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Abstract

For hepatocellular carcinoma (HCC) patients, the clinical efficacy of immune checkpoint inhibitors (ICls) remains
limited by low response rates. The gut microbiome as a critical modulator of ICls responsiveness in HCC. We
systematically analyze the relevant gut microbial signatures distinguishing programmed death 1 therapy in
responders and non-responders, with particular emphasis on prognostic taxa. Microbiome-targeted interventions,
encompassing antibiotic modulation, probiotic supplementation, prebiotic administration, and fecal microbiota
transplantation, may synergistically enhance the efficacy of ICls by leveraging the immunomodulatory potential of
gut-derived microbial metabolites. The mechanisms governing microbiome-mediated immunotherapeutic
regulation involve multifaceted interactions, particularly through microbiota-driven immunomodulation within the
tumor microenvironment. We identify key translational challenges of tumor heterogeneity in microbiomes. Future
research directions emphasize the need for standardized protocols, longitudinal cohort studies, and innovative
preclinical models to bridge existing knowledge gaps.
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INTRODUCTION

Hepatocellular carcinoma (HCC) represents a significant global health burden, ranking as the sixth most
commonly diagnosed malignancy and the third leading contributor to cancer-associated mortality
worldwide". The pathogenesis of HCC is multifactorial, with established etiological factors encompassing
chronic viral hepatitis like hepatitis B virus (HBV) and hepatitis C virus (HCV) infections, and chronic liver
disease spectrum like alcoholic fatty liver disease (AFLD) and metabolic dysfunction-associated steatotic
liver disease (MASLD)™". Therapeutic strategies for HCC are stratified according to disease stage and
hepatic functional reserve. Early-stage HCC management necessitates comprehensive evaluation for
potentially curative interventions, including percutaneous ablation techniques, anatomical hepatic resection,
or orthotopic liver transplantation. The intermediate-stage disease typically warrants locoregional therapies,
with transarterial chemoembolization (TACE), transcatheter arterial embolization (TAE), and transarterial
radioembolization (TARE) constituting the primary therapeutic modalities'.

Advanced or unresectable HCC that is not amenable to locoregional approaches requires systemic
pharmacological intervention, predominantly comprising antiangiogenic agents and immune checkpoint
inhibitors (ICIs)". The antiangiogenic therapeutic armamentarium includes tyrosine kinase inhibitors
(TKIs) such as sorafenib, lenvatinib, cabozantinib, and regorafenib, and monoclonal antibodies targeting
vascular endothelial growth factor pathways like ramucirumab and bevacizumab. Current treatment
paradigms designate FDA-approved agents sorafenib and lenvatinib as first-line therapies, with regorafenib,
cabozantinib, and ramucirumab reserved for second-line treatment; however, these interventions
demonstrate modest survival benefits’®”. The ICIs therapeutic class encompasses agents targeting the
programmed death 1 (PD-1) axis (pembrolizumab and nivolumab), programmed death-ligand 1 (PD-L1)
inhibitors (durvalumab and atezolizumab), and cytotoxic T lymphocyte-associated protein 4 (CTLA-4)
antagonists (tremelimumab and ipilimumab)'.

Prospective phase II and III clinical trials have demonstrated that approximately 15% of patients with
advanced HCC achieve objective tumor responses following ICI therapy". Nevertheless, a substantial
proportion (> 30%) of advanced HCC patients exhibit intrinsic resistance to PD-1/PD-L1 blockade, with a
subset manifesting paradoxical tumor hyperprogression following treatment initiation"". The clinical utility
of ICIs in HCC is further constrained by two principal limitations: the potential for viral reactivation in
hepatitis-associated cases and the current paucity of validated predictive biomarkers. These clinical
challenges underscore the critical need for developing robust predictive biomarkers to optimize patient
stratification and enhance therapeutic outcomes.

Currently, the FDA has recognized several molecular biomarkers for predicting ICI responsiveness,
including tumor mutational burden (TMB) and genomic instability markers such as deficient mismatch
repair (AIMMR) and high microsatellite instability (MSI-H) status"'. Recently, the gut microbiome has
emerged as a promising predictive biomarker and therapeutic modulator in immuno-oncology. The
intestinal microbiota plays a pivotal role in maintaining systemic immune homeostasis and has been
implicated in the pathogenesis and progression of various malignancies, including HCC">"”. Gut microbial
composition and functional capacity significantly influence host immune responses, particularly in

14,15]

modulating antitumor immunity during immunotherapy"**.

This review systematically examines the gut microbiota as both a predictive biomarker and therapeutic
target in modulating ICI responses in HCC, integrating clinical observations with mechanistic insights to
provide a comprehensive translational perspective. First, we characterize response-specific microbial
signatures, identifying key taxa that correlate with improved clinical outcomes. Second, we evaluate
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microbiota-targeted interventions such as fecal microbiota transplantation and precision probiotics.
Crucially, we elucidate the underlying biological mechanisms through which microbiota-derived
metabolites and molecular patterns orchestrate antitumor immunity by reshaping the HCC tumor
microenvironment. Furthermore, we highlight the bidirectional crosstalk between tumor heterogeneity and
microbial composition. Despite these advances, critical knowledge gaps persist regarding patient-specific
confounding factors, optimal intervention protocols, and the precise molecular pathways governing
microbiota-immune-tumor interactions. By synthesizing these multifaceted aspects, this review not only
establishes a mechanistic framework for understanding microbiota-mediated ICI responses in HCC but also
identifies actionable research priorities to advance this promising therapeutic paradigm.

