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Abstract
Aim: To characterize the gastric cancer immune landscape and evaluate its correlation with prognosis and 
immunotherapy efficacy.

Methods: Gene expression data from eight GEO datasets were preprocessed. The datasets were partitioned into 
training and validation subsets. Immune- and prognostic-related genes were identified from the training set to 
construct an Immune-Related Gene Set Score (IRGS) prediction model. The model underwent external validation in 
two independent cohorts, with further optimization incorporating clinical factors. Differences in immune 
biomarkers between IRGS groups were analyzed and their correlation with therapeutic response was assessed in 
an immune cohort.
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Results: Elevated IRGS significantly correlated with prolonged overall survival (OS) in both training (HR 0.46, 
0.37-0.56) and validation (HR 0.54, 0.39-0.74) sets (P < 0.001). External cohorts confirmed these findings 
(GSE84437 cohort, P = 0.002; GEO cohort, P = 0.003). IRGS correlated significantly with age, gender, and stage. 
Tumor microenvironment analysis showed positive associations between IRGS and key immunocyte populations, 
specifically B cells, CD4+ T cells, and M2 macrophages. Responders to immunotherapy had elevated IRGS scores 
than non-responders (P = 0.016).

Conclusions: The IRGS model is a robust predictor of prognosis and immunotherapy response in GC, underscoring 
its potential clinical utility.

Keywords: Gastric cancer, immune-related gene set score, prediction model, tumor microenvironment, immune 
checkpoint inhibitors

INTRODUCTION
Gastric cancer (GC) is a common malignancy worldwide. Global Cancer Observatory (GLOBOCAN) 2020 
data show 1.089 million new cases of GC, with around 769,000 deaths[1]. According to the latest data from 
the Chinese Cancer Registry, in 2022, there were approximately 357,800 new cases of GC in China, and the 
death toll from GC was around 260,400. The incidence of GC ranked fifth among all malignancies, while its 
mortality rate ranks third[2]. The prognosis of GC is closely related to the timing of diagnosis and treatment. 
Despite multimodal therapy, a five-year survival rate below 30% is maintained for advanced-stage GC[3]. The 
influencing factors for the occurrence of GC are complex, and there is currently no optimal method to 
predict the occurrence and prognosis of GC. These could be contributing factors to the higher incidence 
and mortality rates of GC in China.

Immune components critically influence cancer onset and progression, with immune evasion now 
established as a cancer hallmark[4,5]. IRGS are involved in the process of tumor occurrence and development. 
Current studies on IRGS scoring in GC have underscored its capacity to delineate tumor immune 
microenvironment (TIME)[6] and forecast immunotherapy response. Li et al. correlated signatures exosome-
related long non-coding RNAs (lncRNAs) and TIME; however, this association lacked mechanistic 
validation[7]. In contrast, Sui and Wu[8] utilized weighted gene co-expression network analysis (WGCNA) to 
reveal immune-associated gene modules, underscoring the necessity for clinical corroboration. 
Miliotis et al. advanced the field by establishing a link between non-coding 3′-UTR variants and immune 
evasion, thereby surpassing the performance of PD-L1 as a biomarker for immunotherapy[9]. However, 
challenges remain in standardizing scoring methods, validating biomarkers across diverse cohorts, and 
integrating IRGS with clinicopathological features. Our study addresses these gaps by developing a robust 
IRGS model that not only captures key immune pathways but also demonstrates superior predictive 
performance compared to existing signatures.

Through the accumulation of cytoplasmic DNA mediated by DNA damage, the function of Treg cells is 
negatively regulated by the inhibition of DNA Damage Repair (DDR), while the infiltration of T cells is 
positively promoted, thereby potentiating antitumor immunity. The tumor microenvironment (TME) 
exerts a substantial influence on the efficacy of antitumor therapies[10,11]. It can induce GC by suppressing T 
cell activation and enhancing Treg infiltration. Treg-mediated suppression of both CD8+ and CD4+ T cell 
populations within the TME is a significant impediment to the efficacy of antitumor immune responses. 
Those cells regulate the immune response by influencing tumor antigens and perform cytotoxic functions. 
DCs capture and process tumor antigens and present antigen peptides to CD4+ and CD8+ T cells, while NK 
cells play an immune surveillance role by directly killing tumor cells and producing cytokines. Meanwhile, 
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GC-derived mesenchymal stem cells (GC-MSCs) migrate to cancer-associated fibroblasts (CAFs) upon IL-
6/TNF-α stimulation, driving tumor progression[12]. This implies that immune characteristics may be 
correlated with the prognosis of the tumor. Additionally, in recent years, immunotherapy has flourished in 
GC, particularly with immune checkpoint-targeting therapies, such as those against programmed cell death 
1 (PD-1) or programmed death-ligand 1 (PD-L1), demonstrating promising efficacy across various stages of 
the disease[13-16]. However, even in patients with MSI-H, the ORR did not exceed 60%, and the patients with 
MSI-H constitute less than 10% of GC cases[17]. Thus, profiling tumor immune characteristics may critically 
predict immunotherapy response, while targeting dysregulated immune genes represents an emerging 
therapeutic frontier.

