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Abstract
Environmental footprint (EF) as a critical tool for assessing the environmental impacts of human activities has been 
widely applied in the sustainable development field. Building upon a review of the current research landscape, this 
study employs bibliometric analysis to identify the intellectual base of EF research through co-citation networks 
and to outline research status. Following the release of the European Commission EF framework, the research 
primarily focused on the development and standardization of the product and organization EF methods, and then 
expanded to global environmental governance frameworks, such as the circular economy and planetary 
boundaries, promoting multi-scale environmental impact assessment tools. The enhancement of databases and the 
increasing emphasis on uncertainty analysis in Life Cycle Assessment (LCA) and Multi-regional Input-output 
models have enhanced the comparability of assessments. EF research has expanded into sectors such as food 
systems, healthcare, information and communication technology, pharmaceuticals, batteries, and plastics, offering 
both theoretical and empirical support for green transitions and environmental performance optimization across 
sectors. Using metals, healthcare, and construction as cases, this study highlights the shared features and distinct 
characteristics of EF application across sectors. In the metals sector, research addresses both primary extraction 
and recycling, with inconsistent treatment of uncertainty. Healthcare studies focus mainly on devices and 
consumables, with limited attention to hospitals, departments, and treatment pathways. In construction, studies 
cover materials, structures, firms, and technologies, mostly using LCA, but often lack systematic uncertainty 
analysis. Future direction could further integrate EF with the planetary boundaries framework and circular economy 
strategies, improve dynamic modeling in methodological robustness, and broaden application to emerging fields 
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such as hydrogen energy, cryptocurrency mining, cloud computing, and digital infrastructure.

Keywords: Environmental footprint, intellectual base, bibliometric, interdepartmental comparison

INTRODUCTION
How to systematically measure the environmental impacts of human activities has become one of the core 
issues in sustainability research. As a multidimensional and quantifiable environmental impact assessment 
tool, the Environmental Footprint (EF) has attracted growing attention from both academia and 
policymakers in recent years. EF refers to the quantitative description of the environmental impacts 
generated by human activities, typically measured across multiple environmental impact categories, such as 
greenhouse gas(GHG) emissions, water consumption, and land use[1-4]. The European Commission 
explicitly defines EF in its Product Environmental Footprint (PEF) and Organization Environmental 
Footprint (OEF) methodologies as a comprehensive indicator for measuring the multiple potential 
environmental impacts caused by a product or organization throughout its life cycle, which cover up to 16 
environmental categories, including climate change, water use, land occupation, biodiversity loss, and 
resource depletion[5]. The European Union Environmental Footprint (EU-EF) framework emphasizes 
characteristics such as life cycle assessment (LCA), multi-indicator orientation, and high comparability, 
aiming to provide a unified and operational tool for environmental sustainability evaluation.

EF has been applied across diverse research fields, including healthcare, agriculture, business and 
economics, energy, and materials science. Using multi-regional input-output (MRIO) analysis, Lenzen 
found that healthcare services exert significant environmental pressures globally, including air pollution, 
particulate emissions, water consumption, and reactive nitrogen releases, accounting for 1% to 5% of global 
impacts, with some countries exceeding 5%[2]. The use of personal protective equipment (PPE) and 
disinfection procedures further intensified energy and resource consumption during the COVID-19 
pandemic. A LCA study showed that reusable PPE could be an effective option for reducing energy 
consumption and EF[6]. The widespread use of disposable medical devices, such as gastrointestinal 
endoscopes, duodenoscopes, and coveralls, has also imposed significant environmental burdens; however, 
promoting the adoption of reusable devices and sustainable material design can mitigate these impacts[2,7]. 
Moreover, digital healthcare systems have demonstrated positive effects in reducing medical resource waste 
and environmental impacts[8], highlighting the necessity of promoting green healthcare practices and 
establishing environmental management systems.

Current research on the EF of agricultural systems primarily focuses on evaluating the comprehensive 
environmental impacts of agricultural production activities under multi-scale and multi-indicator 
frameworks. As a resource-intensive sector, agriculture exerts considerable pressure on land use, energy 
consumption, and water resources, while also triggering environmental problems such as soil degradation, 
water pollution, and biodiversity loss[9]. To assess these impacts, several indicators have been developed. The 
Agricultural Footprint Index (AFI) has been proposed as a general method to evaluate changes in the 
overall environmental impacts at the farm level[10,11].

Environmental Footprint Index (EFI), which integrates footprint indicators such as land footprint, water 
footprint, carbon footprint, nitrogen footprint, and phosphorus footprint with the Planetary Boundaries 
(PBs) framework, has been employed to systematically evaluate the environmental performance of 
agricultural systems[12]. In response to the over exploitation of ecosystems driven by food demand, a globally 
consistent and regionally adaptable method has been proposed for quantifying Agricultural Ecological 
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Boundaries (AEBs)[13], which further developed a region-specific Integrated Footprint-AEBs framework that 
combines six EFs with AEBs to capture the overall environmental impacts of agricultural ecosystems in 
China. These index-based approaches, often grounded in multi-criteria decision-making frameworks, 
emphasize local adaptability and stakeholder participation, enabling the identification of strengths and 
weaknesses in agricultural production and providing valuable support for optimizing agricultural 
environmental policies.

Research on the EF of food production systems has expanded considerably, focusing on achieving 
sustainable intensification of food production through management optimization and technological 
innovation[14,15]. Abundant empirical studies have demonstrated that adopting integrated agricultural 
practices, such as conservation tillage, crop rotation, intercropping, zero tillage, and precision input 
management, can significantly reduce water consumption, energy use, and GHG emissions while improving 
crop yields and economic benefits[16,17]. Employing methods such as LCA, the EFI, and AEBs, scholars have 
systematically evaluated the resource efficiency and environmental performance of food crops, including 
rice, wheat[14,18], maize[17], and soybeans[19,20] under various regional scenarios. Additionally, the production of 
beef, chicken, pork, milk, and eggs involves substantial land, water, and energy consumption, alongside 
emissions of GHGs and pollutants such as nitrogen and phosphorus, making livestock farming one of the 
primary sources of EF in agriculture[21,22]. In the United States, it has constructed multi-regional cattle 
production system models to systematically assess GHG emissions, water consumption, and energy use per 
unit of product, providing baseline data for the sustainability of livestock products[23]. In China, pig farming 
exhibits significant regional disparities, with intensive management and feed resource restructuring helping 
to substantially reduce carbon footprints, nitrogen footprints, and cropland occupation[24]. Regarding dairy 
farming, evidence from China indicates that adjusting feed rations and sourcing locations can reduce the EF 
and improve the net profitability of dairy farms[25]. Although chicken and aquaculture are often regarded as 
lower environmental-cost alternative proteins, their increasing feed demand and industrial expansion have 
also created new resource and policy pressures[24,26].

Dietary structure plays a decisive role in shaping the environmental impacts of the entire food system. A 
scenario study in the Netherlands showed that plant-based diets with reduced animal-based food intake can 
alleviate environmental burdens while lowering mortality risk[27]. Empirical studies in Spain[28], Lebanon[29], 
and Israel[30] demonstrated that adherence to the Mediterranean Diet Pattern (MDP), compared to Western 
diets, can significantly reduce environmental pressures, including GHG emissions, land use, and water 
consumption, thereby enhancing the sustainability of dietary systems. Related research in China indicated 
that dietary consumption varies substantially across different populations, geographic regions, and 
economic conditions, with excessive meat consumption and income disparities being major drivers of 
environmental burdens[31-33]. By simulating future healthy diet scenarios under varying demographic 
structures, the study found that policy-making should simultaneously consider nutritional needs, 
demographic changes, and resource carrying capacity to promote the transition of food systems toward 
green, healthy, and equitable development[31].

Under the framework of sustainable development, the multi-level and multi-domain driving factors of EF 
have become important topics in environmental economics and policy research. China’s diverse 
cooperation paths in Africa exert differentiated environmental impacts: exports and construction activities 
increase local carbon emissions, whereas imports and foreign direct investment may have positive 
environmental effects[34]. At the enterprise level, empirical research from Denmark indicated that CEOs with 
higher education levels tend to improve corporate energy efficiency and exhibit greater environmental 
awareness, with their educational background playing a critical role in sustainable corporate decision 
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making[35]. A case study from Israel revealed that although technological progress and behavioral changes 
help mitigate EF, relying solely on technology is insufficient to achieve national emission reduction targets 
under continuous population growth scenarios[36]. The evolution of EF is driven by multiple factors, 
including international cooperation, managerial literacy, and demographic structure, necessitating a 
coordinated approach to designing environmental policies and governance pathways across different levels.

Recently, EF research has also focused on plastics, new energy, metals, construction, and the integration of 
multidimensional methods, demonstrating thematic diversity and methodological fusion. The COVID-19 
pandemic triggered a surge in protective plastic use, leading to the proposal of the concept of “plastic waste 
footprint” and calls for the establishment of flexible waste management mechanisms[37]. Upstream 
coal-based production in the plastic value chain has been identified as a major source of carbon footprints 
and health risks[38]. LCA of copper and aluminum has shown significant differences in energy and water 
consumption, with electrolytic aluminum imposing the greatest environmental burden. However, recycling 
can significantly reduce emissions in the field of metal resources[3,39]. Regarding energy materials research, 
the environmental performance of hydrogen production varies significantly across different production 
pathways, with water electrolysis and gaseous storage and transport being more favorable[40]; the 
environmental impacts of electric vehicles depend heavily on grid structure and battery parameters[41]; and 
increasing attention has been paid to the production pathways and database construction of rare earth 
functional materials[42]. Moreover, the integration of the EF approach with the PBs framework provides a 
theoretical basis in these fields[43].

Therefore, existing literature reviews on EF have primarily focused on conceptual evolution[44], 
methodologies[45], or specific application scenarios-such as food systems[46], healthcare[47], blockchain 
energy[48], and household activities[49]. While these offer valuable insights, they lack a systematic analysis of 
the intellectual structure and evolutionary dynamics of the EF research field. Given the expanding scale and 
increasing complexity of EF studies, there is a pressing need to adopt visual bibliometric tools to identify 
and clarify the knowledge clustering patterns of the field. In bibliometrics, the intellectual base typically 
refers to a set of foundational publications that are frequently co-cited and exert long-lasting influence 
within a research domain. These works form the theoretical and methodological foundation for subsequent 
research and paradigm development. As a key source of theory and methodology, the intellectual base 
supports the advancement of research frontiers, and its evolution directly shapes the field’s trajectories and 
directions of innovation.