GUT MICROBIOME AS A PREDICTED MARKER OF THE RESPONSE TO
IMMUNOTHERAPY

The intestinal microbiota comprises a complex ecosystem of approximately one trillion microorganisms,
encompassing diverse bacterial taxa, archaea, viruses, fungi, and eukaryotic protists, forming a dynamic and
metabolically active community that exhibits significant plasticity in response to environmental and host-
derived factors"”. This microbial consortium demonstrates substantial interindividual variability in both
taxonomic composition and functional diversity, playing an indispensable role in maintaining systemic
homeostasis and metabolic equilibrium"”. Currently, lots of clinical evidence has established the gut
microbiome as a critical determinant of therapeutic efficacy in immune checkpoint inhibition, with distinct
microbial signatures correlating with significant differences in clinical outcomes, particularly progression-
free survival (PFS) and overall survival (OS) endpoints"®.

Single treatment

Accumulating studies from multiple clinical investigations have established a significant correlation
between gut microbiota composition and therapeutic response to immunotherapy in HCC [Table 1]. Zheng
et al. demonstrated that immunotherapy responders exhibited significantly enhanced microbial diversity,
characterized by greater taxonomic richness and increased functional gene capacity compared to non-
responders™. Longitudinal analysis revealed temporal microbial shifts, with Proteobacteria abundance
progressively increasing in non-responders, becoming the dominant phylum by week 12 of treatment.
Notably, responders showed specific enrichment of 20 microbial species, including Akkermansia
muciniphila and various Ruminococcaceae species. Further supporting these findings, subsequent
investigations have identified distinct a-diversity patterns, with responders demonstrating significantly
higher Shannon diversity indices following nivolumab administration”. Taxonomic profiling revealed
differential species abundance patterns, with non-responders showing relative predominance of Escherichia
coli and Dialister pneumosintes, while responders were characterized by increased abundance of Citrobacter
freundii, Azospirillum species, and Enterococcus durans. Importantly, specific microbial ratios have emerged
as potential predictive biomarkers, with an elevated Firmicutes/Bacteroidetes ratio and reduced Prevotella/
Bacteroides ratio associated with treatment resistance. Conversely, the presence of Akkermansia species has
been consistently identified as a positive predictor of ICI response™’.

Combination treatment

Despite the therapeutic promise of immune checkpoint inhibition, clinical trial data from phase III studies
have demonstrated that monotherapy with either anti-PD-1 or anti-PD-L1 antibodies fails to confer
significant OS benefits compared to sorafenib in advanced HCC populations”*?. Some studies highlight the
critical role of gut microbiota composition in predicting therapeutic outcomes among advanced HCC
patients undergoing single TKI treatment. For instance, sorafenib efficacy correlates with an increased
abundance of probiotic Lactobacillus species (L. johnsonii, L. murinus, L. reuteri) and Bifidobacterium



Page 4 of 17 Wu et al. Hepatoma Res. 2025;11:16 | https://dx.doi.org/10.20517/2394-5079.2025.07

Table 1. A summary of the gut microbiota associated with the efficacy of immunotherapy in HCC patients

Gut microbiota

No. of No.of non- Sequencing Gut microbiota enriched in non-

Study Immunotherapy responders responders methods enriched in responders
responders
Zhen% Camrelizumab 3 5 Metagenomic  Akkermansia Proteobacteria
etal™ (SHR-1210) muciniphila,
Ruminococcaceae spp.
Chung Nivolumab 5 3 16S DNA Citrobacter freundii, Dialister pneumosintes, Escherichia coli,
[20] - A h
etal. Azospirillum sp. and Lactobacillus reuteri,
Enterococcus durans Streptococcus mutans,

Enterococcus faecium,
Streptococcus gordonii, Veillonella atypica,
Granulicatella sp., and Trichuris trichiura

HCC: Hepatocellular carcinoma.

strains”!. Similarly, lenvatinib treatment alters gut microbial profiles, suppressing pathogenic taxa (
Bacteroides, Escherichia-Shigella, Prevotella, Eisenbergiella) while enriching beneficial genera like
Faecalibacterium and Bifidobacterium". Such microbiota-driven immunomodulation may underlie TKIs’
enhanced antitumor effects, providing a rationale for combining TKIs with ICIs to improve therapeutic
outcomes.