This research utilizes bioinformatics approaches to analyze and evaluate the IRGS in GC patients. By 
identifying prognosis-associated immune-related genes and constructing a prognostic prediction model, it 
aims to assist in clinical diagnosis and therapy. Gaining a deeper understanding of the immune 
characteristics of GC and the expression of its regulatory genes is crucial for advancing future diagnostic 
and treatment methods.

METHODS
Data collection
RNAseq data from GC patients were downloaded from the Gene Expression Omnibus (GEO) database, 
including GSE13861, GSE14208, GSE15459, GSE26899, GSE26901, GSE28541, GSE34942, GSE62254, and 
GSE84437. Notably, the GSE84437 dataset was not included in the initial model training/validation but 
served solely for external validation. Raw RNA-seq data from the eight GEO cohorts were processed using 
the R package limma, which included log2 transformation and quantile normalization. ComBat from the 
sva package was applied to address batch effects across cohorts, ensuring harmonized gene expression 
profiles. The GC transcriptome data were downloaded from TCGA. The RNA-seq data of immunotherapy-
treated GC patients were obtained from the European Nucleotide Archive (accession: PRJEB25780; 
Available from: https://www.ebi.ac.uk/ena/browser/view/PRJEB25780). The TCGA-STAD RNA-seq data 
were downloaded from the GDC Data Portal (https://xenabrowser.net/datapages/?dataset=TCGA-STAD.
star_counts.tsv&host=https%3A%2F%2Fgdc.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.
gi.ucsc.edu%3A443). Immune-related genes were collected from the literature entitled “The Immune 
Landscape of Cancer”[18,19].

Clarified criteria
GC patients were included if they had (1) histologically confirmed GC, (2) RNA-seq data, (3) survival data, 
and (4) no prior immunotherapy.

Gene selection
The eight GEO datasets were combined into one cohort, then randomly assigned to training and validation 
cohort according to 7:3. The association between each gene's expression and OS was assessed using 
univariable Cox regression. Genes with P < 0.05 in the subsequent meta-analysis were retained. The 
influencing genes were further selected by LASSO-Cox analysis. A 10-fold cross-validated LASSO-Cox 
model was applied to the candidate genes, with the optimal penalty (λ) selected by minimizing partial 
likelihood deviance.

IRGS model construction and validation
Model coefficients were calculated from gene meta HR using the formula HR/[1-se(HR)]. Individual gene 
scores were generated from z-score-normalized expression profiles, and the IRGS was obtained as their 
weighted sum.

https://www.ebi.ac.uk/ena/browser/view/PRJEB25780
https://xenabrowser.net/datapages/?dataset=TCGA-STAD.star_counts.tsv&host=https%3A%2F%2Fgdc.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?dataset=TCGA-STAD.star_counts.tsv&host=https%3A%2F%2Fgdc.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?dataset=TCGA-STAD.star_counts.tsv&host=https%3A%2F%2Fgdc.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
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Patients were grouped by the median IRGS value from the training set, and OS was compared between 
groups. The use of consistent cutoff values across all analyses further validates the findings in an 
independent GEO cohort (GSE84437) and the TCGA cohorts.

IRGS independence analysis and model optimization
Independent factors (including IRGS and clinical factors) were identified using univariate and multivariate 
Cox regression analyses.

Functional enrichment analysis
The clusterProfiler R package identified significantly enriched GO terms and KEGG pathways in each IRGS 
group.

TME and subtype analysis
Immune infiltration scores (ESTIMATE algorithm, https://bioinformatics.mdanderson.org/estimate/) were 
calculated in the GEO cohort and compared between high/low IRGS groups. Subgroup analysis of IRGS 
levels in patients with EBV, POLE positive, and different stages of disease was also performed.