Building on the prior review of selected EF research themes, this study employs bibliometric analysis to 
conduct co-citation and timeline cluster analyses of core EF publications. The goal is to systematically 
identify the field’s intellectual base, map its evolutionary pathways, and explore future research directions. 
By constructing a knowledge map, we reveal thematic trends and academic focal points, thereby offering a 
structured knowledge framework for future EF research. To address the current lack of industry-specific 
analysis and deepen the understanding of EF characteristics across application domains, we further select 
metals, healthcare, and construction sectors for in-depth investigation, which are resource-intensive, high in 
carbon emissions, and subject to strong policy attention. Spanning the service, heavy industry, and 
construction sectors, they enable comparative analysis across distinct accounting objects and 
methodological approaches, facilitating the development of cross-sector assessment frameworks. Each 
sector has established a growing body of EF research and demonstrates diverse practices in indicator 
development, data sourcing, methodological application, and uncertainty analysis. A systematic review of 
these cases helps uncover the adaptability and limitations of EF methods in various contexts, providing 
empirical support for theoretical integration and practical implementation.
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Following the status of research themes, intellectual base, and evolution, and sectoral applications, this study 
offers a coherent roadmap for understanding the origins, evolution, and practical relevance of EF research 
and serves as a reference for future academic exploration and policy-making. The remainder of the paper is 
organized as follows: Section 2 outlines the methodology, Section 3 presents the intellectual base of the 
environmental footprint, Section 4 concludes the industry-specific analysis, and Section 5 provides the 
conclusion.

METHODOLOGY
Bibliometric analysis
Bibliometric analysis provides an effective approach for systematically identifying its intellectual base, 
historical development, and emerging research fronts when a research field has accumulated a large volume 
of literature. There are two primary citation-based mapping techniques currently in use: bibliographic 
coupling and co-citation analysis. The fundamental concept of bibliographic coupling involves grouping 
citing articles based on the quantity of shared references they have. Conversely, the co-citation technique 
clusters cited documents based on their joint appearances in the reference lists of journal articles. From a 
bibliometric perspective, the citing articles form a research front, while the cited articles constitute an 
intellectual base. CiteSpace is one of the widely used visualization tools in bibliometric research, which 
integrates multiple bibliometric methods such as co-citation, co-occurrence, and coupling analysis to 
construct complex citation networks, uncover the relational features among scientific literature, and 
dynamically reveal the bidirectional relationship between the intellectual base and the research front in the 
process of temporal evolution[50]. In this study, co-citation analysis is employed to identify the intellectual 
base of the EF research field, and based on the co-citation relationships among references, a citation 
network is used to detect highly cited or frequently co-cited clusters of core literature within EF research by 
using CiteSpace software. This process facilitates the delineation of the intellectual base, which refers to the 
collection of publications that represent the theoretical origins, methodological tools, and key academic 
achievements of the research field.

Data collection and description
The primary source of input data for CiteSpace is from the the database of Web of Science Core Collection 
(WoSCC) in Web of Science (WoS), considering the rich achievements in the EF field, we directly set 
environmental footprint as a professional term, that was, set the retrieval parameter as Topic (TS) = 
“environmental footprint*” to carry out literature information retrieval to search for literature that record 
“environmental footprint*” in the Title, Abstract, Author Keywords and Keywords Plus fields. As a result, 
we obtained 5,751 records of literature information in preliminary retrieval. To ensure that information 
from high-core documents is incorporated into CiteSpace analysis, we first selected the literature types as 
Article, Review, and Proceedings paper in the database of WoSCC to refine the preliminary retrieval 
records. We then eliminated the invalid document types such as Book chapter and Retracted publications. 
As a result, we obtained a total of 5,593 records from 2006 to 2025, comprising 4,264 articles, 703 review 
articles, and 626 proceedings papers. Furthermore, we used CiteSpace to deduplicate these refined records 
of literature information, and 5,192 records were retained. All the literature information records were 
searched and downloaded on March 4, 2025, and processed in CiteSpace 6.2.R6 Advanced.

Figure 1 illustrates the annual publication output and citation frequency trends of EF research from 2006 to 
2025. Overall, this field has experienced steady development since 2006, with the number of annual 
publications increasing from 10 in 2006 to 1,146 in 2024, showing a remarkable upward trajectory. After 
2015, the number of publications entered a phase of rapid growth, reflecting the growing academic attention 
to EF-related issues. The citation frequency also shows a sharp increasing trend, particularly accelerating 
after 2012, and reaching 32,988 citations in 2024. This indicates the continuously expanding academic 
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Figure 1. The number of articles published and cited in EF from 2006 to 2025. (Note: Publications represent the number of articles 
published annually, while citations indicate the total number of citations received each year). EF: Environmental footprint.

influence of EF research. In general, EF research has emerged as a prominent and rapidly evolving research 
hotspot in recent years.

For all three domains-metals, the healthcare sector, and the construction industry-the literature was 
retrieved from the WoSCC. For metals, the search was conducted using the following parameters: Topic 
(TS) = “environmental footprint*” and Title & Author Keywords = iron OR steel OR aluminum OR copper 
OR zinc OR lead OR magnesium OR titanium OR gold OR silver OR platinum OR tungsten OR 
molybdenum OR nickel OR tantalum OR vanadium OR lanthanum OR neodymium OR samarium OR 
cerium OR uranium OR thorium. For the healthcare sector, the search parameter was set as: Topic (TS) = 
“environmental footprint*” AND Topic (TS) = “healthcare sector”. For the construction industry, the 
parameter was: Topic (TS) = “environmental footprint*” AND Topic (TS) = “construction industry”. After 
manual screening, only studies directly related to environmental footprint accounting were retained. As a 
result, a total of 12 studies related to metals, 15 studies related to the healthcare sector, and 11 studies related 
to the construction industry were included in the final dataset.

The timeline visualization mapping
To explore the intellectual base, knowledge structure, and historical evolution of EF research, this study 
conducted a timeline visualization mapping of the co-citation network of cited references to organize and 
analyze the retrieved literature data and identify key foundational literature. First, the settings of CiteSpace 
were adjusted to ensure the rationality of the co-citation network and clustering results. The selection of 
parameters is primarily based on two key indicators: Modularity (Q) and Weighted Mean Silhouette (S). 
Modularity (Q), proposed by M. E. J. Newman in 2004, is an index for evaluating the quality of community 
detection. Generally, Q values lie in the interval [0,1], with higher values indicating denser intra-cluster 
connections and better clustering performance. Q values greater than 0.3 indicate significant clustering. 
Weighted Mean Silhouette (S), introduced by L. Kaufman and Peter J. Rousseeuw in 1990, measures the 
similarity between objects and their corresponding clusters, with higher values indicating better clustering 
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results. Typically, S values above 0.7 reflect highly efficient and convincing clustering, while values above 0.5 
are considered acceptable[51]. To assess the influence of parameter configurations on clustering quality, this 
study compares Q and S values across multiple parameter settings, as shown in Table 1. Based on this 
comparison, the parameters set with the largest Q and S values were selected for subsequent analysis. The 
specific parameter settings were as follows (the last row of Table 1): Time Span = 2006-2025 (Years Per Slice 
= 4), Node Types = Reference, Links Strength = Cosine, Links Scope = Within Slices, and Selection Criteria 
= Thresholds [c(2,2,20); cc(4,3,20); ccv(4,3,20)]. The Pathfinder algorithm was applied to prune the 
co-citation networks. After obtaining the co-citation network, the study further used the automatic 
clustering function of CiteSpace to extract cluster labels based on subject categories (Labels = S), with the 
clustering labels generated using the Log-Likelihood Ratio (LLR) algorithm. In total, 10 clusters were 
identified and visualized using the timeline mapping approach [Figure 2].

As shown in Figure 2, the clustering results indicate that cluster numbering is discontinuous, with clusters 
#5 and #10 missing. This is because the similarity between these clusters and their member documents was 
relatively weak, and their concentration did not reach a noteworthy level, leading to their complete 
omission by the software. As indicated by the parameters in the upper right corner of Figure 2, the 
clustering results based on cited references in this study yielded a Modularity (Q) of 0.8465 and a Weighted 
Mean Silhouette (S) of 0.9702, demonstrating that the clustering results are highly significant and 
convincing. These results were obtained after multiple rounds of threshold adjustment and time-slice 
optimization, representing the ideal clustering outcome.

While Figure 2 presents the visual trends, Table 2 offers a detailed numerical description of the 
corresponding data to facilitate interpretation and comparison. As shown in Table 2, cluster IDs are ranked 
based on cluster size, and “Size” represents the number of references contained in each cluster. It can be 
seen from Table 2 that the S values of all 10 clusters exceed 0.9, indicating highly satisfactory clustering 
performance. “Average Year” indicates the average publication year of the references within the cluster. 
“From” represents the publication year of the earliest reference in the cluster, while “To” denotes the 
publication year of the most recent reference in the cluster as of the retrieval time. “Activeness” is used to 
determine whether the cluster remains active in the current research stage. Through detailed reading and 
analysis, it was found that there is a certain degree of thematic overlap and intersection among the clusters. 
To avoid redundancy and repetition in the literature review, this study ultimately selected the five most 
representative clusters from the ten identified clusters as the focus for presenting the intellectual base of EF 
research. These five clusters cover all the core research themes within the field. The selected clusters are 
Cluster #11, Cluster #9, Cluster #3, Cluster #1, and Cluster #7, ordered according to their Average Year, and 
detailed analysis and discussion are conducted on this basis.

THE INTELLECTUAL BASE OF ENVIRONMENTAL FOOTPRINT
The intellectual base in cluster #11
Cluster #11 is the smallest and no longer active cluster, consisting of 18 members, with a silhouette value of 
0.976. The cluster theme is identified as “Materials Science, Paper & Wood,” covering the period from 2010 
to 2017, with a median publication year of 2013 [Table 2]. As shown in Figure 2, the size of the nodes 
indicates that most of the key references within Cluster #11 were published after 2014. The intellectual base 
of this cluster mainly centers on the PEF and OEF methods released by the European Commission.