Lots of studies mentioned that combinatorial regimens integrating ICIs with TKIs demonstrate superior
clinical outcomes, establishing a novel therapeutic paradigm for advanced HCC management™ . This
therapeutic synergy has prompted investigations into the gut microbiome’s role in treatment response
stratification, revealing significant microbial compositional differences between responders and non-
responders to combination therapy. PD-1-based systemic therapies have identified distinct microbial
signatures associated with treatment response. A summary of studies with anti-PD-1-based systemic
therapy is provided in Table 2. Notably, Xin et al. demonstrated significant enrichment of Clostridiales taxa
in responder populations, while non-responders exhibited predominant Bacteroidia colonization™. These
findings are consistent with established patterns in immunotherapy-related microbiome research, which
consistently identify Lachnospiraceae®”' and Ruminococcus
treatment response. However, significant interstudy variability exists in the identification of response-

[26,28

! species as biomarkers of favorable

associated microbial taxa, with notable discrepancies in specific bacterial associations. For instance, Shen
et al.” reported increased Akkermansia abundance in non-responder populations, contrasting with Zheng
et al.’s findings"”. These inconsistencies likely stem from methodological variations across experimental
protocols, encompassing factors ranging from fecal sample collection and preservation to bioinformatic
processing and statistical analysis pipelines. Moreover, Cai et al.”™ systematically investigated the functional
role of gut microbiota in regulating antitumor immunity through multi-dataset analysis. Their pathway
enrichment analysis revealed four key microbial functional pathways that were significantly differentiated
between responders (R) and non-responders (NR)"™. These findings provide compelling evidence that
specific microbial functional capacities, beyond mere taxonomic composition, play a crucial role in
determining immunotherapy outcomes through multiple immunoregulatory mechanisms, offering new
perspectives for microbiome-based therapeutic strategies in cancer treatment.

THE GUT MICROBIOME COMPLEMENTS THE THERAPEUTIC EFFICACY OF
IMMUNOTHERAPY
Comprehensive investigations into the gut microbiome’s role in HCC immunotherapy have established a

compelling scientific rationale for microbiota-targeted therapeutic interventions. Encompassing antibiotic
modulation, probiotic supplementation, prebiotic administration, and fecal microbiota transplantation



Wu et al. Hepatoma Res. 2025;11:16 | https://dx.doi.org/10.20517/2394-5079.2025.07 Page 5 of 17

Table 2. A summary of studies involving anti-PD-1-based systemic therapy in HCC patients

No. of No. of non- Sequencing

StudyStudy Immunotherapy Gut microbiota enriched in responders Gut microbiota enriched in non-responders
responders responders methods

Leeetal™  Nivolumab and Pembrolizumab 20 21 16S rRNA Lachnoclostridium, Lachnospiraceae, and Veillonella Prevotella 9
combined with TKls

Wuetal®’  Anti-PD-1-base 16 19 16S rRNA Faecalibacterium, Blautia, Atopobium, Leptotrichia, Campylobacter, Allisonella,
systemic therapy Lachnospiracea incertae Sedis, Megamonas, Methanobrevibacter, Parabacteroides, Bifidobacterium and

Ruminococcus, Coprococcus, Dorea and Haemophilus  Lactobacillus

Mao et al”  Anti-PD-1-based systemic 17 13 Metagenomic Lachnospiraceae bacterium-GAM?79, Alistipes sp., Veillonellaceae
therapy Marseille-P5997

Xinetal?  Anti-PD-1-based combination 30 15 Metagenomic Collinsella genus, Ruminococcus-AM4211, and Bacteroides_AF20_13LB and Veillonella atypica
therapy of TACE, Lenvatinib Ruminococcus-AF25_28AC

Shenetal”’”! Anti-PD-1 or anti-PD-L1 10 26 16S rRNA Genera Succinivibrio and Tyzzerella Genus Akkermansia

combined with TKls

HCC: Hepatocellular carcinoma; PD-1: programmed death 1; PD-L1: programmed death ligand 1.

(FMT) represent a novel therapeutic paradigm that potentially enhances immunotherapeutic efficacy through microbiome-mediated immunomodulation in
HCC patients [Table 3].

Antibiotics

Antibiotics (ATB) mediate profound immunomodulatory effects primarily through their capacity to induce gut microbiota dysbiosis. Clinical research
consistently demonstrates that ATB exposure, particularly when administered either prior to or during the initial phase of ICI therapy, adversely affects clinical
outcomes in HCC, as evidenced by reduced objective response rates, diminished PFS, and compromised OS™ . Moreover, gut bacteria produce peptide
antibiotics with significant therapeutic potential. For instance, researchers analyzed nearly 2,000 human gut microbiomes and used artificial intelligence to
predict antimicrobial genetic sequences, synthesizing 78 candidate peptides. Over half of these peptides effectively inhibited bacterial growth in in vitro and in
animal models”’. One particularly promising peptide, prevotellin-2, demonstrated anti-infective capabilities comparable to the FDA-approved antibiotic
polymyxin B**.

