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Abstract
Aging is a major risk factor for different neurodegenerative diseases (NDDs), including Parkinson’s disease (PD). In 
PD, one of the key neuropathological features is cytoplasmic protein aggregation, named Lewy bodies (LBs) in the 
cell body, and Lewy neurites (LNs) in neuronal processes and terminals. The protein α-synuclein (α-syn) has been 
found to be a major component of LBs and LNs, and is considered to play a central role in their formation. α-Syn 
also increases in healthy aging and in different disease conditions. Evidence has shown that aging promotes α-syn 
pathological aggregation and propagation and, therefore, may induce and aggravate PD pathogenesis. Here, we 
aim to highlight recent advances in age-related α-syn aggregation and prion-like propagation and discuss the 
subsequent consequences to neuronal functions.
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INTRODUCTION
Aging is a major risk factor for neurodegenerative diseases (NDDs)[1]. As the aging population grows, the 
number of patients with NDDs is increasing, creating a rising financial burden on families and society, 
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making effective prevention and treatment urgently necessary[2]. Parkinson’s disease (PD) is a common age-
related NDD after Alzheimer’s disease (AD), with typical motor symptoms, such as resting tremor, 
bradykinesia, and rigidity, and various non-motor symptoms, including sleep disorders, constipation, 
depression, autonomic dysfunction, etc.[3]. PD exhibits two major neuropathological characteristics: 
dopaminergic neuron loss in the substantia nigra pars compacta (SNpc) of the midbrain and the formation 
of Lewy bodies (LBs) and Lewy neurites (LNs)[4]. The primary protein component in the LBs and LNs is 
misfolded and aggregated α-synuclein (α-syn)[5,6]. Under physiological conditions, α-syn is widely present in 
different brain regions and the spinal cord, largely enriched in the presynaptic compartment, and is also 
present in the nucleus of neurons[7-9]. α-Syn also appears in the peripheral nervous system and is even 
abundant in different peripheral tissues, such as erythrocytes in the blood[10]. In neurons, α-syn is mainly 
defused in the cytosol, while a small fraction of the protein correlates with various subcellular organelles, 
such as synaptic vesicles[11-13], mitochondria[14], lysosomes[15,16], and microtubule[17,18]. Available evidence 
shows that α-syn may possess various physiological functions. α-Syn is involved in neurotransmission. It 
maintains the stability of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor 
(SNARE) complex and plays a role in endocytosis[11], and preserves mitochondrial fusion and function[14]. As 
the key protein component in the LBs and LNs, α-syn stays as monomers in the physiological state, while it 
undergoes processes of protein aggregation in response to various pathologic stimuli, such as iron 
deposition and microgliosis[19,20]. Emerging evidence has shown that α-syn accumulation and aggregation are 
toxic in transgenic animal models that overexpress wild-type or mutant α-syn[21-23]. Here, we will address 
age-dependent alterations of α-syn in neurons, particularly from increased protein accumulation to 
pathological aggregation and propagation. At the end, we will briefly highlight how the aging factor affects 
these processes in PD and different synucleinopathies as a whole.

α-SYN IN DEVELOPMENT AND HEALTHY AGING
α-Syn starts to be present in different neurons during the early neural development in humans. The protein
is expressed in the neurons of the SN as early as 15 weeks of gestation; it first appears in the perikarya of
neurons and subsequently extends to neuronal processes by 18 weeks of gestation[24]. In other brain regions,
the perikaryal presence of α-syn is observed in the cortical plate at 11 weeks of gestation, in the
hippocampus and brain stem by 20 weeks of gestation, and in the cerebellum by 21 weeks of gestation[25]. In
different types of neurons in humans, α-syn undergoes changes of distribution-redistribution during the
development and postnatal stages. Perikaryal α-syn gradually disappears from the neuronal somata in early
childhood, relocates to the neuronal processes, and is finally enriched in the presynaptic compartment in
adulthood[25,26]. Similar appearances of α-syn in neurons can be observed in other animal species[9,27].