The European Commission officially published the PEF and OEF methodologies in 2013, integrating the 
LCA approach with the footprint concept. These methods cover up to 16 environmental impact categories, 
including climate change, water use, land use, biodiversity loss, and resource depletion[5]. The overarching 
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Table 1. Comparison of multiple parameter settings for the timeline map

Selection criteria Time slicing Pruning Density MQ MS M(Q,S)

Thresholding (2, 2, 20; 4, 3, 20; 4, 3, 20) 1 Pathfinder (pruning the merged network) 0.0073 0.836 0.9189 0.8755

Thresholding (2, 2, 20; 4, 3, 20; 4, 3, 20) 2 Pathfinder (pruning the merged network) 0.0063 0.8606 0.95 0.9031

Thresholding (2, 2, 20; 4, 3, 20; 4, 3, 20) 3 Pathfinder (pruning the merged network) 0.006 0.8364 0.9441 0.887

Thresholding (2, 2, 20; 5, 3, 20; 5, 3, 20) 4 Pathfinder (pruning the merged network) 0.0123 0.855 0.924 0.8882

Thresholding (3, 2, 20; 6, 3, 20; 7, 3, 20) 4 Pathfinder (pruning the merged network) 0.283 0.7714 0.9298 0.8432

Thresholding (2, 2, 20; 4, 3, 20; 4, 3, 20) 4 None 0.0105 0.8437 0.9449 0.8914

Thresholding (2, 2, 20; 4, 3, 20; 4, 3, 20) 4 Pathfinder (pruning the merged network) 0.0053 0.8465 0.9702 0.9041

Table 2. Summary of the largest 10 clusters

Cluster ID Size Silhouette From to Duration Average Year Activeness

0 68 0.985 2015 2023 9 2018 Active

1 41 0.974 2017 2023 7 2020 Active

2 39 0.918 2018 2023 6 2020 Active

3 37 0.992 2015 2022 8 2018 Active

4 37 0.992 2016 2023 8 2019 Active

6 28 0.989 2009 2015 7 2012 Inactive

7 27 0.919 2015 2023 9 2019 Active

8 24 0.956 2016 2022 7 2018 Active

9 21 0.984 2014 2021 8 2018 Active

11 18 0.976 2010 2017 8 2013 Inactive

Figure 2. The timeline visualization mapping of the co-citation network of cited references. (Note: The ring structure reflects the citation 
history of the literature, where green rings represent earlier years, and red rings indicate more recent years, which can be identified 
based on the legend at the bottom left of Figure 2. The thickness of each ring is proportional to the number of citations in that year, and 
the overall radius of a node corresponds to its total citation frequency. Moreover, some nodes are highlighted with purple rings, 
indicating that these nodes have high betweenness centrality (≥ 0.1), reflecting their importance in bridging different clusters[51]. The 
same annotation applies to the image below).
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goal of the PEF methodology is to reduce the environmental impacts of products and services by 
considering supply chain activities throughout their life cycle - from raw material extraction, production, 
and use to final waste management[52]. However, in 2014, Finkbeiner raised concerns regarding whether the 
PEF published by the European Commission truly represented a breakthrough in the policy 
implementation of LCA[53]. He argued that instead of providing a compromise solution to harmonize 
existing standards, the PEF introduced an entirely new standard that could potentially conflict with the 
existing ISO 14044 standard. Therefore, he suggested that the PEF might hinder harmonization efforts, 
causing confusion, fragmentation, and distrust. The debate initiated by Finkbeiner triggered discussions that 
contributed to the improvement of the EF methodologies by the European Commission. In response, 
Galatola and Pant acknowledged in 2014 that the proliferation of methods and approaches for measuring 
environmental performance could indeed complicate and increase the costs of making environmental 
claims on products or organizations in the EU single market[54]. They argued that the adoption of the EF 
method, as mandated by the European Council, could provide a common basis for measuring and 
communicating environmental performance and gain recognition among stakeholders across the European 
market.

In 2014, Pelletier et al. reviewed existing OEF methods based on four core criteria derived from the EU-
developed OEF guidelines[55]. They found that there was almost no consistency among these methods and 
that very few met the four standards of the EU OEF methodology. After clarifying the methodological 
specifications of the OEF, they concluded that it represented a significant advancement in standardizing 
OEF assessment based on life cycle principles, surpassing other methods in several key aspects. 
Subsequently, a 2015 study by Manfredi et al. conducted a structured comparison between the EU PEF 
methodology and some existing European environmental accounting methods and standards[56]. Their 
findings showed that the EU PEF method offered higher methodological consistency and clearer 
requirements, thereby facilitating improved result consistency, comparability, and reproducibility. 
Nonetheless, several limitations of the EF methodology remained. Lehmann et al. in 2015 first compared the 
key differences between the PEF method and the ISO approach, highlighting the challenges regarding the 
applicability of the PEF, particularly in impact assessment[57]. Later, in 2016, Lehmann et al. conducted a 
comprehensive analysis of the PEF pilot phase [primarily based on the evaluation of all Product 
Environmental Footprint Category Rules (PEFCRs) drafts], concluding that the PEF still faced some 
methodological and practical challenges, such as the inapplicability of certain PEF rules and the immaturity 
of some predefined impact assessment methods[58]. They suggested that both the PEF methodology and 
PEFCRs required further refinement and improvement to ensure the successful implementation of the PEF 
policy.

Although Cluster #11 is no longer active, it reflects the early-stage academic discussions surrounding the 
development of the EU-EF methodologies. These discussions primarily focused on the comparison with 
existing environmental performance assessment methods and proposed constructive suggestions for 
improving the EU-EF methods. Overall, these debates were positive and played a crucial role in promoting 
the advancement and refinement of the EU-EF methodologies.

The intellectual base in cluster #9
Cluster #9 contains 21 members with a silhouette value of 0.984. The cluster theme is identified as “Nuclear 
Science & Technology,” covering the period from 2014 to 2021, with a median publication year of 2018 
[Table 2]. As shown in Figures 2 and 3, the development of Cluster #9 can be divided into two stages. From 
2014 to 2017, the intellectual base primarily focused on studies utilizing MRIO databases. From 2018 to 
2021, the knowledge base expanded to include two main research streams: testing the Environmental 
Kuznets Curve (EKC) hypothesis and exploring the influencing factors of Ecological Footprints.
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Figure 3. The cluster visualization mapping of the co-citation network of cited references of Cluster #9.

The Environmentally Extended Multi-Regional Input-Output (EEMRIO) framework has become a key 
approach for comprehensively describing the global economy and analyzing its environmental impacts. The 
MRIO model enables the tracing of environmental impacts from the consumption side to their sources, 
allowing for the allocation and tracing of environmental responsibilities across regions, sectors, and supply 
chains. As illustrated by the “MRIO database” section in Figure 3, Moran and Wood in 2014 provided an 
overview and comparison of the four largest independently constructed global MRIO databases: Eora, 
WIOD, EXIOBASE, and the GTAP-based OpenEU database[59]. They found that, for most major economies, 
the differences in carbon footprint estimates across these MRIO databases were less than 10%. They also 
emphasized that confidence estimation is essential when applying MRIO methods and consumption-based 
accounting in national-level environmental decision making. Among the existing EEMRIO databases, 
EXIOBASE is compatible with the System of Environmental-Economic Accounting (SEEA) and provides 
highly detailed sectoral data matched with various social and environmental satellite accounts. Wood et al. 
discussed the construction methods of the EXIOBASE database in 2015[60]. According to a 2016 research by 
Ivanova et al., they used the EXIOBASE 2.2 database to assess the environmental impacts of household 
consumption, revealing that in 2007, household consumption accounted for over 60% of global GHG 
emissions and between 50% and 80% of total land, material, and water use[61]. In the following year, Ivanova 
et al. developed a carbon footprint inventory related to household consumption for 27 EU countries and 
177 regions based on the EXIOBASE 2.3 database, making a significant contribution to integrating 
consumption-based accounting into local decision making[62].

The EKC hypothesis posits that there may be an inverted U-shaped relationship between environmental 
pollution and economic growth, reflecting the dynamic evolution of environmental pressure during the 
process of economic development. Numerous studies have tested the EKC hypothesis using different 
research methods and environmental degradation variables to observe the situations of individual countries 
or cross-country groups. A summary literature review of “EKC hypothesis” studies within Cluster #9 of 
Figure 3 is presented in Table 3[63-69]. There is no unified indicator for measuring environmental degradation, 
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Table 3. Summary literature review of EKC in cluster #9

Reference Research area Period Environmental degradation 
variables Methods EKC hypothesis

Can and Gozgor 
(2017)[63]

French 1964-
2014

CO2 emissions The unit root test with two structural breaks and a dynamic 
ordinary least squares estimation

Yes

Charfeddine (2017)[64] Qatari 1970-
2015 

CO2 emissions, the total ecological 
footprint, and ecological carbon 
footprint

The Markov switching equilibrium correction model Yes: CO2 emissions and 
ecological carbon footprint 
No: the total ecological footprint 
holds for a U-shaped behavior

Ulucak and Bilgili 
(2018)[65]

45 countries are divided into three 
groups: low, middle, and high 
income

1961-
2013

Ecological footprint The best fitted model among the models of continuously updated 
fully modified (CUP-FM) and continuously updated bias corrected 
(CUP-BC) models

Yes

Destek and 
Sarkodie (2019)[66]

11 newly industrialized countries 1977-
2013

Ecological Footprint Augmented mean group (AMG) estimator and heterogeneous 
panel causality method 

Yes

Pata (2021)[67] the USA 1980-
2016 

CO2 emissions and ecological footprint The combined co-integration test and three different estimators Yes

Ahmed et al. (2021)[68] Japan 1971-
2016

Ecological footprint The asymmetric and symmetric ARDL Yes

Pata and 
Caglar(2021)[69]

China 1980-
2016 

CO2 emissions and ecological footprint Augmented ARDL approach in the presence of one structural break No: a U-shaped quadratic 
relationship

EKC: Environmental Kuznets curve; ARDL: Autoregressive Distributed Lag approach.

with both CO2 emissions and Ecological Footprint commonly used as alternative indicators. Depending on the research methods, study regions, and variable 
selections, the results of relevant literature vary. Some studies found evidence of an inverted U-shaped relationship between economic growth and 
environmental degradation indicators, while others identified U-shaped or U-shaped quadratic relationships.