The underlying mechanisms involve ATB-induced microbial community disruption, characterized by loss of taxonomic diversity and functional redundancy,
which not only attenuates ICI efficacy but also potentially exacerbates immune-related adverse events. These observations suggest that ATB administration
may establish a preconditioned immunological microenvironment that impacts tumor-specific immune surveillance. Contrasting these findings, a recent
investigation reported enhanced immunotherapy efficacy associated with ATB administration within a 30-day window surrounding ICI initiation,
independent of conventional disease- and treatment-related variables””. These divergent outcomes may be partially explained by methodological limitations,
including the absence of comprehensive subgroup analyses accounting for critical variables such as antibiotic class, administration route, treatment duration,
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Table 3. A Summary of studies examining the relationship between gut microbiota and clinical response to immunotherapy in HCC
patients

StudyStudyStud Immunotherapy Intervention Enrollment Phase 21:;2‘:::‘:5 Location Status
NCT05032014"%  PD-1inhibitors Probio-M9 probiotic 46 NA  ORR,PFSand OS China Recruiting
NCT04264975""  Anti-PD-L1 inhibitors FMT 60 NA  ORR Korea  Recruiting
NCT05750030"?  Atezolizumab plus FMT 12 2 ORR,DCR,PFS  Austria  Recruiting
bevacizumab and OS
NCT05690048™*! Atezolizumab/Bevacizumab ~ FMT/Vancomycinoral 48 2 PFS and OS Germany Not
capsule recruiting

HCC: Hepatocellular carcinoma; PD-1: programmed death 1; PD-L1: programmed death ligand 1.

and pharmacokinetic parameters. The establishment of standardized, large-scale prospective studies
incorporating detailed microbial and immunological profiling is essential to elucidate the complex interplay
between antibiotic use and ICI outcomes in HCC patients"”.

Probiotics

Probiotics are live microorganisms or bioactive compounds that provide health benefits by modulating host
physiology, particularly through interactions with the gut microbiota and the immune system. They serve as
biochemical modulators, enhancing hepatic and intestinal function while strengthening immune responses.
For instance, the Probio-Mo9 trial (NCT05032014) demonstrated that Lactobacillus rhamnosus
supplementation can improve the efficacy of anti-PD-1 immunotherapy, with objective response rates
(ORR) increasing from 21.7% in the control group to 39.1% in those receiving treatment”**\. Probiotics may
also reduce aflatoxin B1-induced hepatocarcinogenesis by decreasing toxin absorption, correcting microbial
imbalances, and lowering systemic LPS levels". In murine studies, Lactobacillus plantarum C88 was shown
to enhance fecal aflatoxin excretion and restore antioxidant defenses™. Similarly, probiotic yogurt
containing L. rhamnosus and Streptococcus thermophilus reduced urinary aflatoxin metabolites in exposed
children, likely through bacterial binding of toxins and decreased intestinal uptake!*’. Probiotics may play a
role in suppressing HCC by downregulating oncogenic pathways and upregulating tumor suppressor genes,
particularly through strains like Lactobacillus acidophilus and Bifidobacterium bifidum"”. Additionally,
probiotics may attenuate Toll-like receptor 4 (TLR4)-mediated inflammation, which is a key driver of HCC
progression. Administration of Lactobacillus plantarum has been shown to reduce TLR4 expression and
liver injury. Furthermore, both gut microbiota depletion and TLR4 inhibition have been found to suppress
HCC development by 80%-90%*".

While probiotics show promising therapeutic potential for liver diseases and HCC, their effects are strain-
and context-dependent. Further large-scale clinical studies are necessary to optimize probiotic selection and
validate their efficacy across diverse patient populations. Additionally, the mechanisms involved are
complicated by significant functional overlap between administered strains and endogenous microbial taxa
associated with the host response. This highlights the need for future investigations to adopt standardized
methodologies that encompass next-generation microbiome sequencing platforms, comprehensive
metabolomic profiling, and advanced bioinformatic analyses. Such approaches will be essential for
optimizing the development and clinical application of next-generation probiotic formulations.

Prebiotics

Prebiotics represent a distinct category of non-digestible carbohydrates that serve as essential regulators of
intestinal microbial balance*. These compounds, which include lactulose, inulin-type fructans (ITF), and
galactooligosaccharides (GOS), possess unique structural characteristics that render them resistant to
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mammalian digestive enzymes while serving as preferential substrates for beneficial gut bacteria*”. Through
selective fermentation processes, prebiotics significantly alter gut microbial composition, particularly
enhancing populations of Bifidobacterium and Lactobacillus species while suppressing potentially
pathogenic microorganisms“. The metabolic byproducts of this fermentation, especially short-chain fatty
acids (SCFAs) like propionate and butyrate, exhibit tissue-specific bioavailability and are essential for
maintaining intestinal homeostasis'*”. Notably, preclinical studies have shown increased propionate levels in
portal circulation following ITF administration, suggesting targeted hepatic delivery of this microbial

metabolite with potential implications for liver pathophysiology***'.