Chu and Kordower reported that α-syn increased in dopaminergic neuronal somata in the SN in humans
and monkeys in an age-dependent manner[28]. Human subjects, aged 18 to 102 years, and rhesus monkeys,
ranging from 2 to 34 years old, showed a dramatic increase in α-syn accumulation in the cell bodies of
dopaminergic neurons with age. The increased α-syn appeared in a soluble and nonaggregated state, in
which α-syn can virtually be dissolved with proteinase K treatment, highly contrasting to the insoluble α-syn
aggregates in the tissues of the PD patients. The concomitant correlation between increased α-syn and
decreased tyrosine hydroxylase (TH) in dopaminergic neurons, suggests that this age-related increase in α-
syn may serve as the precursor to α-syn inclusions during the initiation stage of PD pathology[28].
Furthermore, similar findings were also observed in Microcebus murinus lemurs and cynomolgus monkeys;
the level of oligomeric and phosphorylated α-syn increases in both the central nervous system and the
enteric nervous system with age[29,30]. These results indicate that even soluble α-syn, when the protein level
increases to a certain threshold, can negatively impact the function of dopaminergic neurons and, at the
same time, may lead the cells into a scenario of initiating pathological protein aggregation. The mechanisms
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underlying neurotoxicity induced by soluble α-syn include the following: (i) TH is a rate-limiting enzyme 
responsible for producing dopamine via the conversion of L-tyrosine to L-3,4-dihydroxyphenylalanine (L-
DOPA). TH is negatively regulated by increased concentration of α-syn[31]. It has been reported that α-syn 
decreases TH activity by reducing its phosphorylation and subsequent activation[32]; (ii) L-aromatic amino 
acid decarboxylase (AADC) is also involved in the final step of dopamine synthesis[33]. Increased α-syn 
interacts with AADC to reduce its activity, thereby inhibiting dopamine synthesis[33]; (iii) Vesicular 
monoamine transporter 2 (VMAT2) facilitates the uptake of dopamine from the cytoplasm into synaptic 
vesicles[34]. The dopamine transporter (DAT) transports extracellular dopamine from the synaptic cleft back 
into the cytoplasm[35]. Increased α-syn disrupts the activity and function of both VMAT2 and DAT, thereby 
inhibiting dopamine levels in the synaptic terminal[36,37]; (iv) Age-related lysosomal dysfunction may also 
impair the clearance of increased α-syn, subsequently leading to misfolded α-syn, forming inclusions, which 
eventually causes the loss of the dopaminergic neuron[38].

INCREASED α-SYN ACCUMULATION AND AGGREGATION DURING AGING
Emerging evidence shows a dynamic chain of events involving increased α-syn level (i.e., accumulation) - 
pathological aggregation - cell-to-cell propagation, all of which are dose-dependent processes[39,40].

Aging of intrastriatal transplanted neurons: the lesson learned from the neural transplantation in PD 
clinical trials
As mentioned above, during the development of neurons, α-syn is first localized to the nucleus and the 
soma of the immature neuron, and then becomes concentrated in the presynaptic terminals as synapses are 
being formed[41,42]. Moreover, the expression level of α-syn increases in both neuronal somata and terminal 
regions with age[28,43]. However, pathological forms of α-syn, such as aggregated, proteinase K-resistant α-
syn, appeared earlier in the presynapses than in the cell body[44,45]. A similar phenomenon appeared in the 
dopaminergic neurons transplanted into the striatum of PD patients. Since the 1980s, fetal nigral 
transplantation has been reported in several multi-centered, open-labeled trials and two double-blinded 
trials (for a review, see[46]). Clinical benefits were variable, largely related to the differences in transplantation 
procedures used, donor cell preparation (gestational stage, cell storage approaches, etc.), selection of 
patients, etc. All of these can affect the extent of graft survival, innervation, and local circuit re-
establishment, eventually impacting the benefits the patients may acquire[47].

Neural transplantation with fetal dopaminergic neurons provides a unique system to address the issues of 
how α-syn accumulation and aggregation occur in the grafted cells. The to-be-grafted (donor) cells are 
usually aged from 6 to 9 weeks post-conception when transplanted into the putamen or/and caudate 
nucleus of the PD patient brain[48]. Observations have revealed α-syn presence and even α-syn-positive LB-
like inclusions in the transplanted cells analogous to those seen in PD patients (See review[47]). Kordower et 
al. also showed clear age-dependent α-syn accumulation and LB/LN formation in the transplanted cells[49-51]. 
Increased amounts of α-syn appeared in the grafts with age extended from 1.5 to 25 years, accompanied by 
the forming of typical LBs and LNs in subsets of the grafted cells, and clear functional impacts occurred to 
the cells. Key dopaminergic neuronal marker proteins or enzymes, such as TH, DAT, and VMAT2, 
concomitantly declined in the transplanted cells in the 10-year-old grafts and beyond, indicating the 
functional deterioration of grafted cells over time before cell death occurs[39,40,49,52,53]. On the other hand, age-
dependent effects on α-syn spreading may also be attributed to the recipients, i.e., the patients who receive 
neural transplantation. It is known that after the onset of the disease, PD patients will gradually experience 
worsening clinical symptoms and neuropathological changes. α-Syn propagation and aggregation are largely 
dose-dependent. Studies have shown that the difference in the age of the recipients may affect the 
aggregation of grafted cells, as the loads of aggregated α-syn in the host brains build up over time[40,47,52,54]. 
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Therefore, age has been an important factor in selecting patients who are suitable for neural
transplantation[55]. Furthermore, dramatic neuroinflammatory profiles, represented by infiltration of
peripheral leukocytes, activated microglia, and astrogliosis, were observed in and around all the grafts[39,53,56].
Nevertheless, PD patients who received transplantation still had substantial clinical improvement, with
significant motor improvement, reductions in Unified Parkinson’s Disease Rating Scale (UPDRS) motor
scores of up to 50%-60%, and recovery of striatal dopaminergic function, particularly in the first decade after
transplantation[39,46,57].