The final major knowledge base within Cluster #9 focuses on the influencing factors of Ecological Footprints. In addition to economic growth - which has been 
frequently examined in the context of testing the EKC hypothesis - previous studies have extensively explored various factors affecting ecological footprints, 
including globalization, human capital, energy consumption, trade openness, urbanization, and financial development[68,70-72].

The intellectual base in cluster #3
Cluster #3 contains 37 members with the highest silhouette value of 0.992. The cluster theme is identified as “Green & Sustainable Science & Technology,” 
covering the period from 2015 to 2022, with a median publication year of 2018 [Table 2]. As shown in Figure 2, a significant number of studies within this 
cluster emerged between 2017 and 2020, including a high betweenness centrality reference with a centrality score of 0.11[73]. Although the number of references 
decreased after 2020, these studies still provide valuable perspectives for the further development of this research field. After reviewing the 37 articles in this 
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cluster, the intellectual base of Cluster #3 can be categorized into four main research themes: 
methodological guidelines, normalization and weighting methods in LCA, environmental impacts of final 
consumption, and food systems.

Cluster #3 includes numerous standards and policy documents published by internationally recognized 
organizations, providing essential theoretical support and reference frameworks for methodological 
development and empirical research on EF. These key documents include ISO 14040 and ISO 14044 
standards, “Suggestions for updating the PEF method”[74], “Supporting information to the characterisation 
factors of recommended EF Life Cycle Impact Assessment methods: New methods and differences with 
ILCD”[75], and “Product Environmental Footprint Category Rules Guidance”[76].

As a critical indicator system for quantifying the environmental pressures of human activities on 
ecosystems, the EF is typically measured using the LCA approach. LCA provides a systematic framework for 
data collection and impact assessment, ensuring methodological consistency and comparability in 
evaluating EF at the product, organizational, or national levels. Cluster #3 particularly focuses on the 
normalization and weighting methods during the Life Cycle Impact Assessment (LCIA) phase, addressing 
key methodological challenges in the integration of LCA results. Although ISO standards do not support the 
use of normalization and weighting methods when publishing LCA comparative conclusions, the increasing 
need to identify the most relevant impact categories has driven further research in this area. The 72nd LCA 
Forum discussed the current status, major challenges, and future development of normalization and 
weighting in LCA[77]. Conducting a global-scale environmental impact assessment is crucial for establishing 
comparative benchmarks of environmental performance for products and systems. To this end, in 2019, 
Crenna et al. collected data on global emissions and resource use and calculated global normalization 
factors (NFs) for 12 impact categories using midpoint indicators from the International Reference Life 
Cycle Data System (ILCD) and the EF dataset (including recently released models)[78]. Weighting helps 
identify the most relevant impact categories, life cycle stages, processes, and resource consumption or 
emissions, ensuring that communication efforts focus on the most important aspects. To improve the 
assessment of EF, the Joint Research Centre (JRC) of the European Commission published a technical 
report in 2017 titled “Development of a weighting approach for the Environmental Footprint”[79]. In 
addition to the LCA methodology, the EEMRIO model also serves as a key framework for environmental 
impact assessment. While Cluster #9 has provided a systematic literature review of MRIO databases, 
particularly EXIOBASE 2, Cluster #3 highlights the latest developments of EXIOBASE 3[73].

Sustainable Development Goal 12 (SDG 12) explicitly states that sustainable and responsible production and 
consumption are central to sustainable development, with sustainable consumption and production being 
one of the main principles for reducing global environmental impacts. In 2019, Sala and Castellani[80] and 
Beylot et al.[81] respectively applied the LCA method and the Environmentally Extended Input-Output 
(EEIO) model (using EXIOBASE 3) to study the environmental impacts of final consumption in Europe. In 
the same year, Sala and Castellani investigated five consumption domains and assessed environmental 
impacts across 16 categories based on the EF LCIA method. Their results showed that food consumption 
was the largest contributor to environmental impacts[80]. Also in that year, Beylot et al. analyzed 14 out of 16 
environmental impact categories described in the EEIO model and found that environmental impacts were 
mainly driven by supply chains of products and services, with food - especially meat and dairy products - 
being the primary contributors to acidification, eutrophication, land use, and water use[81].

Food is not only fundamental to human health and food security but also a key driver of global 
environmental change. The complexity of food systems poses significant challenges to LCA. In 2017, 
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Notarnicola et al. proposed research priorities to guide the scientific development and practical 
improvement of food systems[82]. Adopting healthy and sustainable diets is essential for preserving natural 
resources and reducing diet-related mortality. Springmann et al. estimated the global costs of healthy and 
sustainable diets in 2021 and found that, compared to current dietary costs, these diets would be 22%-34% 
cheaper on average in upper-middle- to high-income countries (based on statistical means), while in 
lower-middle- to low-income countries, the costs would be at least 18%-29% higher, depending on the 
specific dietary patterns[83]. A 2022 study by Sun et al. simulated the adoption of the EAT-Lancet planetary 
health diet across 54 high-income countries, representing 68% of global GDP and 17% of the global 
population[84]. Their findings suggested that such dietary shifts could reduce annual agricultural production 
emissions from food consumption in these countries by 61% and sequester up to 98.3 (55.6-143.7) Gt CO2 
equivalent, which is approximately equivalent to 14 years of current global agricultural emissions, until 
natural vegetation fully matures.

Driven by rising average personal incomes and global population growth, both per capita meat 
consumption and total meat consumption have been increasing worldwide. The consumption of different 
types of meat and meat products has significant health implications for people, while livestock production 
exerts considerable negative environmental impacts[85]. In 2019, Rotz et al. developed approximately 150 
representative beef production systems across the United States and simulated their performance and 
environmental impacts using the Integrated Farm System Model (IFSM) with localized soil and climate 
data[86]. Their simulations quantified the environmental impacts of regional beef production systems, 
providing benchmark measurements for the sustainability of beef production in the United States. In the 
same year, Asem-Hiablie et al. also applied the IFSM to assess cradle-to-farm-gate beef production in the 
U.S. beef industry. Their results indicated that the feed production and cattle raising stages were the primary 
contributors to most environmental impact categories[87].

Cellular agriculture is an emerging branch of biotechnology aimed at addressing environmental impacts, 
animal welfare concerns, and sustainability challenges associated with conventional livestock production. 
This approach seeks to produce meat (i.e., cultured meat) without the drawbacks of traditional animal 
farming, thereby promoting future food and nutrition security. However, the study of Lynch and 
Pierrehumbert in 2019 found that cultured meat does not necessarily outperform conventional beef 
production in terms of climate impacts[88]. Instead, its relative environmental performance depends heavily 
on the availability of decarbonized energy sources and the specific production systems employed. Moreover, 
cultured meat still faces challenges related to consumer acceptance, technological development, and broader 
societal factors[89-91].

The intellectual base in cluster #1
The second largest cluster, Cluster #1, consists of 41 members with a silhouette value of 0.974. The cluster 
theme is identified as “Food Science & Technology,” covering the period from 2017 to 2023, with a median 
publication year of 2020 [Table 2]. The overall timeline of this cluster is relatively recent, allowing it to be 
regarded both as part of the research foundation and as a representation of emerging research fronts. The 
development of this cluster has been relatively stable [Figure 2], without highly cited burst references, and 
containing only one high betweenness centrality reference with a score of 0.12[92]. After reviewing the 41 
articles in this cluster, as shown in Figure 4, its intellectual base can be summarized into four main 
categories: circular economy and PEF, PBs, uncertainty in LCA methods, and other research domains.

In “Circular economy” within Cluster #1 of Figure 4, two articles related to the circular economy focused 
primarily on the conceptual definition of the term. In 2017, Geissdoerfer et al. conducted a comprehensive 
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Figure 4. The cluster visualization mapping of the co-citation network of the cited reference of Cluster #1.

literature review and identified eight different relationship types between the circular economy and 
sustainable development, as well as their most notable similarities and differences[93]. Meanwhile, Kirchherr 
et al. collected 114 definitions of the circular economy and coded them across 17 dimensions, critically 
discussing various conceptualizations[94]. They defined the circular economy within their iteratively 
developed coding framework as an economic system that replaces the “end-of-life” concept with reducing, 
alternatively reusing, recycling, and recovering materials in production, distribution and consumption 
processes.

In the Circular Economy Action Plan of the European Green Deal, the European Commission explicitly 
mentioned the PEF as part of its agenda for promoting sustainable growth. As shown in Figure 4, Cluster #1 
includes two types of studies on “PEF”: methodological refinement and empirical research. During the 
transitional stage of refining the PEF methodology, a report titled “Suggestions for updating the PEF 
method” was published in 2019[74], proposing modifications to the implemented PEF method. In 2022, 
Pedersen and Remmen conducted a review of PEF-related literature and found that although some issues 
had been addressed in the updated PEF guidelines, several challenges remained[52]. For instance, the 
functional units defined in the PEFCRs were insufficient to ensure fair product comparisons; the impact 
categories of biodiversity and indirect land use change were still under development; and both existing and 
new PEFCRs needed to adopt a benchmarking approach. Harb et al. conducted a PEF study[95] in 2021 on a 
Lebanese red wine “Coteaux Les Cedres” produced by HF S.A.L (Couvent Rouge winery) in the Bekaa 
Valley and consumed in the UK, based on the PEFCRs ON WINE version 5.2 draft. The results showed that 
for a 0.75-liter package of red wine, the most relevant life cycle stages were grape production, primary 
packaging, and distribution, contributing on average 39%, 34%, and 13% to the overall environmental 
impacts, respectively.