The therapeutic potential of prebiotics primarily arises from the bioactive properties of SCFAs, which exert
multifaceted effects on host physiology™. Propionate, in particular, has demonstrated significant
antiproliferative activity against malignant cell lines, functioning through mechanisms that involve cell cycle
arrest and apoptosis induction!. Moreover, the effects of prebiotics are mediated via specific G-protein-
coupled receptors (FFA2/GPR43 and FFA3/GPR41), which are widely expressed in various tissues,
including the intestinal epithelium and immune cells””. In hepatic applications, prebiotics such as lactulose
have shown promise in accelerating post-surgical liver regeneration, potentially through the modulation of

[53]

oxidative stress pathways and inflammatory responses'*”.

Current research emphasizes the need for systematic investigations into strain-specific prebiotic effects and
optimized dosing regimens to maximize therapeutic outcomes. Developing standardized protocols for
prebiotic administration in clinical settings remains a critical challenge, necessitating rigorous evaluations of
pharmacokinetic properties and potential drug interactions. Future studies should focus on elucidating the
molecular mechanisms underlying prebiotic-mediated immunomodulation, particularly regarding their
effects on tumor microenvironment remodeling and immune cell function.

Integrating prebiotic strategies with conventional anticancer therapies presents promising opportunities for
synergistic treatment approaches; however, this integration requires careful validation through controlled
clinical trials. As the field advances, a precision medicine approach that considers individual variations in
gut microbiota composition and metabolic responses will be essential for realizing the full therapeutic
potential of prebiotics in oncology and hepatology. Continued research efforts should prioritize both
mechanistic studies and translational applications to bridge the gap between experimental findings and
clinical implementation.

Fecal microbiota transplantation

FMT represents a sophisticated therapeutic approach involving the transfer of processed donor stool
material through either oral administration of lyophilized or cryopreserved capsules or direct endoscopic
delivery via colonoscopy or gastroscopy’
overcome therapeutic resistance and prevent tumor recurrence by enhancing immunotherapy efficacy in

4 Lots of clinical trials are evaluating the potential of FMT to

refractory cases”*”. A phase I/II clinical trial (NCT04264975) identified a novel microbial species
phylogenetically related to Prevotella sp. and Marseille-P4119, demonstrating significant
immunostimulatory properties. This bacterial isolate exhibited potent activation of human CD4" and CD8*
T lymphocytes, characterized by enhanced IFN-y secretion and increased tumor-infiltrating lymphocyte
populations in syngeneic murine models, resulting in significant tumor growth suppression. Furthermore,
combination therapy with this microbial strain and anti-PD-1 blockade demonstrated synergistic antitumor

effects, surpassing the efficacy of monotherapy.
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Murine models have provided critical mechanistic insights into gut microbiomes in HCC interactions.
However, divergences in gut-liver axis physiology, immune cell composition, and tumor biology,
compounded by the artificial simplicity of laboratory mouse ecosystems, often obscure the relevance of
preclinical findings to human HCC"®. Although clinical observations partially validate murine data such as
the conserved microbial signatures like Faecalibacterium depletion in HCC patients, discrepancies persist,
particularly in microbiome-ICI response associations"™. To bridge this gap, future research should prioritize
multi-model validation, humanized platforms, and focus on conserved functional pathways rather than
taxon-specific effects, while explicitly addressing murine study caveats, including lack of comorbidities and
genetic diversity in translational interpretations. Moreover, while FMT has demonstrated promising clinical
potential, safety concerns persist, with documented adverse events requiring more rigorous attribution
analysis and standardized reporting protocols to establish causality. Future investigations should
incorporate comprehensive safety assessments and long-term monitoring to better characterize the risk-
benefit profile of FMT interventions.

MECHANISM BY WHICH THE GUT MICROBIOME INFLUENCES THE TREATMENT OF HCC
WITH IMMUNOTHERAPY

Gut microbiota-derived small molecules and metabolites reshape the tumor microenvironment (TME) with
profound implications for immunotherapy responsiveness' . These microbial products critically regulate
metabolic and inflammatory pathways, which interplay mechanistically with antitumor immunity,
particularly in HCC">®!. Recent studies explored how microbiota-immune crosstalk modulates ICI
outcomes, yet the precise molecular pathways governing this interaction in HCC demand systematic
exploration'®”. This section delineates the immunomodulatory mechanisms through which gut microbiota
influences ICI efficacy, focusing on two key aspects [Figure 1]: (1) Dynamic interactions between microbial
signals and innate/adaptive immune cells that potentiate antitumor responses; (2) Metabolite-driven
activation of immune effector pathways critical for ICI success.

The gut microbiome modulates immunity, influencing immunotherapy

The gut microbiome orchestrates adaptive immune responses to enhance immunotherapy efficacy through
multifaceted mechanisms, including TME remodeling via induction of CD8+ and CD4+ T cell populations
and modulation of immunosuppressive cell subsets. Comprehensive immunophenotyping analyses utilizing
flow cytometry and cytokine profiling have demonstrated that patients with elevated abundances of
Clostridiales, Ruminococcaceae, and Faecalibacterium exhibit enhanced systemic immune activation,
characterized by increased circulating effector CD4+ and CDs8+ T cell frequencies and preserved cytokine
responsiveness to anti-PD-1 therapy'*”. Conversely, Bacteroidales-dominant microbiota profiles are
associated with immunosuppressive phenotypes, marked by expansion of regulatory T cells (Tregs) and
myeloid-derived suppressor cells (MDSCs), correlating with diminished cytokine responses!*'.