Outcome analysis in immune checkpoint inhibitor cohort
Survival curve analysis was performed on the Kim2018 GC cohort that received immunotherapy, and the 
differences in the efficacy of immunotherapy in different IRGS groups were compared.

Statistical analysis
Statistical analyses were performed using R (v4.3.0). Kaplan-Meier curves with log-rank tests compared to 
OS between groups. Univariable and multivariable Cox regression analyses assessed the model's impact on 
survival. Continuous variables were compared using the Mann-Whitney U test, and categorical variables 
using the chi-square test. Spearman's correlation assessed associations between the IRGS and other factors. 
The model's predictive performance was evaluated using the area under the AUC and the C-index. The 
Benjamini-Hochberg false discovery rate (FDR) correction (Q < 0.05) was applied to immune checkpoint 
marker analyses. Statistical significance was defined as P < 0.05.

RESULTS
Key prognostic genes identified for OS prediction
To identify survival-associated predictors in GC patients, Cox analysis (across eight cohorts) followed by 
meta-analysis identified 689 candidate genes (meta P < 0.05). Subsequent LASSO analysis yielded 16 
significant genes associated with OS [Supplementary Figure 1].

Robust prognostic value of the IRGS model for long-term survival prediction
To develop trusted models to predict long-term survival, the IRGS was constructed based on the meta HR 
and expression levels of 16 genes. Based on the training set median IRGS value, patients were stratified into 
high/low-IRGS subgroups. Notably, the high-IRGS group exhibited significantly superior OS compared to 
the low-IRGS group (HR = 0.46, 95%CI: 0.37-0.56, P < 0.001) [Figure 1A]. Similarly, the validation set 
patients are also divided into two groups based on the same cutoff. The patients in the high-IRGS group 
exhibited significantly improved OS compared to the low-IRGS group (HR = 0.54, 95%CI: 0.39-0.74, 
P < 0.001) [Figure 1B].

The IRGS model's prognostic performance was validated in two external cohorts. Significantly better OS 
was observed in high-IRGS versus low-IRGS patients in both the GSE84437 cohort (HR = 0.51, 95%CI: 0.33-
0.8, P = 0.002) and the TCGA cohort (HR = 0.61, 95%CI: 0.44-0.85, P = 0.003; Figure 1C and D). 

https://bioinformatics.mdanderson.org/estimate/
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jcmt5010-SupplementaryMaterials.pdf
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Figure 1. Kaplan-Meier survival curves comparing OS between high- and low-IRGS subgroups. (A) Training set, (B) Validation set, (C) 
GSE84437 set, (D) TCGA set. High IRGS: Better survival; Low IRGS: worse survival.

Furthermore, calibration analysis in two external cohorts validated the model's predictive performance. The 
IRGS score accurately predicted 1-, 2-, and 3-year OS in both cohorts [Figure 2A and B].

IRGS correlates with clinical characteristics and enhances survival prediction
To clarify the relationship between the IRGS model and clinical features, univariate and multivariate 
analyses were performed in two external cohorts. Significant correlations were observed between IRGS and 
age, gender, and stage [Supplementary Tables 1 and 2]. Then, combine the above three clinical factors with 
the IRGS scores, optimize the prediction model, and present it with the Nomogram analysis [Figure 3A]. 
The Nomogram analysis demonstrates that the combined IRGS and clinical feature model has better 
predictive ability for 1-, 2-, and 3-year OS rates compared to either IRGS or clinical features alone 
[Figure 3B and C].

IRGS identifies key carcinogenic pathways and DNA damage repair mechanisms
How do oncogenic pathways and DDR mechanisms affect IRGS? Differential gene expression analysis 
comparing high- and low-IRGS subgroups was conducted to explore the prognostic associations of IRGS. 
The up- and downregulated genes were subsequently analyzed through Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The results indicate that the 
high IRGS group is primarily associated with DDR pathways and functions, while the low IRGS group is 
linked to carcinogenic pathways [Figure 4A and B].

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jcmt5010-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jcmt5010-SupplementaryMaterials.pdf
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Figure 2. Calibration analysis of the model prediction performance in external validation cohorts (A) GSE84437 and (B) TCGA.