When closely exploring the grafted cells in relation to the host Lewy pathology around the grafts, a
considerable number of LBs and LNs are found in the close vicinity of the grafts[39,52]. Therefore, we
hypothesized that the Lewy pathology, i.e., aggregated α-syn, in the host brain may actively spread from the
surroundings to the grafted cells via a “prion-like” mechanism[40,58] and induce high levels of α-syn
accumulation in the grafted cells (recipient cells), developing LBs and LNs in the end. This hypothesis has
been proven true in a series of follow-up studies in models of PD[59,60] and other NDDs[61-64].

Age-dependent α-syn accumulation and aggregations in animal models
α-Syn aggregation and propagation are a dose-dependent dynamic process, with the level of the protein
highly associated with age, as discussed above. The higher the amounts of α-syn are, the more severely the
protein aggregation occurs and the more efficiently it spreads to recipient neurons, which form synapses
with the donor neurons[39]. On the contrary, the decrease in α-syn level inhibits protein aggregation and
neuronal death[65]. Various genetically engineered animal models have been generated in rodents and
nonhuman primates[66-68]. The occurrence of PD-like phenotypes in the numerous α-syn-overexpressing
mice is broadly correlated with transgene expression. Mouse models have certain limitations. They cannot
mimic all the pathological and clinical features of PD patients[22,69-74]. However, nonhuman primates are
physiologically, genetically, and morphologically closer to humans than rodents. They are more
sophisticated behaviorally and exhibit a brain organization similar to humans, enabling a more accurate
assessment of the impact of the pathology on motor outcomes and neuroimaging procedures[75,76].

α-Syn-overexpressing mouse models express either human wild-type α-syn or α-syn with a point mutation,
under the control of different expression promoters and exhibit age-dependent α-syn accumulation and
aggregation, behavioral deficits, and neuronal dysfunction or neuronal cell death[77-95] [Table 1]. The most
commonly used models are made in rodents. Although the transgene may be expressed under different
promoters, which drive the transgene expression in distinct brain regions or types of cells, they provide
valuable models to study age-associated changes in α-syn accumulation and even aggregation. Among
different models, Masliah et al. generated a commonly used mouse line in the field[21]. The mice express
wild-type human α-syn under the regulatory control of platelet-derived growth factor-β (PDGF-β)
promoter. Notably, in line D, the mice develop age-dependent α-syn accumulation and intranuclear and
cytoplasmic inclusions in different brain regions, accompanied by dopaminergic terminal loss in the
striatum and motor deficits[21]. Another commonly used transgenic mouse line expresses human α-syn with
A53T mutation under the control of prion protein (PrP) promoter[96,97]. The mice also develop age-
dependent α-syn aggregation, phosphorylation, and behavioral deficits. We generated a transgenic mouse
line, expressing wild-type human α-syn under the control of endogenous α-syn promoter; the α-syn is fused
with green fluorescent protein (GFP), which provides a possibility to be used for in vivo optical imaging[98].
This mouse line also exhibits increased α-syn accumulation, aggregation, and phosphorylation in different
brain regions with age, together with impaired dopaminergic neurotransmission and motor deficits, but
without significant dopaminergic neuron loss[98]. In addition, the mice also developed age-dependent
pathology in the microvasculature[99] and the enteric neurons in the gastrointestinal tract[100,101]. Taken
together, different lines of genetically modified mice expressing wild-type or mutant α-syn share some
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Table 1. Rodent models overexpressing human α-syn and age-dependent phenotypic development

Transgenes Promoter
Onset of 
α-syn
pathology

α-Syn pathology EM features Brain regions with 
α-syn aggregates

Neuro-
inflammation/mitochondria 
dysfunction/autophagic 
impairment

Neuronal 
dysfunction and cell 
death

Behavioral alterations Ref.

