in hand surgery. In 2022, Lin et al. explored the
potential of DL for predicting TFCC injuries based on magnetic resonance imaging (MRI) scans[83]. Two
CNNs, MRNet and ResNet50, were trained and tasked with detecting the presence of TFCC injuries.
ResNet50 significantly outperformed MRNet and both radiologists.

Enchondroma diagnosis
Enchondromas are common benign bone masses that can cause pain and edema in the hand. Their
presence also increases the risk of bone fractures. In 2023, Anttila et al. investigated the capability of DL to
detect enchondroma on hand radiographs[84]. The DL model achieved an AUC of 0.95, with a diagnosis
accuracy of 0.93, but was slightly outperformed by all three clinical experts.

Ganglion cysts identification
Ganglion cysts, commonly found in the hand and wrist, present a diagnostic challenge as they are often
hypoechoic. To address this issue, Kim et al. explored the potential application of AI models for diagnosing
this condition[85]. The authors developed a DL model composed of two sequential algorithms, which
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achieved a diagnostic accuracy of 75.43%. The results also indicate that the two-step process enhances the
model’s performance and reduces false positive rates, thereby improving the diagnostic accuracy of small
hypoechoic ganglion cysts.

Carpal instability identification
Carpal instability frequently occurs as a consequence of acute trauma, such as scaphoid or distal radius
fractures, often due to tears in the scapholunate (SL) ligament. Therefore, early identification of carpal
instability is crucial to avoid deterioration of this condition. Nevertheless, signs of carpal instability are
often unnoticed on conventional radiographs[86]. In response to this diagnostic challenge, Hendrix et al.
developed an AI model to identify and assess signs of carpal instability on X-rays[87]. The model
demonstrated mean absolute errors (MAE) of 0.65 mm in measuring SL distances, 7.9 degrees for SL angles,
and 5.9 degrees for capitolunate angles. Furthermore, the algorithm achieved an AUC of 0.87 for carpal arc
interruption detection, outperforming four out of five experts.

Peripheral nerve injuries
Gu et al. conducted a study focusing on the remote screening of peripheral nerve injuries[88]. Three gestures,
each corresponding to a specific nerve, were developed by an expert in the field to detect functional
abnormalities caused by radial, ulnar, or median nerve injury. The authors trained multiple algorithms who
all four achieved an accuracy rate above 95% for all three gestures, demonstrating their efficacy in detecting
abnormalities in the radial, ulnar, and median nerves.

Prolonged postoperative opioid use prediction
It is well known that opioid use is common after hand surgery. To address this, Baxter et al. conducted a
study exploring the potential of AI in predicting prolonged opioid use post-hand surgery[89]. Their results
indicate that AI, with further training, can potentially be used to identify patients at risk of prolonged
opioid use, with one of the models achieving an AUC of 0.84.

AI LIMITATIONS
Despite the rapid advancement in the field of AI and its promising performance in controlled settings,
several challenges must be addressed before its full integration into hand surgery. One significant limitation
of many studies examining AI’s role in fracture detection is the lack of validation using external datasets,
often due to the small size and homogeneity of the samples. This limitation arises from data privacy and the
absence of large, labeled datasets across multiple institutions, as well as the need for expert labeling in
supervised learning[33]. Additionally, methodological variations, concerns about applicability, risks of bias,
and differences in diagnostic protocols between centers further complicate the integration of AI into
clinical practice, highlighting the necessity of standardized guidelines to ensure the quality and reliability of
AI-driven models and provide structured and consistent methodologies[46]. Moreover, most existing studies
are retrospective, which, while useful for demonstrating proof of concept, fall short of establishing the
robust evidence required for clinical application. Therefore, prospective studies are needed to confirm the
performance metrics and to demonstrate AI’s potential to enhance patient management and outcomes.

Moreover, while LLMs have shown their potential in accessing, interpreting, and synthesizing extensive
amounts of information, they still struggle with complex cases that require the integration of nuanced
clinical contexts. Despite advancements in newer versions, these models are not yet fully equipped to meet
the clinical needs of patients and healthcare providers. Similarly, to ensure the effective integration of AI
models into academic contexts, there is a need for further training to enhance the validity of AI-generated
content and to improve the transparency of the sources from which this information is derived.