IRGS correlates with immune characteristics and tumor microenvironment features
To determine whether IRGS can further predict immune characteristics, we analyzed its associations with 
tumor immunological features by comparing Tumor Mutational Burden (TMB), tumor purity, and immune 
checkpoint molecule expression across high- and low-IRGS subgroups. Results demonstrated significantly 
elevated TMB, tumor purity, and HAVCR2 expression in high-IRGS patients compared to low-IRGS 
patients, while TIGIT expression showed an inverse pattern [Supplementary Figure 2]. For the 
characteristics of the immune microenvironment, the analysis of ESTIMATE indicates that there is no 
difference in the immune component between high- and low-IRGS subgroups [Figure 5A]. Notably, the 
Low group exhibited a significantly higher stromal cell component than the High group [Figure 5B]. 
Subsequent assessment of IRGS-immune cell relationships using the TIMER algorithm revealed significant 
associations with B cells, CD4+ T cells, NK cells, M2 macrophages, and other immune subsets [Figure 5C-F]. 
Distinct patterns of immune cell composition emerged among the IRGS subgroups. Specifically, the high 
IRGS group exhibited significantly elevated levels of B cells, CD4+ T cells, and activated NK cells, along with 
a marked reduction in M2 macrophages. These disparities may be indicative of divergent immune 
microenvironmental states, wherein elevated IRGS has been linked to augmented adaptive immunity (B and 
CD4+ T cells) and cytotoxic activity (activated NK cells). Concurrently, the decline in immunosuppressive 
M2 macrophages observed in high IRGS groups indicates a plausible transition away from a state of tumor-
promoting immune regulation.

In addition, subgroup analysis reveals that patients with EBV (Epstein-Barr Virus) positivity and MSI-H 
exhibit higher IRGS scores, and patients in stage I show significantly higher IRGS scores compared to other 
stages [Supplementary Figure 3].

IRGS and immune response
To investigate the relationship between IRGS and immune response after treatment, we analyzed the IRGS 
in the Kim2018 GC cohort, in which patients underwent immunotherapy. Responders to immunotherapy 
exhibited significantly higher IRGS scores compared to non-responders (P = 0.016, Figure 6A). Similarly, 
within the IRGS Low group, the number of responders was significantly lower than that of non-responders, 
whereas no significant difference was observed in the High group [Figure 6B and C].

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jcmt5010-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jcmt5010-SupplementaryMaterials.pdf
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Figure 3. Optimization analysis of the IRGS model. (A) Nomogram analysis combining clinical factors with the IRGS model, (B) 
Calibration analysis of the model's predictive performance when including only clinical factors, (C) Calibration analysis of the optimized 
model's performance when combining clinical factors with the IRGS model. The total risk score is calculated by summing the points 
assigned to each variable, and the combined score is then projected onto the 1-, 2-, and 3-year survival axes. (e.g., Age = 60 years → 50 
points; IRGS = High → 0 points; Stage = III → 50 points, Total score = 100 points, corresponding to a predicted 1-year OS probability of 
~82%.)

DISCUSSION
GC remains one of the most common and deadly malignancies in China, often diagnosed at advanced 
stages with poor prognosis[20]. The immune system, a crucial defense against cancer, correlates with tumor 
development and prognosis[21]. The evolving era of cancer immunotherapy has brought attention to tumor 
immune characteristics. Exploring the correlation between tumor immune features, prognosis, and 
treatment is crucial. Establishing a predictive model based on IRGS may effectively forecast the prognosis 
and immunotherapy efficacy in GC patients, potentially aiding clinical treatment decisions.

Recent studies have begun to explore the correlation between prognosis risk and molecular features to 
investigate the significant clinical implications of predicting prognosis in GC patients[22-25]. Tumor immune 
characteristics are closely related to cancer development, with various solid tumor studies demonstrating a 
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Figure 4. Functional annotation analysis of (A) GO and (B) KEGG.

significant correlation between Immune-Related Genes (IRG) and tumor prognosis and treatment[26-28]. 
However, such research in GC is limited. Utilizing meta HR of prognosis-related IRG genes, our IRGS 
model accurately predicted patient outcomes in training/internal validation sets and maintained robust 
performance across two independent external cohorts. All cohort results show significantly better prognosis 
for patients with high IRGS, consistent with previous GC and other solid tumor-related studies[27-29]. 
Furthermore, combining clinically significant influencing factors with IRGS optimizes the predictive model, 
demonstrating good performance in external validation cohorts. Multimodal analysis of molecular and 
clinical features enhances prediction accuracy.