BAC-α-syn 
(GFP)

2 mo Phospho-α-syn and α-
syn aggregates

N.A. SNpc; VTA; 
hippocampus; 
olfactory bulb; 
neocortex; thalamus; 
cerebellum; spinal 
cord; medulla; 
oblongata; pons

N.A. α-Syn-positive SN 
aggregates, but no 
dopaminergic neuron 
loss; altered dopamine 
release and reuptake

Reductions in amphetamine-
induced locomotor activity in 
the open field; impaired 
rotarod performance; 
impaired odor discrimination 
(7 mo)

[98]

mPrP 14 mo in
homozygous;
24 mo in
hemizygous

Increased α-syn levels, 
but no inclusions

N.A. Spinal cord; 
cerebellum; cortex

No No No neurological phenotype [77,
96]

1 mo Cytoplasmic 
accumulation and 
detergent-insolubility 
of transgenic human α
-syn; swollen α-syn-
positive neurites; no 
compact LBs

N.A. Telencephalic; 
brainstem

N.A. No cell death; but 
moderate striatal DA 
loss

N.A. [78]mThy-1

N.A. N.A. N.A. N.A. N.A. N.A. Weight loss; impaired motor
performance; coordination;
impaired spontaneous
activity; sensorimotor
deficits; fine motor skill
deficits (start from 2 mo)

[79]

Rat TH 2-3 mo Diffuse synuclein in 
TH+ SN neurons; no 
inclusion bodies

N.A. Striatum; SN; VTA; 
locus coeruleus; dorsal 
striatum; nucleus 
accumbens; olfactory 
tubercle; cerebral 
cortex

N.A. Increased striatal DAT 
levels; unremarkable 
dopaminergic axons and 
terminals

No neurological 
abnormalities

[80]

3 mo α-Syn-positive 
inclusions (nuclear 
and cytoplasmic) and 
neurites (ubiquitin+)

EM dense deposits 
in ER; no fibrillar 
structures

Neocortex; 
hippocampus; 
olfactory bulb; 
substantia nigra

N.A. No dopaminergic 
neurons within the 
substantia nigra; lower 
striatal levels of TH and 
TH enzymatic activity 
(12 mo)

Reduced rotarod 
performance (12 mo)

[27]

WT α-syn 
(human)

Human 
PDGF-β

Phosphorylated-
Ser129-α-syn 
accumulation

Abundant 
filaments

N.A. N.A. N.A. N.A. [81]

7 mo in Intracytoplasmic α-Syn inclusions Spinal cord; Neglect of grooming; weight A53T α-syn mPrP Astrogliosis; muscle atrophy No cell death [96]
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homozygous; 
22-28 mo in 
hemizygous

neuronal α-syn 
inclusions 
(ubiquitin+); 
dystrophic neurites; 
phosphorylated 
neurofilaments

contained 10-16 
nm wide fibrils; 
axonal 
degeneration 
(thioflavin S+) 
(silvering 
staining+)

brainstem; cortex; 
cerebellum; thalamus; 
striatum; raphe nuclei; 
pons; locus coeruleus

loss; reduced ambulation; 
impaired resistance to 
passive movement; partial 
paralysis of limbs; 
accompanied by periods 
(several seconds) of freezing 
of a hindlimb; hunched backs; 
tremulous motion (8-16 mo 
in homozygous/22-28 mo in 
hemizygous)

N.A. Intracytoplasmic
neuronal α-syn
inclusions
(ubiquitin+);
phosphorylated
neurofilaments

Inclusions not like 
the compact; 
spherical 
morphology of 
LBs; but contain 
fibrillar inclusions 
(thioflavin-S+)

Midbrain; cerebellum; 
brainstem; spinal cord

Astrogliosis in dorsal midbrain, deep
cerebellar nuclei, brainstem, and
spinal cord

N.A. Sustained posturing; reduced 
amplitude; abundance of 
spontaneous activity; 
bradykinesia; mild ataxia; 
dystonia; loss of righting 
reflex and paralysis; then 
rapidly progressed to death 
(9; 11.5;13 mo)

[77]

4 mo Diffuse perikaryal α-
syn; Lewy-like 
pathology with 
ubiquitin 
immunoreactivity

Dendrites 
containing 
electron-dense 
finely structured 
granular material; 
axonal 
degeneration