As shown in the “PBs” section of Figure 4, Fanning et al. in 2022 applied the doughnut-shaped “safe and 
just space” framework to analyze the historical dynamics of 11 social indicators and 6 biophysical indicators 



Page 15 of Huang et al. Carbon Footprints 2025, 4, 18 https://dx.doi.org/10.20517/cf.2025.32 33

across more than 140 countries from 1992 to 2015[92]. Their study found that countries often exceeded 
biophysical boundaries faster than they reached social thresholds, and no country achieved the minimum 
social thresholds within the biophysical boundaries during this period. Moreover, in his 2023 study, 
Richardson updated the PBs framework, revealing that six out of nine boundaries have already been 
transgressed, indicating that the Earth has far exceeded the safe operating space for humanity. Ocean 
acidification is approaching the boundary limit, and aerosol loading has exceeded the boundary at the 
regional scale, with the transgression levels of all previously breached boundaries increasing[96]. The PBs 
framework also helps assess whether production and consumption systems are environmentally sustainable 
concerning the Earth's ecological limits and carrying capacity. In 2020, Sala et al. assessed the environmental 
impacts of EU production and consumption in 2010 using one production-based perspective and four 
consumption-based perspectives, including both top-down (IO LCA) and bottom-up (process-based LCA) 
approaches. Their comparison with PBs revealed that EU consumption had already approached or exceeded 
the global boundaries in terms of climate change, particulate matter, land use, and mineral resource use[97].

The EU-EF is an LCA-based method designed to assess the environmental impacts of products and 
organizations across 16 midpoint impact categories[98]. However, the application of LCA as a decision-
support tool may be affected by many uncertainties in its calculations[99]. As indicated by the “Uncertainty of 
LCA” part of Figure 4, according to Barahmand and Eikeland’s study in 2022, the main sources of 
uncertainty in LCA include model and process parameters, data variability, and the use of different methods 
and databases[100]. In 2019, Igos et al. provided recommendations for handling uncertainties at three levels 
based on a literature review and an analysis of LCA tool functionalities[99]. Their basic recommendation was 
to include at least a qualitative discussion of uncertainties in a dedicated paragraph; at the intermediate 
level, Monte Carlo simulation could be used for uncertainty analysis; and for advanced practitioners, it was 
recommended to comprehensively screen uncertainty sources and perform Latin hypercube sampling and 
global sensitivity analysis. In addition, LCA can be divided into attributional and consequential approaches. 
Bamber et al. in 2020 described common sources and methods of uncertainty analysis in both attributional 
and consequential LCA and assessed their frequency of application[101]. In the same year, Thonemann et al. 
found through a literature review that uncertainty was the primary challenge in applying prospective LCA 
and summarized methods for addressing these challenges[102].

Cluster #1 also encompasses the intellectual base of several other research domains, as shown in Figure 4, 
including “Agriculture and food security”[103-105], “information and communication technology (ICT)”[106-108], 
and “batteries”[109,110]. In the area of agriculture and food security, van Dijk et al. in 2021 conducted a 
systematic literature review and meta-analysis of 57 global food security projections and quantitative 
scenario studies published over the past two decades[105]. They estimated that between 2010 and 2050, global 
food demand would increase by 35% to 56%, while the population at risk of hunger would change by -91% 
to +8%. In the ICT industry, research findings have presented a paradox. Studies by Belkhir and Elmeligi[106] 
in 2018 and Freitag et al.[107] in 2021 indicated that without any control measures, the global carbon footprint 
or GHG emissions of ICT would not decrease. In contrast, the findings of Malmodin and Lundén[108] in 2018 
suggested that despite the continuous growth of users and data traffic, the carbon footprint of ICT and the 
electro-mechanical industry had shifted from previous growth to a decreasing trend.

The intellectual base in cluster #7
The Cluster #7 consists of 27 members with a silhouette value of 0.919. The cluster theme is identified as 
“Health Care Sciences & Services,” covering the period from 2015 to 2023, with a median publication year of 
2019 [Table 2]. The references within this cluster are mainly concentrated after 2017 [Figure 2], and the 
intellectual base focuses on multidimensional research in the healthcare sector, reflecting the growing 
academic interest in the intersection of environmental impacts, climate change, and sustainable 
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development within this field [Figure 5].

This cluster includes several highly authoritative and policy-relevant framework documents, as marked by 
the asterisks in Figure 5, such as the IPCC report “Climate Change 2022: Impacts, Adaptation and 
Vulnerability”[111], two editions of the “Lancet Commission Report”[112,113], and three editions of the “Lancet 
Countdown Report”[114,115]. As a key outcome of Working Group II of the IPCC Sixth Assessment Report, 
“Climate Change 2022: Impacts, Adaptation and Vulnerability”[111] systematically assessed the 
multidimensional impacts of climate change on natural and social systems, highlighting that health systems 
are highly vulnerable to extreme climate events and play a crucial role in climate adaptation and resilience 
building. The “Lancet Commission Report” is one of the seminal works in climate change and health 
research, which first systematically proposed that “climate change is the greatest threat to human health in 
the 21st century, but also the greatest opportunity”[113], generating widespread global influence. Building on 
this, since 2016, the annually published “Lancet Countdown Report” has become a flagship report series 
under the Lancet’s climate and health research agenda, systematically tracking global and national progress 
in health responses to climate change, and has become a key intellectual base in this field. Collectively, these 
documents constitute an important knowledge base at the intersection of climate change and public health, 
providing systematic evidence for global climate risk responses and offering policy frameworks and 
academic support for the environmental transformation of the healthcare sector and the adaptation 
pathways of health systems.

As illustrated in the “Carbon emission of the healthcare sector” module in Figure 5, the study of Lenzen et 
al. in 2020 indicated that with the intensification of global climate change, the healthcare sector, as a highly 
resource-intensive industry, has attracted increasing attention for its own carbon emissions and sustainable 
transformation potential. Depending on the environmental indicators considered, the healthcare sector is 
estimated to contribute between 1% and 5% of the global environmental impact, with this proportion 
exceeding 5% in certain countries and regions[2]. In recent years, more countries have begun to pay attention 
to the environmental responsibility and emission reduction potential of their healthcare systems. Tennison 
et al. in 2021 applied a hybrid model to quantify the emissions within Scopes 1, 2, and 3 of the GHG 
Protocol for the UK National Health Service (NHS) from 1990 to 2019, including emissions from patient 
and visitor travel[116]. The study found that in 2019, the total emissions of healthcare services reached 25 Mt 
CO2e, representing a 26% reduction since 1990, with emissions per completed inpatient admission 
decreasing by 64%. In 2018, Malik et al. conducted an observational economic input-output LCA of the 
Australian healthcare system, revealing that the carbon footprint of healthcare accounted for 7% of 
Australia’s total carbon footprint, with hospitals and pharmaceuticals being the main contributors[117]. A 
2018 study by Eckelman et al. applied an economic-environmental-epidemiological linkage modeling 
framework to quantify pollutant emissions and their public health impacts based on nationwide healthcare 
expenditures in Canada from 2009 to 2015[118]. On a life-cycle basis, the Canadian healthcare system emitted 
33 Mt CO2e, accounting for 4.6% of the national total. Moreover, two years later, Eckelman et al. updated 
the national healthcare sector emissions in the United States, showing that from 2010 to 2018, GHG 
emissions from the U.S. healthcare sector increased by 6%, reaching 1,692 kg CO2e per capita in 2018, the 
highest among industrialized countries[119]. Overall, existing studies have conducted quantitative analyses of 
the carbon footprint and environmental impacts of healthcare systems in different countries using various 
methods, demonstrating the significant carbon responsibility and emission reduction potential of the 
healthcare sector at the national level.

In recent years, alongside the rising prominence of healthcare sustainability issues, an increasing number of 
studies have focused on the carbon emissions and environmental impacts of specific departments, 
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Figure 5. The cluster visualization mapping of the co-citation network of cited references of Cluster #7.

operational processes, and medical devices within healthcare systems, based on national-level carbon 
accounting. Among them, operating rooms are considered the most resource-intensive departments within 
hospitals. As shown in the “Carbon emissions of specific departments within healthcare systems” modules 
in Figure 5, MacNeill et al. in 2017 estimated the carbon footprint of operating rooms in three healthcare 
systems and found that anesthetic gases and energy consumption were the largest sources of GHG 
emissions[120]. Moreover, the energy consumption of operating rooms was three to six times that of the 
overall hospital energy consumption, primarily due to heating, ventilation, and air conditioning demands. 
In 2020, Rizan et al. reviewed studies and found that the carbon emissions from a single surgery ranged 
from 6 to 1,000 kg CO2e, with electricity consumption and procurement of consumables being the main 
carbon hotspots[121]. Additionally, the fields of intensive care and anesthesia have also received extensive 
attention. The studies of Drew et al. in 2021 and McGain et al. in 2020 have explored the GHG impacts of 
anesthetic agents, the reusability of anesthesia equipment, and the effects of energy-saving management 
measures on the overall carbon footprint[122,123]. In the pharmaceutical and pharmaceutical manufacturing 
sector, Parvatker et al. in 2019 constructed a pharmaceutical life-cycle inventory using process scaling and 
process design methods, revealing a positive correlation between the complexity of drug synthesis and its 
carbon emission intensity[124]. In the same year, Belkhir and Elmeligi found that the emission intensity of the 
entire pharmaceutical industry exceeded that of the automotive manufacturing industry, indicating 
significant emission reduction potential[125]. Regarding medical devices, comparative studies of single-use 
and reusable equipment have also increased. Studies by Kemble et al. in 2023 and Sherman et al. in 2018 on 
laryngoscopes and flexible cystoscopes have shown that reusable devices generally have lower carbon 
footprints in most use scenarios. Although their per-unit manufacturing emissions are higher, the 
environmental cost per use is significantly lower due to the higher number of reuses compared to single-use 
products[126,127]. Overall, the above-mentioned studies reveal the improvement potential of healthcare 
subsystems in carbon reduction from multiple dimensions, including equipment selection, operational 
processes, and institutional optimization, providing empirical foundations and policy implications for 
building green healthcare systems.
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Future research directions
Building upon the current knowledge base, several promising directions can further advance EF research. 
One direction involves integrating the EF framework with PBs to enhance global sustainability assessments. 
By linking footprint indicators with Earth system thresholds, future studies can evaluate whether specific 
countries, industries, or consumption patterns exceed safe ecological limits, especially at the macro-regional 
or global scale. In addition, deeper alignment with circular economy principles presents strong potential. 
Rather than merely quantifying the environmental burden of linear production systems, EF models can be 
applied to assess the benefits of circular strategies such as material reuse, recycling, eco-design, and service-
oriented business models. Embedding EF indicators into circular economy performance metrics could 
provide a more robust environmental basis for evaluating circular initiatives.

