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Abstract
Prediction of materials properties from descriptors of chemical composition and structure with machine learning 
(ML) methods has been emerging as a viable approach to materials design and is a major component of the 
materials informatics field. However, as both experimental and computed data may be costly, one often has to 
work with limited data, which increases the risk of overfitting. Combining various datasets to improve sampling on 
the one hand and designing optimal ML models from small datasets on the other, can be used to address this issue. 
Center-environment (CE) features were recently introduced and showed promise in predicting formation energies, 
structural parameters, band gaps, and adsorption properties of various materials. Here, we consider the prediction 
of formation energies of Nb and Nb-Nb5Si3 eutectic alloys substituted with various alloying elements in the Nb and 
Nb5Si3 phases using CE features - a typical alloy system where the data can be naturally divided into subsets based 
on the types of substitutional sites. We explore effects of dataset combination and of the functional form of the 
dependence of the target property on the features. We show that combining the subsets, despite the increased 
amount of data, can complicate rather than facilitate ML, as different subsets do not increase the density of 
sampling but sample different parts of space with different distribution patterns, and also have different optimal 
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hyperparameters. The Gaussian process regression-neural network hybrid ML method was used to separate the 
effects of nonlinearity and inter-feature coupling and show that while for Nb alloys nonlinearity is unimportant, it is 
critical to Nb-Nb5Si3 alloys. We find that inter-feature coupling terms are unimportant or non-recoverable, 
demonstrating the utility of more robust and interpretable additive models.

Keywords: Materials informatics, machine learning, kernel regression, feature engineering, alloys

INTRODUCTION
Prediction of materials properties from descriptors of chemical composition and structure with machine 
learning (ML) - a major part of materials informatics - is attracting growing attention, as it holds the 
promise of more rapid discovery of novel functional materials with desired properties by reducing the 
amount of the required experimentation and/or direct calculations of the target properties of material 
candidates and the associated human, CPU, and time costs. This is an enticing proposition, and for this 
reason, materials informatics is rapidly becoming one of research mainstreams, with ML of various 
properties such as formation energetics, band structure-derived properties, interaction and reaction 
energies and barriers reported in many works[1-5]. Building accurate ML models requires good training data, 
potentially large amounts of data with high quality. Training data [either experimental or computational, 
e.g., with density functional theory (DFT)[6]] are often expensive to obtain, so that in many materials 
informatics problems, one has to deal with rather small datasets[7-10]. The number of features or descriptors 
D used is often large, resulting in hard high-dimensional ML problems. For example, atomic properties 
such as nuclear charge, ionization potential (IP), electron affinity (EA), and atomic orbital data are always 
available and are often used, resulting in dozens of features even for materials with few types of constituent 
atoms[11-15]. To this are typically added a number of features describing composition (stoichiometry), 
structure, atoms or electron densities etc.[16-18], resulting in potentially very high dimensional feature spaces.

The density of sampling with a limited-size dataset in a high-dimensional feature space is thus bound to be 
low, and the data scarcity issues arise pertaining to the proverbial “curse of dimensionality”[19]. When using 
common nonlinear ML methods, this manifests itself in overfitting on the one hand and in methodological 
issuefs on the other, e.g., loss of the advantage of using Matern kernels. One way to deal with it is to use 
more robust models including linear models or non-linear models - linear regressions using preset 
customized nonlinear basis functions, either those reflecting the nature of the underlying phenomena or 
those found to provide a good fit[20,21] as opposed to, e.g., generic nonlinear kernels. Another way is to build 
the target function from component functions of lower dimensionality. The use of the latter has been 
formalized with high-dimensional model representation (HDMR)[22-24] ideology. HMDR can be effectively 
done with ML[25-27] but suffers from a combinatorial growth of the number of terms with both D and the 
included order of coupling among the features. However, simple additive models (1st order HDMR) do not 
suffer from this issue (as the number of terms then is simply D) and are attractive if inter-feature coupling is 
unimportant or unrecoverable due to low data density[25]. These approaches allow interpretability as they 
help reveal the functional form of the dependence of the target function on features[20,21,26]; this information 
can then be used to guide future model construction, either analytic or algorithmic. Pieces of information 
that are expected to be useful for this include the knowledge of whether the underlying functional 
dependence is linear or nonlinear and whether inter-feature coupling is important for a given practical 
problem. These issues are studied here in a case study of ML of substitution energies of alloying elements in 
Nb and Nb-Si alloys.