Telencephalon;
brainstem; spinal cord

Astrogliosis and microgliosis; 
neurogenic muscular atrophy; 
neuromuscular denervation in brain 
stem and motor neurons

No transgene 
expression in SN

Impaired rotarod 
performance (5 weeks)

[82]mThy-1

Increased Ser129 α-
syn phosphorylation

[83]

Rat TH 2 mo LB-like α-syn 
inclusions in TH+ SN 
neurons; increased 
Ser129 α-syn 
phosphorylation

N.A. SNpc; VTA; striatum; 
olfactory bulb; nucleus 
accumbens

N.A. No dopaminergic 
neurons loss up to 1 year

No neurological 
abnormalities

[84]

CaM-tTA N.A. α-Syn aggregates not 
fibrillar or insoluble 
(ubiquitin-)

No fibrillary 
inclusions; nerve 
fibers filled with 
electron-dense 
organelles and 
condensed 
mitochondria; lipid 
droplets

Olfactory bulb; cortex; 
striatum; 
hippocampus; 
thalamus; substantia 
nigra; brainstem

Reduced neurogenesis and 
neurodegeneration

Dopaminergic neurons 
loss; decreased DA 
transporter binding sites 
and pre-synaptic 
terminals; hippocampal 
neurodegeneration

Cognitive impairment in
Morris water maze test (13
mo); impaired rotarod
performance and motor
learning (4.5 mo)

[85]

mPrP N.A. Somata accumulation 
of α-syn (ubiquitin-)

N.A. Cerebellar nuclei; 
brainstem; cortex

No Low level 
neurodegeneration in 
brainstem and spinal 
cord with motor neuron 
loss; no change in TH or 
DAT levels; no change in 
striatal DA levels

No neurological 
abnormalities

[77]A30P α-syn
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12 mo in 
homozygous; 
24 mo in 
heterozygous

Hyperphospho- and 
proteinase K-resistant 
α-syn LB-like 
inclusions

Electron-dense 
inclusions contain 
9-12 nm wide 
filaments that 
were occasionally 
ubiquitinated 
(silver staining+) 
(thioflavin S+)

Zona incerta; the 
superior colliculus; 
deep mesencephalic 
reticular field; pontine 
and medullary 
reticular formation; 
cerebellar nuclei; 
cortex; brainstem; 
spinal cord; no 
striatum and the SN

Oxidized and nitrated α-syn; 
astrogliosis

Sensorimotor neuronal 
loss in brainstem and 
spinal cord; normal DA 
and metabolite levels

Unsteady gait; weakening
extremities; abnormal tail
posture and tail movements;
hunch-back posture and
spastic paralysis at late-
stage (8-12 mo)

[86]

12-13 mo Insoluble ubiquitin 
aggregates; altered 
levels of proteasome 
subunits

N.A. Spinal cord Astrogliosis and microgliosis; 
activated ubiquitin/proteasome 
system

Motor neurons loss in 
spinal cord

Decrease in grip strength; 
abnormal hind limb 
movement; 
atypical limb clasping (10-14 
mo)

[87]

mThy-1

12 mo Hyperphospho- and 
PK-resistant α-syn 
fibrils (ubiquitin+)

N.A. Amygdala;
subthalamic zona
incerta; superior
colliculus;
mesencephalic nuclei;
neocortex;
hippocampus;
thalamus; cerebellum

N.A. N.A. Reduced spontaneous 
locomotor activity (12 mo); 
impaired rotarod 
performance (17 mo); 
cognitive decline (12 mo)

[88]

Rat TH N.A. α-Syn accumulated in 
TH+ SN neurons; but 
no LB-like inclusions 
(ubiquitin-)

(thioflavin S-); 
(silver staining-)

Striatum; SN N.A. No dopaminergic 
neurons loss and 
unchanged striatal DA

N.A. [89]

2-3 mo No inclusion bodies; 
but diffuse synuclein 
in TH+ SN neurons

N.A. Striatum; SN; VTA; 
locus coeruleus; dorsal 
striatum; nucleus 
accumbens; olfactory 
tubercle; cerebral 
cortex

N.A. Reduced striatal DA and 
metabolites; 
dopaminergic neurons 
terminal failure; 
increased presynaptic 
DAT

Reduced spontaneous 
locomotor activity and 
coordination (13-23 mo)

[80]A30P/A53T 
α-syn

Rat TH

N.A. No inclusion bodies in 
TH+ SN neurons

Neither inclusions; 
aggregates nor 
other unique 
morphological 
features

Striatum; SN N.A. Progressive 
dopaminergic neurons 
loss in SNpc

Reduced locomotor activity 
(2 mo)