Further mechanistic studies have revealed that Faecalibacterium enrichment promotes Th1 polarization
while suppressing Treg populations in peripheral circulation, potentially contributing to the durable clinical
responses observed with ipilimumab treatment'”. Enhanced microbial diversity has been positively
correlated with the expansion of memory CD8+ T cell and natural killer (NK) cell subsets during PD-1
blockade, suggesting microbiome-mediated modulation of immune memory formation*”. The spatial
distribution of specific microbial taxa, particularly Bifidobacterium, within the tumor microenvironment
has been shown to enhance NK cell activation through mechanisms involving increased intestinal
permeability, thereby potentiating antitumor immunity'*”.
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Figure 1. A schematic diagram showing the mechanisms of microbiota in the regulation of ICl resistance in HCC patients. Created in
BioRender.Lee, T. (2025) (https://BioRender.com/teyw5en). ICI: Immune checkpoint inhibitor; HCC: hepatocellular carcinoma; PD-L1:
programmed death ligand 1; PD1: programmed death 1; FMT: fecal microbiota transplantation; MDSC: myeloid-derived suppressor cells;
NK: natural killer; DC: dendritic cell; IFN-B: interferon-beta; IFN-y: interferon-y; TNF: tumor necrosis factor MAMPs: microbe-associated
molecular patterns; SCFAs: short-chain fatty acids; IL-17: interleukin-17; IL-8: interleukin-8; IL-1f: interleukin-1 beta; UDCA:
ursodeoxycholic acid; TUDCA: tauroursodeoxycholic acid; UCA: ursodeoxycholic acid; MDCA: murideoxycholic acid; TLR: toll-like
receptor; LPS: Lipopolysaccharide; UBA6: ubiquitin-like modifier-activating enzyme 6; MDSC: myeloid-derived suppressor cells.

At the molecular level, Lactobacillus rhamnosus GG has been demonstrated to activate the cGAS/STING/
TBK1/IRF7 signaling axis in dendritic cells, stimulating IFN-B production and enhancing cross-priming of
tumor-specific CD8+ T cells, which synergizes with anti-PD-1 therapy”. Similarly, Akkermansia
muciniphila exerts immunostimulatory effects through activation of the intratumoral IFN-I-NK-DC axis via
STING pathway signaling, while simultaneously promoting intestinal barrier integrity through reduction of
serum lipopolysaccharide (LPS) and bile acid metabolites and suppressing immunosuppressive m-MDSC
and M2 macrophage populations”"”?.

The gut microbiota also mediates direct antitumor effects through novel mechanisms. The ubiquitin-like
modifier activating enzyme 6 (UBA6) expressed on tumor cells interacts with microbial components to
enhance tumor cell immunogenicity, thereby sensitizing tumors to ICI therapy”. Additionally,
Lactobacillus reuteri produces the antimicrobial compound reuterin, which exerts selective antitumor
activity through the induction of protein oxidation and inhibition of ribosomal biogenesis and protein
translation in malignant cells”.
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Gut microbiome-related metabolites modulate immunotherapy

The gut microbiome-derived metabolome, comprising microbe-associated molecular patterns (MAMPs),
SCFAs, and bile acid metabolites, plays a pivotal role in modulating therapeutic responses to
immunotherapy in HCC [Table 4]. MAMPs exhibit trans-epithelial translocation capacity, potentially
exacerbating microbial dysbiosis and contributing to hepatocarcinogenesis through multiple
mechanisms”>”. This dysbiotic state facilitates the production of carcinogenic metabolites while promoting
hepatic fibrogenesis and cirrhosis progression, mediated through immune dysregulation, altered microbial
metabolic networks, and compromised intestinal barrier function””®. SCFAs serve as crucial mediators of
intestinal homeostasis, maintaining epithelial barrier integrity while exerting direct antitumor effects
through inhibition of tumor cell proliferation and induction of apoptotic pathways””. Furthermore, SCFAs
demonstrate immunomodulatory properties by regulating the differentiation and functional polarization of
both immunosuppressive Tregs and proinflammatory IL-17+v8 T cell populations'*.

Bile acids, synthesized through hepatic-cholangiocyte crosstalk, play essential roles in lipid metabolism and
energy homeostasis. The bidirectional interaction between host cells and gut microbiota regulates bile acid
metabolism, influencing hepatic metabolic programming and contributing to liver cancer pathogenesis™.
Microbial biotransformation of primary to secondary bile acids modulates natural killer T (NKT) cell
dynamics, with activated NKT cells secreting key antitumor cytokines including IFN-y and TNF, thereby
orchestrating tumor-specific immune responses'**. Clinical investigations have identified distinct bile acid
signatures associated with PD-1 therapy response, characterized by elevated concentrations of
ursodeoxycholic acid (UDCA), tauroursodeoxycholic acid (TUDCA), ursodeoxycholic acid (UCA), and
murideoxycholic acid (MDCA) in responder populations. These metabolic profiles correlate with increased
abundances of Lachnoclostridium, Lachnospiraceae, and Veillonella, alongside decreased Prevotella 9
representation™. Integrative analyses of clinical datasets suggest that serum bile acids may function as
molecular mediators of gut microbiome-host transcriptome crosstalk. Furthermore, microbial markers
associated with tumor immune microenvironment modulation and bile acid metabolism demonstrate
significant predictive value for clinical outcomes, achieving an area under the curve (AUC) of 81% in
prognostic models'®”..