Finally, it is also essential to acknowledge that at this stage of its evolution, AI does not possess the
capability to replace humans. Numerous ethical and liability concerns must be thoroughly examined before
such a possibility can even be considered. As AI technology continues to advance, it is crucial to develop
clear guidelines and establish a robust regulatory framework in parallel, ensuring that these innovations are
integrated responsibly and ethically.

SIMILAR WORK
We would like to highlight previous studies conducted on the usefulness of AI in the field of hand and wrist
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surgery. Firstly, a 2023 article published by Miller et al. aimed to educate hand surgeons on AI, its current
applications, and its potential integration into their practice[90]. This paper explored various roles of AI,
including fracture detection, decision-making processes, and outcome prediction. The authors described
AI’s potential to enhance diagnostic accuracy, facilitate orthopedic surgery referrals, and aid in scan
assessments. Similarly, our review offers a more comprehensive analysis of AI’s potential in detecting a
wider range of hand and wrist fractures including distal radius and ulna fractures using various imaging
techniques such as US and CT scans. In addition, AI applications in pediatric settings were also described
in our review.

Keller et al.’s literature review is the only one, to our knowledge, that specifically explored the application of
AI in hand surgery[91]. Their primary search identified 435 articles, with 235 ultimately included in their
final analysis. Their findings were categorized based on the roles of AI, which included automated image
analysis of anatomic structures, fracture detection, various other applications, and those loosely related to
hand surgery. This paper was essentially intended for hand surgeons and therapists, as it also explored
aspects of hand rehabilitation. Considering the rapid evolution of AI and the fact that Keller et al.’s review
was conducted in July 2021, our review aims to update surgeons on the innovations and advancements
made since then. Moreover, our review was conducted from an academic plastic surgery perspective, which
justifies the inclusion of AI’s role in education and patient communication, microsurgery, and a deep dive
into CTS. Therefore, our work builds on Keller et al.’s foundation but also expands the scope.

In addition, the literature includes other systematic reviews solely focused on the evaluation of AI in
fracture detection. For instance, Kraus et al., in 2023, identified ten studies on AI’s performance in detecting
scaphoid fractures using X-rays[92]. Our review identified and analyzed nine of these ten studies, using
performance metrics such as AUCs. Similarly, reviews by Oeding et al. and Singh et al. focused on AI’s
effectiveness in scaphoid fracture detection, yielding results consistent with our findings[93,94].

Nevertheless, this study faced some limitations. First, determining what type of articles to include was
challenging due to how vast the field of hand surgery is and the rapid pace of AI advancements. This was
addressed by exclusively including articles of clinical relevance to hand surgeons, which justifies the
exclusions of certain articles such as those related to rehabilitation and prosthetics for arms and hands.
Various combinations of keywords were used in searches on databases before identifying the most effective
keywords to identify the largest number of pertinent articles.

Second, the decision to only include articles published in the last decade narrows the scope of this review
regarding earlier contributions. Most articles covered in this review were published in 2023 and 2024, with
the inclusion of only one article each from 2017 and 2018. Nevertheless, the objective of this study was to
highlight the latest innovations in AI within hand and wrist surgery. Therefore, this limitation may impact
readers’ understanding of AI’s full evolution, as earlier milestones are shallowly addressed.

Third, to cover as many aspects of AI applications in hand surgery as possible, a lot of topics were included
in this paper. However, we recognize that conducting systematic reviews on each subject separately would
result in more extensive coverage. This is a potential avenue for future work, where more focused reviews
could be conducted.

CONCLUSION
The integration of AI into medicine marks the beginning of a transformative phase for this disciple. Despite
its current limited use in daily clinical practice, particularly in hand surgery, it is undeniable that AI holds
significant potential to revolutionize the field in the coming years. This review highlights the evolution and
expansion of diverse AI technologies. Nevertheless, further research is imperative to explore the practical
advantages of AI in clinical settings. In particular, expanding and diversifying the training datasets for AI
models to include a wider range of patient demographics and imaging modalities is crucial. This area
presents a promising avenue for future work, where more targeted studies could provide deeper insights.
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