Enhancing spatial and temporal resolution remains a critical methodological priority. The incorporation of 
geospatial data, Geographic Information Systems (GIS), dynamic LCA, and scenario-based forecasting will 
enable more fine-grained and policy-responsive analyses across sectors and regions. Strengthening 
methodological robustness is essential, particularly for complex and data-intensive systems such as 
healthcare and construction. Future studies should focus on refining system boundary definitions, 
enhancing sensitivity and uncertainty analysis, and promoting transparent and standardized accounting 
frameworks to ensure comparability and reproducibility across studies.

The potential use of EF indicators as composite environmental proxies also deserves further attention. 
Existing literature shows that ecological footprint, carbon emissions, and related metrics have been 
employed to empirically test the EKC hypothesis. With proper weighting and normalization, EF indicators 
could be developed into multidimensional indices, serving as a more comprehensive alternative 
environmental indicator.

Lastly, based on the diverse research themes captured in the clusters and the previous review of current 
developments, it is evident that EF research is increasingly shifting toward interdisciplinary integration and 
multi-contextual applications. Topics such as agricultural and food systems, healthcare, plastics, battery 
supply chains, and artificial intelligence infrastructure have emerged as prominent research frontiers. To 
keep pace with this trend, EF accounting should be further extended into newly emerging domains. In 
addition to the areas mentioned above, other emerging fields warranting attention include hydrogen energy, 
cryptocurrency mining, cloud computing, digital infrastructure, and synthetic biology. These complex and 
rapidly evolving sectors present significant challenges for system boundary definition and data acquisition, 
yet offer high-impact opportunities for the early integration of environmental assessment tools.

INDUSTRY-SPECIFIC ANALYSIS
Following the systematic review of the research status, intellectual base, and emerging fronts of EF studies, it 
remains necessary to further investigate accounting practices within specific industries. On the one hand, 
bibliometric and knowledge mapping approaches primarily reveal the structural and evolutionary patterns 
of research but offer limited insight into the accounting characteristics under real-world application 
contexts. On the other hand, substantial differences exist across industries in terms of accounting objects, 
system boundaries, methodological applicability, and data availability. These differences present significant 
challenges to the practical implementation of EF accounting. A comparative analysis of EF practices across 
sectors thus serves as both a practical extension of the previously identified knowledge structure and a 
foundation for more context-specific theoretical guidance and methodological adaptation.
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The introduction has reviewed the current state of EF research across sectors such as agriculture, plastics, 
renewable energy, and healthcare. To avoid redundancy, this study focuses in the later sections on two 
industries-metals and construction-that were relatively underexplored in the introduction but are 
nonetheless of critical importance. Meanwhile, although the healthcare sector was previously discussed, it 
emerges in the CiteSpace co-citation analysis as a distinct and thematically cohesive cluster (Cluster #7), 
indicating its unique intellectual position within EF research. Therefore, this study also includes healthcare 
in the subsequent industry-specific analysis to reflect both its theoretical relevance and practical 
significance.

These three sectors-healthcare, metals, and construction-are representative in several ways. First, they span 
across the service, heavy industrial, and construction sectors and are all characterized by high levels of 
resource consumption and environmental impact, including intensive carbon emissions, energy use, and 
material inputs. Second, they share common technical challenges in EF accounting, such as complex system 
boundary definitions and heterogeneous data sources, which have driven the development and integration 
of multiple methodological approaches. Moreover, a growing body of literature has emerged in recent years, 
providing a solid foundation for cross-sectoral comparison and method adaptation. By synthesizing 
research across these three industries, this study aims to enhance the overall analytical framework while 
offering deeper insights into the current state of EF accounting in sector-specific contexts.

Metals
In the field of EF related to metals, as shown in Table 4, existing studies exhibit significant heterogeneity in 
terms of research scope, geographic coverage, data sources, methodological choices, selected environmental 
indicators, and uncertainty analysis. This reflects the diversity and evolving nature of research in this area. 
In terms of research scope, the literature covers a wide range of key metals, including traditional bulk metals 
such as aluminum[39] and copper[3,128,129], as well as strategically important metals such as gold[130,131], rare earth 
elements[132], and uranium[133]. The focus is not limited to primary resource extraction and processing but has 
increasingly expanded to include secondary resource recovery and recycling pathways-for example, copper 
slag recycling[134] and gold recovery from electronic waste[131]. Geographically, the studies span China, global 
regions, Europe, and several developing mining countries. A substantial portion of the literature focuses on 
China’s metal supply chains and their environmental impacts[39,128,129], reflecting the country’s growing 
research activity and policy demand in the area of metal resource management. Other studies adopt a global 
or cross-national perspective[3,135], emphasizing the heterogeneity of metal production systems across 
different regions.

Regarding data sources, most studies rely on internationally recognized life cycle databases such as 
Ecoinvent (versions 2.2 to 3.8) and GaBi, supplemented by industry statistics and national yearbooks[128]. 
Some studies draw on corporate annual reports or author-estimated data[3,136], which tend to offer lower 
transparency and consistency. Methodologically, the majority employ LCA and adopt various impact 
assessment models such as ReCiPe, IMPACTWorld+, and TRACI. The applications further vary across 
attributional LCA, Life Cycle Sustainability Assessment (LCSA), and PEF frameworks. A few studies also 
incorporate statistical analysis or emission factor-based estimation approaches[3,136]. In terms of 
environmental impact indicators, the number and dimensions of indicators vary significantly, from as few 
as three (e.g., water use, energy consumption, and GHG emissions) to comprehensive assessments involving 
up to 18 categories. Core indicators across most studies include global warming potential, energy use, 
acidification, eutrophication, toxicity impacts, and resource depletion. Some studies have extended the 
scope to include additional categories such as ionizing radiation, nuclear energy use, and short- and long-
term climate change[131,133], reflecting the growing emphasis on comprehensiveness and system thinking in 
next-generation LCA. Regarding uncertainty analysis, various methods such as sensitivity analysis, Monte 



Page 20 of Huang et al. Carbon Footprints 2025, 4, 18 https://dx.doi.org/10.20517/cf.2025.3233

Table 4. Summary of literature review studies on the environmental footprint of metals

Reference Accounting objects Research area Data source Methods Environmental factors Uncertainty 
analysis

Zhang et al. 
(2016)[39]

Aluminum oxide, 
primary aluminum, 
secondary aluminum

China The Chinese process-based life 
cycle inventory database, the 
yearbook of Nonferrous Metals 
Industry of China (2013), and the 
Chinese Industrial Information 
Network, etc.

LCA analysis with the ReCiPe 
model and 
IMPACTWorld+model

Twelve categories: respiratory inorganics, 
respiratory organics, carcinogens, non-carcinogens, 
global warming, ozone layer depletion, freshwater 
ecotoxicity, land occupation, terrestrial 
acidification, aquatic eutrophication, metal 
depletion, and fossil depletion

Yes,  Monte Carlo 
simulation

Northey et al., 
(2013)[3]

Copper mine The mines are from 
Australia, Chile, Peru, 
Argentina, Laos, Papua 
New Guinea, South Africa, 
Turkey, Finland, the USA, 
and Canada

The sustainability and financial 
reports are published by copper-
producing mines, operations, and 
companies

Statistical analysis Three categories: energy, greenhouse gas (GHG) 
emissions, and water intensity

No

Norgate and 
Haque (2012)[
130]

Gold ores Global Published papers and reports, as 
well as company websites

LCA analysis using the SimaPro 
(version 7.3) software program

Four categories: Embodied energy, greenhouse gas 
emissions, embodied water, and solid waste burden

Yes, sensitivity 
analysis

Kuipers et al. 
(2018)[135]

Copper demand and 
supply 

Global Ecoinvent v2.2 database Life cycle sustainability analysis 
(LCSA) methodology and 
scenario forecasting analysis

Five categories: Global warming, acidification, 
energy requirements, terrestrial ecotoxicity, and 
freshwater ecotoxicity

Yes, scenario 
analysis

Dong et al. 
(2020)[128]

Copper production 
and consumption

China Ecoinvent v3.4 database� CNREC 
(2017)� China Nonferrous Industry 
Statistical Yearbook, and the United 
States Geological Survey (USGS), 
etc.

Life cycle sustainability analysis 
(LCSA) methodology and 
scenario forecasting analysis

Eight categories: Acidification potential, climate 
change, freshwater aquatic ecotoxicity, human 
toxicity, photochemical oxidation, abiotic depletion 
of resources-fossil fuels, abiotic depletion of 
resources-elements, and cumulative energy 
demand

Yes, scenario 
analysis

Lagos et al. 
(2018)[136]

Copper mining Chilean Published papers and authors’ 
estimates

Emission factor method, etc. Three categories: water and energy, and the GHG 
emissions

No

Chowdhury et 
al. (2021)[132]

Rare-earth elements 
(REEs) recycling from 
NdFeB Magnet Swarf

America and China Ecoinvent 3.7 database Attributional LCA with TRACI 
V2.1 and cumulative energy 
demand V1.11

Eleven categories: global warming, ecotoxicity, 
cumulative energy demand (CED), etc.

Yes, Monte Carlo 
Simulation

He et al. 
(2023)[131]

Gold recycling from 
electronic waste

N/A Ecoinvent v3 database Attributional LCA using SimaPro 
software (v.9) and IMPACT 
world + method and allocation

Eighteen categories: climate change in the short 
term, climate change in the long term, fossil and 
nuclear energy use, mineral resources use, etc.

No

Zhou et al. 
(2024)[134]

Recycling copper slags 
as cement 
replacement material 
in mine backfill

N/A Ecoinvent v3.8 database LCA using OpenLCA software 
and ReCiPe 2016 Midpoint (H) 

Eighteen categories: agricultural land occupation, 
climate change, fossil depletion, freshwater 
ecotoxicity, etc.