At the molecular interface of microbial-host interactions, pathogen-associated molecular patterns (PAMPs)
engage TLRs to initiate cytokine and chemokine cascades, * including IL-8, IL-17, and IL-18, which
promote immune cell recruitment to hepatic tissues. These inflammatory mediators concurrently induce
oxidative stress and genomic instability, potentially initiating hepatocarcinogenic processes***.

TUMOR HETEROGENEITY AND GUT MICROBIOME IN HCC IMMUNOTHERAPY

The reciprocal relationship between tumor heterogeneity and gut microbial composition establishes a
dynamic biological network that significantly influences HCC immunotherapy outcomes. This complex
interplay necessitates a multidimensional analytical framework to develop optimized therapeutic strategies.
Below, we systematically examine how distinct layers of tumor heterogeneity interact with the gut
microbiome to modulate ICI efficacy.

Etiology heterogeneity

The etiology of HCC critically shapes both tumor biology and associated gut microbiome profiles, leading
to divergent responses to immunotherapy. HBV/HCV-induced HCC exhibits microbiome signatures
characterized by elevated levels of Enterobacteriaceae and reduced microbial diversity, correlating with
enhanced inflammatory responses™’. Moreover, the gut microbiota modulates viral hepatitis progression
through TLR activation and interferon signaling, potentially priming the immune microenvironment for
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Table 4. A summary of studies comprehensively links microbial metabolites to their target immune pathways and functional impacts
on HCC progression

Microbial metabolite Involved immune Functional impact on HCC References
pathway
Short-chain fatty acids (SCFAs) Treg differentiation; Maintains intestinal barrier integrity; [65,66]
IL-17 +v3 T cell polarization  Inhibits tumor cell proliferation;
Induces apoptosis

Secondary bile acids (UDCA, TUDCA, NKT cell activation (IFN-y,  Enhances antitumor immunity; [67-71]
MDCA) TNF); Predictive biomarker for PD-1response;
TLR signaling Modulates hepatic metabolic reprogramming
Microbe-associated molecular patterns TLR activation (IL-8, IL-17, Promotes immune cell recruitment; [61-64,72-74
(MAMPs) IL-1B); Induces oxidative stress and genomic instability; ]
Inflammasome signaling Exacerbates dysbiosis-linked carcinogenesis
Reuterin (L. reuteri-derived) Ribosomal biogenesis Direct antitumor activity via metabolic disruptionin  [71,72]
inhibition; cancer cells
Protein oxidation
LPS (Lipopolysaccharide) TLR4/NF-xB pathway; Promotes fibrogenesis and cirrhosis; [71,72]

M2 macrophage polarization Disrupts intestinal barrier function

HCC: Hepatocellular carcinoma; PD-1: programmed death 1.

improved ICI sensitivity. In contrast, NASH-related HCC demonstrates a distinct microbial profile
enriched in Bacteroides and Ruminococcus, accompanied by altered bile acid metabolism. These microbial-
derived secondary bile acids, particularly deoxycholic acid, promote immunosuppression via farnesoid X
receptor (FXR) signaling and Tregs expansion, contributing to the observed reduction in ICI efficacy in this
subgroup”’. This etiology-specific microbial imprinting suggests that therapeutic microbiome modulation
should be tailored according to HCC pathogenesis.

Tumor genetic heterogeneity

Tumor genetic alterations exert profound effects on both local immunity and systemic microbial ecology.
CTNNB1-mutant HCCs frequently exhibit immune-excluded phenotypes, characterized by markedly
reduced CD8+ T cell infiltration due to the activation of the Wnt/p-catenin pathway®". This
immunosuppressive milieu may selectively enrich gut microbial taxa such as Fusobacterium nucleatum,
which further exacerbates immune evasion through MDSC recruitment. In contrast, TP53 loss-of-
function correlates with enhanced proinflammatory cytokine production and gut barrier dysfunction. The
resulting microbial translocation of LPS perpetuates hepatic inflammation via TLR4 signaling, creating a
paradoxical environment where chronic inflammation coexists with impaired anti-improve immunity.
These findings underscore how driver mutations influence microbial ecosystems while simultaneously
shaping the tumor immune microenvironment.