[90]

Truncated 1-
130 α-syn

Rat TH 2 mo LB-like α-syn 
inclusions in TH+ SN 
neurons

N.A. SNpc; striatum; VTA; 
nucleus accumbens

No signs of gliosis Dopaminergic neurons 
loss in SN; reduced 
striatal DA and 
metabolites; impaired 
striatal axon terminals

Reduced spontaneous 
locomotor activity (L-DOPA 
responsive)

[91]

Mixed granular 
and fibrillary 
inclusions 

No dopaminergic 
neurons loss in SN; 
reduced striatal DA; 

Reduced spontaneous 
locomotor activity; 
increased response to 

Truncated 1-
120 α-syn

Rat TH 6 weeks α-Syn inclusions in SN 
and olfactory bulb

SN; striatum; olfactory 
bulb; locus coeruleus

Microgliosis [92]
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(thioflavin S+) axons swellings; 
shrunken perikaryal; 
dystrophic processes

amphetamine (18 mo)

Truncated 1-
103 α-syn

mThy-1 2-3 mo Accumulation of 
pathological α-syn in 
the central nervous 
system; 
phosphorylated-
Ser129-α-syn 
accumulation 
(ubiquitin+) 
(thioflavin S+); altered 
transcriptomics 
pattern

N.A. Olfactory bulb; cortex; 
hippocampus; 
striatum; SN; 
cerebellum; pons; 
spinal cord

N.A. Loss of dopaminergic 
neurons in SN; 
progressive striatal 
synaptic degeneration

Age-dependent PD-like 
behavioral impairments in 
tail suspension test, grid 
performance test, open field 
test; weight loss and 
constipation

[95]

α-syn: α-Synuclein; EM: electron microscope; WT: wildtype; BAC: bcterial artificial chromosome; GFP: green fluorescent protein; mo: month; N.A.: not applicable; SNpc: substantia nigra pars compacta; VTA: ventral 
tegmental area; SN: substantia nigra; LBs: Lewy bodies; DA: dopamine; TH: tyrosine hydroxylase; DAT: dopamine transporter; PDGF-β: platelet-derived growth factor-β; ER: endoplasmic reticulum; L-DOPA: L-
3,4-dihydroxyphenylalanine; PD: Parkinson’s disease.

standard features of phenotypes to certain extents, i.e., age-dependent α-syn accumulation, aggregation, and phosphorylation, concomitantly with behavioral 
impairments and neuronal dysfunction or cell death. Increased levels of α-syn in neurons can also enhance the protein and its aggregated forms to spread from 
one cell/neuron to another[54]. These similarities implied that similar underlying mechanisms may be involved in regulating the protein build-up in neurons. 
Considering the increased level of a specific protein, such as α-syn, and increased aggregation, the following mechanisms may contribute alone or jointly: (i) 
Increased α-syn gene transcription and/or increased α-syn translation (synthesis)[102-104] with age; (ii) With age, increased α-syn accumulation exacerbating age-
related mitochondrial dysregulation and impaired mitophagy[105]; (iii) Impaired protein (α-syn) degradation or impaired protein homeostasis also increases 
with age[106,107], which may involve multiple pathways, for example, dysfunction of ubiquitin-proteosome pathway and/or autophagy-lysosome pathway[108], 
these dysfunctions further accelerate α-syn accumulation; (iv) when a mutation (such as A30P, A53T, etc.) occurs or when pathological posttranslational 
modifications[109], such as phosphorylation at serine 129, take place, the protein clearance processes are further dampened. Conversely, any therapeutic 
interventions modulating these points may mitigate α-syn accumulation and reduce its aggregation and propagation, eventually blocking the onset of the 
disease and/or slowing down the disease progression, such as: (i) Decrease synthesis of α-syn by using siRNA that targets α-syn mRNA[110,111]; (ii) Increase 
lysosomal or autophagic degradation of α-syn, for example, overexpression of lysosomal proteins promoting α-syn degradation[112,113]; (iii) Decrease α-syn 
aggregation by using protofibril-selective antibody and small molecules to decrease α-syn protofibrils and α-syn aggregation[114,115]; (iv) Block α-syn propagation 
by antibodies against C-terminal truncated α-syn to prevent α-syn propagation[116,117]; (v) Immunization to clear up α-syn aggregation, including active 
immunization for α-syn by vaccines PD01A and PD03A (AFFiRiS) and passive immunization by antibodies against α-syn, including PRX002 (Prothena) and 
BIIB054 (Biogen)[115,118] [Figure 1].
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Figure 1. The schematic drawing shows the inter-relationship among increased α-syn level, protein aggregation, and degradation 
mechanisms in aging and disease conditions and the strategies of potential therapeutic interventions (Modified from[182]). α-syn: α-
Synuclein.