To explore the immune mechanism related to IRGS, both KEGG and GO were analyzed. Results revealed 
that the IRGS High group is primarily associated with DDR pathways and upregulated functions. 
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Figure 5. Correlation analysis between immune infiltration levels and IRGS scores. Immune infiltration markers include (A) immune 
score, (B) stromal score, (C) B cells, (D) CD4+ memory T cells, (E) NK cells, and (F) M2 macrophages.

Dysfunction in processes drives tumorigenesis, malignant progression, treatment resistance, and 
prognosis[30]. Notably, DDR deficiency can increase immunogenicity by raising the number of somatic 
mutations and the amount of intracellular DNA fragments, which leads to the formation of neoantigens and 
triggers antitumor immune responses[31,32]. Beyond boosting immunogenicity, DDR pathways in tumor cells 
influence immune surveillance and response mechanisms by promoting cytoplasmic DNA accumulation. 
This triggers DNA damage signaling and downstream interferon pathways. Ultimately, this influences T cell 
infiltration and PD-1/PD-L1 expression[33,34]. Furthermore, DDR inhibition has been demonstrated to 
suppress Treg function while enhancing the infiltration of cytotoxic T cells, thereby shaping the TME[35]. In 
GC, tumors with low DDR characteristic scores were independently associated with shorter overall survival, 
and such patients may not benefit from adjuvant chemotherapy and monoclonal antibodies targeting PD-1 
treatment, indicating an upregulation of DDR pathway expression correlates with favorable immune 
characteristics, consistent with our research[36].
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Figure 6. Correlation analysis between IRGS scores and the efficacy of immunotherapy in the immunotherapy cohort. (A) differences in 
IRGS score levels between responders and non-responders, (B) differences in response rates between high- and low-IRGS score groups, 
(C) distribution of IRGS scores and treatment efficacy for each patient in the cohort.

The literature has shown that IRGS are associated with immune molecules. TME is a network of immune 
cells, stromal cells, cancer cells, cytokines, chemokines, and others[37]. Immune-related cells and factors are 
not only involved in the whole process of tumor development, but also closely related to the ability of the 
immune system to suppress tumors, so they are particularly important[38,39].

Several studies have shown that high levels of CD4+ memory T cells and NK cells are associated with better 
immunotherapy efficacy[40,41]. On the contrary, high M2 macrophage infiltration correlates with poor 
prognosis in GC, and their combination with ICI may achieve better therapeutic effects[42]. T cell, B cell, NK 
cell, and macrophage infiltration levels collectively predict GC prognosis[43]. Consistent with our findings, 
CCL28 targeting in preclinical models boosts CD8+ T cell recruitment and activity in the TME via B cell and 
plasma cell modulation, suggesting a promising immunotherapeutic synergy[44]. In our analysis, the high-
IRGS subgroup exhibited elevated infiltration of B cells, CD4+ T cells, and activated NK cells, whereas M2 
macrophage abundance was significantly reduced. Furthermore, it has been validated in a clinical cohort of 
immunotherapy. A high IRGS score predicts better survival outcomes and greater benefits from 
immunotherapy. In the immunotherapy cohort analysis, the IRGS score of patients in the effective 
immunotherapy group was significantly higher than that in the ineffective immunotherapy group 
(P = 0.016). These results indicate that IRGS are reliable in predicting patient prognosis and immune 
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efficacy. Clinically, it may guide personalized immunotherapy strategies - identifying patients more likely to 
benefit from immune checkpoint inhibitors while sparing non-responders from ineffective treatments.

The present study has the following limitations: First, the analysis and model validation were based on 
public datasets, and further validation in clinical patients from the Chinese population was not included. 
Second, mechanistically, only functional annotation, exploration of immunogenicity, and subgroup analysis 
were conducted, without delving into basic research exploration. The use of multiplex immunofluorescence 
is imperative to validate immune cell infiltration patterns. Therefore, these mechanisms remain validated.

Conclusion
In this study, we established an IRGS prognostic prediction model for GC patients based on immune-
related genomic signatures and further explored its mechanisms and immunological characteristics. High-
IRGS patients demonstrate significantly improved survival outcomes, enhanced antitumor immunity, and 
superior response to immunotherapy. This model may have promised predictive value for prognosis and 
immunotherapeutic outcomes in GC, offering valuable implications for clinical application.
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