Yes, sensitivity 
analysis

Altay et al. 
(2022)[133]

Uranium recovery 
from brine

N/A Published papers and the Ecoinvent 
3 database

LCA using SimaPro software 
(v.9) and IRE & IRHH midpoint

Sixteen categories: climate change, ozone 
depletion, human toxicity(non-cancer effects), 
human toxicity (cancer effects), particulate matter, 
ionizing radiation HH, etc.

Yes, sensitivity 
analysis

Monteleone et Ten cast iron foundries in PEF using SimaPro software Sixteen categories: climate change, ozone Foundry production Ecoinvent v.3.7.1 database No
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al. (2024)[150] Italy (v.9) and normalization and 
weighting of the results

depletion, human toxicity (non-cancer effects), 
human toxicity (cancer effects), particulate matter, 
ionizing radiation HH, etc.

Wang et al. 
(2024)[129]

Copper wire rod 
manufacturing

China Previous assessment studies by the 
author and the GaBi database

LCA using GaBi software and 
the CML 2001 method

AP, EP, GWP, ODP, POCP, and PED Yes, Monte Carlo 
Simulation and 
sensitivity analysis

LCA: Life cycle assessment; AP: acidification potential; EP: eutrophication potential; GWP: global warming potential; ODP: ozone depletion potential; GHG: greenhouse gas; POCP: photochemical ozone creation 
potential; PED: primary energy demand.

Carlo simulation, and scenario analysis have been widely adopted to enhance result robustness and interpretability. However, several studies did not explicitly 
address uncertainty[3,131], which may limit the verifiability of their results.

Healthcare sector
EF research in the healthcare sector has shown a trend toward increasing granularity. Based on the classification of research objects in the existing literature 
[Table 5], and as illustrated in Figure 6, the complexity of healthcare service systems can be categorized into five hierarchical levels: Level 1 refers to the overall 
healthcare sector level, Level 2 to the hospital or institutional level, Level 3 to the department level, Level 4 to the treatment pathway level, and Level 5 to the 
medical devices and consumables level. Among the reviewed studies, the vast majority focus on Level 5, primarily evaluating the life cycle environmental 
impacts of reusable versus disposable products such as personal protective equipment, scrub suits, duodenoscopes, and dental retainers[137,138]. These studies 
typically employ standardized LCA methods, commonly utilizing SimaPro or OpenLCA software in conjunction with the Ecoinvent database, and often 
incorporate sensitivity analysis or Monte Carlo simulations to enhance the robustness of the results. By contrast, studies at Level 2 and Level 3 are relatively 
scarce. These tend to analyze entire hospitals or specific departments (e.g., intensive care units), often applying hybrid LCA or material flow analysis (MFA) 
approaches to capture more complex system interactions[139,140].

In terms of geographic distribution, existing studies are primarily concentrated in North America and Europe, with Canada, the United States, Sweden, France, 
the Netherlands, and Spain forming the core of the current knowledge base. Research from developing countries is significantly underrepresented, highlighting 
a notable geographical imbalance. Methodologically, most studies adopt LCA approaches, including attributional or hybrid LCA models. Some also integrate 
life cycle cost assessment (LCCA) to evaluate the co-benefits of environmental and economic performance, particularly at the product and treatment levels. 
The scope of environmental impact categories considered has also expanded: while early studies mainly focused on GHG emissions, more recent research 
increasingly adopts the 16 impact categories recommended by the EU PEF methodology. These include climate change, ecotoxicity, eutrophication, ionizing 
radiation, water consumption, and resource depletion[137,141]. However, studies at higher hierarchical levels (Levels 2-4) often involve fewer impact categories 
and seldom conduct uncertainty analysis, which may limit the comprehensiveness and comparability of their results.
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Table 5. Summary of literature review studies on the environmental footprint of the healthcare sector

Reference Hierarchical 
level Accounting objects Research area Data source Methods Environmental factors Uncertainty 

analysis

Kjaer et al. 
(2015)[151]

Level 2 Healthcare organizations 
and companies, and a 
tanker ship

Danish FORWAST database Hybrid EIO 
approach

Greenhouse gases, air pollution(SO2, NMVOC, NH3, 
particles (< 10 µm), and NOx), water use, etc.

Yes

Cimprich and 
Young 
(2023)[152]

Level 2 A Canadian hospital Canada The hospital’s environmental 
sustainability team, “supply-
chains” dataset, financial 
statements, facilities maintenance 
and operations team, food 
operations manager, and 
contracted service managers 

O-LCA using 
OpenLCA (1.10.2)

Ten categories: global warming potential, acidification 
potential, ozone depletion potential, smog formation 
potential, respiratory effects, human toxicity 
(carcinogenics), human toxicity (non-carcinogenics), 
ecotoxicity, fossil fuel depletion

Yes

Prasad et al. 
(2022)[140]

Level 3 Regular and intensive 
inpatient care

NYU Langone 
Hospital-Brooklyn, 
USA

Site observations, hospital 
records, and manual waste audits

Augmented 
process-based 
hybrid LCA

Solid waste and GHGs Yes, sensitivity 
analysis

Hunfeld et al. 
(2023)[139]

Level 3 Intensive care unit (ICU) The Erasmus 
University Medical 
Center

Different management reports, 
including cleaning, disposables, 
medicines, and textiles purchased 
for the ICU

Material flow 
analysis (MFA)

Global warming potential, agricultural land occupation, 
and water usage

No

Kaas et al. 
(2025)[153]

Level 4 Radiotherapy and surgery 
in NSCLC treatment

Netherlands Ecoinvent v3.9.1 LCA using SimaPro 
software v9.2 and 
ReCiPe method

Greenhouse gas emission No

Unger and 
Landis (2016)[154]

Level 5 Reprocessed medical 
devices

Phoenix Baptist 
Hospital (PBH) in 
Phoenix, Arizona, 
USA

ELCD (European Reference Life 
Cycle Database) and ecoinvent 
v2.2

LCA + LCCA Global warming, carcinogenic, non-carcinogenic, and 
respiratory effects

No

Petre and 
Malherbe 
(2020)[138]

Level 5 Scrub suits (reusable vs. 
disposable)

French The reusable scrub suits were 
collected from Elis, its suppliers 
and clients. Information on 
disposable scrub suit 

LCA Ten categories: climate change, particulate matter, 
acidification, freshwater eutrophication, marine 
eutrophication, water depletion, photochemical ozone 
formation, terrestrial eutrophication, freshwater 
ecotoxicity, and land use

Yes, sensitivity 
analysis

Boberg et al. 
(2022)[155]

Level 5 Mixed trocar systems 
used for laparoscopic 
cholecystectomies 
(reusable vs. disposable)

Three hospitals in 
southern Sweden

Manufacturer and ecoinvent v3.6 
database

LCA using SimaPro 
software v9.1.1.1 
and  IMPACT 
2002+ method + 
LCCA

Fifteen categories: Mineral extraction, non-renewable 
energy, global warming, aquatic eutrophication, aquatic 
acidification, land occupation, terrestrial acidification 
and nutrification, terrestrial ecotoxicity, aquatic 
ecotoxicity, respiratory organics, ozone layer depletion, 
ionizing radiation, respiratory inorganics, non-
carcinogens, and carcinogens

Yes, Monte 
Carlo 
Simulation

Snigdha et al. 
(2023)[7]

Level 5 Personal protective 
equipment (reusable vs. 
disposable)

India The relevant literature, 
government reports, expert 
consultation, telephonic 
interviews with industry 
personnel, Ecoinvent database, 
and mathematical modeling

LCA using SimaPro 
software v9.2 and 
ReCiPe method

Six categories: global warming potential, terrestrial 
acidification, freshwater eutrophication, terrestrial 
ecotoxicity, human carcinogenic toxicity, water 
consumption

Yes, sensitivity 
analysis
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Maloney et al. 
(2022)[156]

Level 5 Cloths for clinical surface 
decontamination 
(reusable vs. disposable)

Seven countries: 
Canada, the Republic 
of Ireland, New 
Zealand, Scotland, the 
UK, the USA, and 
Australia

Ecoinvent v3.7.1 LCA using 
OpenLCA v1.10.3

Sixteen European-recommended environmental impact 
categories from the product environmental footprint 
(PEF) recommended methodology, and eight human 
health categories

No

López-Muñoz 
et al. (2025)[
157]

Level 5 Duodenoscopes (reusable 
vs. disposable)

Spain EF Secondary Data sets V. EF 2.0 Attributional LCA 
using openLCA 
v.2.0.3

Acidification potential, water use, resource use (minerals 
and metals), and ionizing radiation

No

Chang et al. 
(2024)[158]

Level 5 Operating room bed 
covers and lift sheets 
(reusable vs. disposable)

A care hospital in 
Cleveland, Ohio, US

Ecoinvent v3 and US Life Cycle 
Inventory (LCI) database

LCA using SimaPro 
software v9.5.0.1

Ozone depletion, global warming, smog, acidification, 
eutrophication, carcinogenics, non carcinogenics, 
respiratory effects, ecotoxicity

No

Lichtnegger 
et al. (2023)[
141]

Level 5 IPC Sleeves (reusable vs. 
disposable)

North and Central 
America

Ecoinvent v3.8 LCA�EF 3.0� using 
Umberto software

Seventeen categories: carcinogenic effects, climate 
change, fossils, freshwater and terrestrial acidification, 
freshwater ecotoxicity, freshwater eutrophication, 
ionizing radiation, land use, marine eutrophication, 
minerals and metals, non-carcinogenic effects, ozone 
layer depletion, photochemical ozone creation, 
respiratory effects, inorganics, terrestrial eutrophication, 
and water scarcity.

Yes, sensitivity 
analysis

Bertolo et al. 
(2024)[159]

Level 5 Cystoscopes (reusable vs. 
disposable)

N/A Registered data, observations, and 
expert opinions

Statistical analysis Water consumption and waste generation Yes, sensitivity 
analysis

Da Tan et al. 
(2024)[137]

Level 5 Hawley vs. Essix post-
orthodontic dental 
retainers

Dublin Dental 
University Hospital 
(DDUH)

Ecoinvent v3.7.1 LCA using 
openLCA and 
ReCiPe H Endpoint

Seventeen categories: carcinogenic effects, climate 
change, fossils, freshwater and terrestrial acidification, 
freshwater ecotoxicity, freshwater eutrophication, 
ionizing radiation, land use, marine eutrophication, 
minerals and metals, non-carcinogenic effects, ozone 
layer depletion, photochemical ozone creation, 
respiratory effects, inorganics, terrestrial eutrophication, 
and water scarcity

No

LCA: Life cycle assessment; GHG: greenhouse gas; ICP: intermittent pneumatic compression.