The spreading of α-syn pathology within the brain, from the periphery to the brain or vice versa, is also age-
dependent. Braak et al. reported that Lewy pathology first appears in the peripheral regions of the nervous 
systems long before PD symptoms are evident. Eventually, pathology gains access to the lower brainstem via 
the vagal nerve, following an ascending path through vulnerable regions of the basal, mid- and forebrain, 
until it reaches the cerebral cortex. The temporal appearance of Lewy pathology in PD strongly suggests 
long-distance transport of the pathology in neurons from peripheral tissues to the brain[119]. Subsequently, 
they proposed six stages of PD pathology, reflecting different stages of pre- and post-diagnosis of the 
disease[119]. Since then, a large body of evidence has demonstrated and validated in vivo and in vitro models 
that α-syn and its aggregated forms can be spread among neurons and between neurons and non-neuronal 
cells[120-123]. Despite some skepticism[124], the majority of available evidence favors the prion-like mechanism 
underlying α-syn spreading from one cell to another, not only in PD but also in PD-related diseases, such as 
dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). This is particularly true in cell 
models and animal models[59,61,125,126], compared to humans and nonhuman primates[5,6]. Interestingly, based 
on different appearances of motor and non-motor symptoms in PD, α-syn pathology may be initiated in the 
brain or peripheral tissues among different PD cases. This “brain-first vs. body-first” phenomenon may 
reflect the heterogeneity of clinical features in PD and related disorders, which also imply different 
etiological factors and genetic backgrounds involved[74]. Multiple mechanisms contribute to α-syn cell-to-cell 
spreading, such as endocytosis, extracellular vesicles (EVs), tunneling nanotubes, etc.[59,127,128]. However, the 
role of aging in these processes remains unclear. Regarding EVs, studies have claimed that EVs carry cell-
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state-specific messages that represent the underlying pathology of the disease[128,129]. In PD, it seems that
more α-syn packaging occurs in EVs from individuals with PD[130], and EVs may mediate the propagation of
misfolded α-syn propagation between cells[131]. When α-syn is transferred into the neighboring cells via EVs,
it exerts damaging effects on cells and can even cause cell death[132]. However, other studies argue against the
role of EVs in protein propagation[133]. Fussi et al. found that silencing autophagy-related gene 5 (ATG5) can
elevate EV-mediated α-syn externalization to compensate for the loss of macroautophagy by reducing the
intracellular α-syn burden, suggesting the role of EVs in protecting against the neurotoxic effects of α-
syn[134].

Modulation of microglia and iron deposition in age-dependent α-syn aggregation
Increasing evidence shows that, in addition to aging, multiple factors such as microglia and iron deposition
may regulate α-syn aggregation and propagation. Microglia maintain homeostasis in the brain via
phagocytic clearance of misfolded protein aggregates and cellular debris. α-Syn and its aggregated forms can
be released and activate microglia, which in turn degrade α-syn by phagocytosis into the autophagosome via
selective autophagy[135,136]. Age-dependent microglial impairment of amyloid protein uptake inhibits
processes of protein degradation[137,138]. Different molecular mechanisms may be involved, such as
modulating a negative regulator CD22[138], lipid and immune aberrations[139], etc. With age, significantly
increased microglia (IBA1+ cells) in number and alterations in activation were observed in human SN[140]. A
similar appearance was observed in animal models overexpressing human α-syn. It is also shown that
microglia can form contacts with neurons through tunneling nanotubes to mitigate the neurons from
diseased protein accumulation[141]. Using positron emission tomography (PET), two studies indicate the
pronounced activated microglia in various regions of the PD brain[142,143]. In various types of PD animal
models, activated microglia in the SN and striatum are more common[144], and due to the selective
vulnerability of dopaminergic neurons in PD, they are not identical to those elsewhere in the central
nervous system[145,146]. The regional heterogeneity of microglia is mainly due to the different microglial cell
membrane receptors and the local microenvironment, such as immunomodulators, signaling molecules,
electrical properties, and neuronal activity[147-149]. The region-specificity of microglia may play an important
role in aggravating differential α-syn pathology between brain regions and neuronal dysfunction during PD.