Tumor metabolic heterogeneity

Tumoral metabolic diversity creates spatially distinct microniches that exert selective pressures on microbial
communities. Stabilization of hypoxia-inducible factors (HIF-1a/2a) drives anaerobic glycolysis, resulting in
lactate accumulation. This microenvironment favors the expansion of lactate-utilizing bacteria, which in

93,94

turn generate immunosuppressive metabolites like succinate”**. Additionally, impaired tumor vasculature
leads to irregular oxygen and nutrient gradients, establishing intratumoral zonation patterns through
hypoxia-mediated selection pressures”. This spatial metabolic compartmentalization, characterized by
region-specific metabolic reprogramming, may ultimately enhance the tumor’s adaptive capacity and

proliferative potential®.
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FURTHER DIRECTIONS

The gut microbiota exerts a profound influence on therapeutic responses to ICIs, positioning it as a
potential predictive biomarker for stratifying responder and non-responder patient populations®. Despite
significant advancements in understanding microbiota-mediated modulation of cancer therapy, several
critical knowledge gaps warrant further investigation.

Multi-omics approaches

Methodological heterogeneity in fecal sample analysis presents a substantial challenge. While 16S rRNA
sequencing and whole-genome sequencing represent the predominant techniques for microbiome
characterization, variability in analytical pipelines and reference databases has contributed to inconsistent
findings across studies. This underscores the urgent need for standardization of microbiome profiling
methodologies across all analytical stages, from sample processing to bioinformatic interpretation.
Moreover, the predominant reliance on single-omics approaches in existing research has limited our
understanding of the complex, multifactorial interactions within the tumor-microbiome-immune axis,
consequently hindering therapeutic optimization. The inherent biological diversity among patients,
encompassing variations in immune status and comorbidities, further complicates the identification of
universal ICI response biomarkers. Therefore, the development of integrated multi-omics frameworks
incorporating gut transcriptomic, proteomic, and metabolomic profiling is essential for the comprehensive
characterization of microbiota-mediated therapeutic responses. The mechanistic underpinnings of
microbiome-mediated ICI response modulation remain incompletely characterized. Significant research
opportunities exist in elucidating the complex microbial-host interactions governing antitumor immunity
and identifying specific microbial taxa with pivotal immunomodulatory functions. To address these
knowledge gaps, a multidimensional research strategy integrating computational modeling, multi-omics
approaches, and functional validation is imperative.

Large-scale clinical trials

The implementation of large-scale, multiregional clinical trials encompassing diverse patient populations is
crucial for establishing the clinical relevance of microbial signatures and interventions. Such studies should
be complemented by the development of microbiome-targeted therapeutic strategies, potentially enabling
personalized immunotherapy approaches. To ensure data comparability and reproducibility, international
collaborative efforts must establish standardized protocols for sample collection, storage, processing, and
analysis. Furthermore, longitudinal monitoring of microbial dynamics throughout the therapeutic course is
essential, given the temporal plasticity of the gut microbiome and its dynamic interplay with
immunotherapeutic interventions.

Ethical considerations and logistical challenges

The major ethical considerations and logistical challenges that must be resolved to responsibly integrate
microbiome-based biomarkers and therapies into clinical practice. The selection and screening of donors
for FMT represents one of the most pressing ethical challenges in microbiome medicine. Unlike
conventional drug manufacturing, where raw materials are chemically defined and quality-controlled, FMT
relies on human-derived biological material with inherent variability that directly impacts therapeutic
efficacy and safety. This donor-dependent efficacy raises fundamental questions about equitable access to
effective treatments and the ethical obligations surrounding donor recruitment and compensation. Key
considerations include establishing consensus on "healthy" donor microbiomes, preventing
commercialization that limits access, overcoming geographic and socioeconomic barriers to treatment
availability, resolving intellectual property issues, and creating standardized manufacturing processes for
both FMT and defined microbial consortia, all while ensuring robust safety monitoring and adapting
regulatory approaches to balance innovation with patient protection across diverse populations and



Wu et al. Hepatoma Res. 2025;11:16 | https://dx.doi.org/10.20517/2394-5079.2025.07 Page 13 of 17

healthcare settings.

CONCLUSION

In conclusion, accumulating preclinical and clinical evidence substantiates the pivotal role of the gut
microbiome in modulating therapeutic responses to immunotherapy in HCC. Microbiota-targeted
interventions, encompassing antibiotic modulation, probiotic supplementation, prebiotic administration,
and FMT, represent promising therapeutic avenues that may potentiate the efficacy of ICIs through
synergistic microbial-metabolite-immune interactions. The mechanisms underlying microbiome-mediated
antitumor responses are multifaceted, involving a complex interplay between microbial communities, host
immunity, and metabolic networks. However, clinical translation faces significant hurdles, including
methodological variability in microbiome profiling, patient-specific confounders, and unresolved questions
regarding optimal microbial consortia for therapeutic manipulation. This synthesis advances the field by
proposing a unified framework that bridges microbial ecology with immuno-oncology, while outlining
three priority directions for future research: the development of microbiome-based predictive biomarkers
through multi-omics integration, standardization of microbiota-modulating protocols for clinical use, and
mechanistic dissection of microbe-immune-metabolic networks using gnotobiotic models. Addressing these
challenges will be paramount for harnessing the full potential of microbiome-ICI synergy to overcome
current limitations in HCC treatment.
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