Construction industry
As shown in Table 6, the studies cover a wide range of accounting objects-from material level to company level-demonstrating methodological diversity and 
contextual complexity. In terms of accounting objects, research has examined corporate-level entities (e.g., Bilfinger Construction Company[142]), specific 
building structures[143,144], construction materials[145,146], and emerging construction technologies such as 3D-printed permanent formwork[147]. Geographically, 
the studies are mainly concentrated in Europe, Asia, and the Middle East, including countries such as Sweden, Qatar, Sri Lanka, and Turkey. Most of the 
literature relies on internationally recognized databases such as Ecoinvent, GaBi, and EPD, which enhances comparability and applicability. In addition, data 
sources also include specific databases (e.g., ATHENA, US LCI), model-generated data (e.g., BIM), field-collected information (e.g., procurement orders and 
utility bills[146]), EPD documents, and published literature, reflecting the diversity in data acquisition approaches.
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Table 6. Summary of literature review studies on the environmental footprint of the construction industry

Reference Accounting objects Research area Data source Methods Environmental factors Uncertainty 
analysis

Neppach et al. 
(2017)[142]

The former Bilfinger 
Construction Company

A Construction 
Company

Finance and procurement 
departments, and an 
interview with the 
supervisors

LCA (OEF) and 
feasibility study

Fourteen categories, but it was not possible to implement an OEF due to the limited time 
of the research (four months in the company) and a lack of information

No

Sinha et al. 
(2016)[144]

A wooden frame and a 
concrete frame 
building

Stockholm EcoInvent 2.2� GaBi 6. 
ETH-ESU 96 and US LCI 
2013 database

ELP-s vs. LCA 
using GaBi and 
SimaPro

Four categories: eutrophication, acidification, photochemical ozone creation, and 
radioactive waste

No

Ajayi et al. 
(2019)[148]

Modeling of eight 
building types

N/A Model-generated data 
based on BIM simulations 
combined with the 
ATHENA database

LCA Energy and GWPs Yes, sensitivity 
analysis

Al-Hamrani et 
al. (2021)[143]

Cyclopean concrete 
(CYC) vs conventional 
concrete (CC)

The construction 
of the Education 
City Stadium in 
Qatar

Ecoinvent v3.6 LCA Raw materials consumption, fuel consumption, water consumption, CO2-eq emissions No

Albrecht et al. 
(2025)[147]

Application of 3D 
printed permanent 
formwork in the 
construction of a 
winder staircase

N/A Ecoinvent 3.9.1 and 3.10 LCA Eleven categories: global warming potential (GWP); ozone depletion potential (ODP); 
acidification potential (AP); eutrophication potential-aquatic freshwater (EP-freshwater); 
eutrophication potential-aquatic marine (EP-marine); eutrophication potential-terrestrial 
(EP-terrestrial); abiotic depletion potential for non-fossil resources (ADPE); abiotic 
potential for fossil resources (ADPF); water use (WDP); total use of renewable primary 
energy resources (PERT); and total use of non-renewable primary energy resources 
(PENRT)

No

Turk et al. 
(2017)[149]

Three innovative 
calcium carbonate-
based consolidants

N/A Ecoinvent 3.1 LCA using GaBi 
and IMPACT 
2002+ 

Seventeen categories: global warming potential, aquatic/terrestrial ecotoxicity potential, 
aquatic/terrestrial acidification potential, aquatic eutrophication potential, etc.

No

Danish et al. 
(2024)[160]

Reclaimed fly ash in 
geopolymer

N/A Ecoinvent 3.9.1 and the 
environmental product 
declaration (EPD) 
document

LCA Five categories: global warming potential (GWP), ozone depletion potential (ODP), 
eutrophication potential (EP), acidification potential (AP), and energy consumption (EC)

No

Baykara et al. 
(2024)[145]

Chitosan-Cement 
Composite Mortars 

N/A Published papers, 
experimental data, and 
Ecoinvent 3.7

LCA using 
OpenLCA and 
ReCiPe 
Midpoint H

Four categories: climate change, terrestrial acidification, ozone depletion, and terrestrial 
ecotoxicity

No

Yu et al. 
(2024)[161]

Construction materials 
based on EPD data

N/A One Click LCA database Descriptive 
statistics 
analysis

Five categories: global warming potential (GWP), acidification potential (AP), 
eutrophication potential (EP), Ozone Depletion Potential (ODP), and photochemical 
ozone creation potential (POCP)

No

Vijerathne et 
al. (2024)[146]

Crushed Natural 
Aggregate

Sri Lanka Firsthand site-specific 
data, gathered from utility 
bills, production records, 
purchasing orders, and 
invoices

LCA using 
SimaPro 9.6 
and ReCiPe

Seventeen categories: mineral resource scarcity, stratospheric ozone depletion, marine 
eutrophication, water consumption, ionizing radiation, fine particulate matter formation, 
terrestrial acidification, global warming potential (GWP), etc.

No
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Yardimci and 
Kurucay 
(2024)[162]

Construction material A residential 
building located in 
Turkey

Field research and GaBi 
2018 database

LCA using GaBi 
8.5 and the 
TOPSIS method

Nine categories: acidification potential, eutrophication potential, global warming 
potential, ozone depletion, smog formation potential, primary energy demand, non-
renewable energy demand, renewable energy demand, and material waste

No

OEF: Organization environmental footprint; LCA: life cycle assessment.

With regard to methodological approaches, LCA is the most commonly used tool, implemented through various software platforms such as GaBi, SimaPro, 
and OpenLCA. Some studies integrate additional decision-making methods (e.g., TOPSIS) or comparative frameworks like ELP-s[144]. A few works incorporate 
modeling and sensitivity analysis to enhance methodological robustness[148], although most studies do not include systematic uncertainty analysis-an important 
gap that future research should address. In terms of environmental impact categories, most studies include at least global warming potential (GWP), 
acidification potential (AP), eutrophication potential (EP), and ozone depletion potential (ODP). Some extend to as many as 17 categories[146], reflecting a more 
comprehensive assessment of environmental impacts. Differences in database versions and study objectives lead to variations in the selection of impact 
indicators. For instance, Baykara et al.[145] focused on four midpoint categories, while Albrecht et al.[147] and Turk et al.[149] covered a broader range of impact 
categories.

CONCLUSION
Based on co-citation analysis, this study systematically identifies the intellectual base of EF research, and the field exhibits clear stage-based characteristics and 
a thematic expansion trajectory. Following the release of the EU-EF (PEF/OEF) framework, the studies mainly focused on its formulation and standardization, 
with particular attention to the relationship and conflicts between PEF and existing standards such as ISO 14044. Subsequently, EF research gradually 
expanded toward applications in the context of the circular economy and the integration of the PBs framework for assessing environmental sustainability, 
contributing multi-scalar assessment tools to global environmental governance. The continuous evolution of methodological approaches in LCA and MRIO 
models and the refinement of analytical tools have supported both knowledge accumulation and practical applications in EF research. Normalization factors, 
weighting methods, and uncertainty analysis associated with LCA frequently appear across clusters, underscoring their importance in shaping the development 
of EF methodologies.

Recent studies increasingly reflect a trend toward methodological integration and scenario simulation, combining both production- and consumption-side 
perspectives to explore the dynamic relationships between EF and economic, social, and technological dimensions. For instance, the widespread testing of the 
EKC hypothesis and the application of multivariate econometric models to analyze environmental drivers have enriched the theoretical framework of EF 
research. A significant portion of the intellectual base employs the ecological footprint as a key indicator for assessing environmental degradation and 
sustainability, particularly in examining the dynamic relationship between economic growth and environmental pressure. This highlights the potential of EF to 
evolve into a more comprehensive environmental indicator-capable not only of providing an integrated accounting framework, but also of identifying and 
analyzing the drivers of environmental impacts and incorporating interactions between ecological stress and socioeconomic systems.
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Figure 6. Five-Tier Hierarchical Framework for the Environmental Footprint of the Healthcare Sector.

Existing literature has explored how globalization, energy consumption, urbanization, trade openness, and 
human capital influence ecological footprints, reflecting a systematic approach to understanding the 
relationship between human activities and environmental pressures. These findings suggest the need for EF 
research to further expand its analytical perspective by integrating multidimensional drivers and compound 
effects. Instead of relying solely on static measurements of resource consumption and emissions, future 
research should incorporate economic, social, technological, and institutional variables into explanatory 
frameworks, thereby deepening the understanding of the origins of environmental stress, regional 
disparities, and governance pathways. Furthermore, the thematic development of EF research reveals a 
trend toward interdisciplinary integration and multi-contextual applications, with growing potential for 
adoption in emerging fields.

From the perspective of sectoral applications, EF studies reveal both similarities and differences across 
industries. In the metals sector, studies vary significantly in scope, covering both primary extraction and 
secondary recovery of metals such as aluminum, copper, gold, and rare earth elements. Geographic 
coverage ranges from China to Europe and developing mining regions. While most studies rely on LCA 
using databases such as Ecoinvent and GaBi, they differ in environmental indicators and treatment of 
uncertainty. In the healthcare sector, EF research is increasingly disaggregated into five hierarchical 
levels-from the entire healthcare system to specific devices and consumables. The majority of studies focus 
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on Level 5, assessing reusable versus disposable products. Most apply standardized LCA approaches with 
sensitivity or Monte Carlo analysis. However, studies at higher system levels are limited and often lack 
comprehensive indicator coverage and uncertainty evaluation, particularly in low- and middle-income 
country settings. In the construction sector, research spans from materials and technologies (e.g., 3D 
printing) to building and corporate levels. LCA remains the dominant method, supported by BIM 
modeling, EPD data, and comparative analysis tools (e.g., TOPSIS). Despite the broadening scope of impact 
categories, systematic uncertainty analysis remains underdeveloped in many studies.
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