α-Syn can also be taken up by astrocytes and form inclusion bodies[150]. Excess α-syn in the brain induces
neurotoxic reactive astrocytes, triggering an inflammatory response and impaired protein degradative
system, aggravating α-syn aggregation and PD neurodegeneration[151-153]. α-Syn aggregation in astrocytes
could be transferred to adjacent astrocytes, microglia, and neurons, spreading and aggravating the
synucleinopathy[154,155]. Astrocyte properties are also regionally heterogeneous, with striatal astrocytes
exhibiting fewer interactions with neurons, K+ currents, and gap junction coupling than those in the
hippocampus[156-158]. Grafting ventral midbrain astrocytes into mouse brains can reduce α-syn accumulation
and inflammatory cytokines via numerous mechanisms[159]. The relationship of these region-specific
changes with aging and PD progression remains to be further investigated.

Iron is among the most essential trace elements in the human body. Excessive amounts of iron have toxic
effects on the nervous system[160]. The factors associated with an increased total iron concentration mainly
include aging, the inflammatory response, changes in iron balance, redistribution of iron in the brain, and
increased blood-brain barrier permeability[161]. It has been shown that iron-induced α-syn aggregation and
cytotoxicity are age-dependent and dose-dependent[162]. In a nonhuman primate model, Guo et al. showed
that iron deposition was increased in an age-dependent manner from 1 to 17 months in the SN and globus
pallidus, highly contrasting to other brain regions after exposure with α-syn preformed fibrils in the
olfactory system. At the cellular level, the iron deposits were robustly localized in microglia[163]. How
different brain regions maintain iron homeostasis under physiological conditions remains obscure. It has



Page 11 of Song et al. Ageing Neur Dis. 2025;5:XX https://dx.doi.org/10.20517/and.2024.44 18

been shown that iron deposition is present in the main lesion areas in the brains of patients with PD. An 
abnormal iron content may be associated with dopaminergic neuronal cytotoxicity and degeneration in the 
SN of the midbrain[164-166]. Recently, Guan et al. reported age-dependent and disease-severity-related iron 
content in different brain regions assessed with a quantitative susceptibility mapping (QSM)[167]. They 
recruited young and old adults, prodromal PD and clinical PD patients, and mild cognitive impairment 
(MCI) and AD patients. They quantified the regional magnetic susceptibility, reflecting the iron contents. 
They observed markedly increased iron deposition in the SN and red nucleus in the old adults (compared to 
the young ones), clinical PD patients (compared to the prodromal ones), and in the caudate nucleus and 
putamen in AD patients (compared to MCI ones). These results indicate that increased iron deposition is 
highly associated with aging and pathogenesis of PD and AD. Considering the increased iron deposition 
associated with aging and PD, iron chelation or inhibition of iron deposition may be a potential approach 
for the early prevention and treatment of PD.

CONCLUSION AND PERSPECTIVE
Protein aggregation and propagation are dose-dependent events largely regulated by aging-related events. 
Aging is a multifactorial process. Lépez-Otín et al. proposed as many as twelve hallmarks in aging[168], which 
are associated with various processes and functions. Among them, loss of proteostasis, disabled autophagy, 
mitochondrial dysfunction, inflammation, etc., are directly or indirectly associated with protein misfolding, 
aggregation, and propagation in age-related morbidities, such as AD and PD[169-171]. Moreover, these 
hallmarks may contribute alone, additively, or synergistically to healthy aging and also to the pathogenesis 
of diseases. Generally speaking, aging is viewed as the most important risk factor for AD and PD. 
Considering the hallmarks involved in aging and their association with AD and PD, in practice, it is not 
easy to mark the border between aging and disease manifestations. Although aging-related events 
(hallmarks) may contribute to regulating the amounts of α-syn in the brain and periphery, many other 
factors may also modulate the level of α-syn. These factors include gene mutations, functionality of the 
protein degradation systems, status of neuroinflammation[172-174], oxidative stress[175], presence/absence of 
exogenous seeds of α-syn[176-178], and even the involvement of biomembrane[179-181]. These factors that promote 
accumulation and aggregation of α-syn can be seen as “an aging accelerator”, which can also be seen as (part 
of) processes of disease pathogenesis in PD, reversely, “an aging decelerator”. Further understanding of how 
they are involved in healthy aging and diseases may open novel avenues for the potential therapeutic 
intervention to modulate α-syn levels, in turn, to interfere with its aggregation and propagation, eventually 
halting the disease progression of PD and related disorders.
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