Page 3 of Tang et al. J. Mater. Inf. 2025, 5, 38 https://dx.doi.org/10.20517/jmi.2025.05 19

Dataset augmentation and combination is another approach to palliate data scarcity. It can be done by 
combining datasets from several related systems. For example, when using ML to predict the screening 
factor of the SoftBV approximation[28,29], data scarcity prevented effective ML for specific crystal structure 
types - perovskite and spinel oxides - considered individually, whereby individual datasets only had about 
100 data points. However, combining perovskite and spinel sets increased the accuracy of prediction for 
both. Transfer learning methods can also be employed, enabling ML models that are initially trained on 
datasets of spinel oxides to effectively predict the stability of perovskite oxides[30]. Individual datasets may 
help achieve a denser internal sampling of similar overlapping regions of feature space, but they can also 
expand the volume of feature space. In the former case, and if the similarity of sampled systems translates 
into hyperparameter similarity between datasets, their combination is likely to facilitate building a more 
accurate ML model. If different datasets sample distinct parts of the feature space and/or require varying 
hyperparameters, such data combinations may instead complicate building an accurate ML model. In this 
work, the effect of data combination is discussed on the example of ML substitution energies of Nb and Nb-
Si alloys.

NbSi-based alloys are intermetallic compounds with high melting points (2,400 oC) and low densities (6.6-
7.2 g/cm3), making them promising ultra-high temperature materials for next-generation aeroengine 
turbines beyond current nickel-based superalloys[31]. The Nb-Nb5Si3 composites exhibit an excellent 
combination of the toughness of Nb and the strength of Nb5Si3 but suffer from problems with the strength/
oxidation resistance of Nb and the deformability of Nb5Si3. Many costly experimental works have shown 
that adding alloying elements is an effective way to improve the comprehensive performance of Nb-Si 
alloys[32,33]. DFT-based first-principles calculations have been used to study the stability and mechanical 
properties of NbSi-based superalloys doped with various alloying elements. First-principles calculations are 
also time-consuming, so only a very limited number of alloying elements and substitution sites have been 
studied[34-36]. ML, as an emerging data-driven research paradigm in materials science, has proven to be 
effective and efficient in describing complex structure-property relationships in materials[5,37,38].

In this work, we therefore explore the effects of dataset combination and of feature nonlinearity and 
coupling on the functional form of the dependence of the target property on the features in the optimal ML 
model by considering the problem of prediction of substitution energies of Nb and Nb-Nb5Si3 eutectic alloys 
as a function of alloying elements and their substitution sites in Nb and Nb5Si3 phases. In these systems, the 
data can be naturally divided into subsets based on the type of substitutional site: the substitutional sites in 
pure Nb and various inequivalent paired dual substitution sites in Nb and Nb-Nb5Si3 phases. These sub-
datasets can be machine-learned separately or combined in a single model to examine the effect of data 
combination. We use center-environment (CE) features[39,40] (defined below in more detail) that encode 
chemical composition and structure information by using properties of constituent atoms projected onto a 
composition- and structure-dependent basis set. While the basis set used for the projection is system-
dependent, the CE definition is generally applicable to any system, even including those with low local 
symmetry. CE features have been successfully used to machine-learn various properties including structural 
parameters, formation energies, band gaps, and molecular adsorption energies[30,39,40]. We perform ML with 
common kernel methods, as well as with the Gaussian process regression-neural network (GPR-NN) hybrid 
ML method that allows disambiguating the effects of feature nonlinearity and inter-feature coupling with 
additive models. We find that different data subsets, corresponding to different substitution sites, expand 
the volume of the feature space rather than just increase its internal sampling density, so that their 
combination complicates rather than facilitates ML. Data for Nb alloys and Nb-Si alloys require different 
optimal hyperparameters; while the best model for Nb alloys is practically linear, nonlinearity is important 
for Nb-Si alloys, and it is more pronounced when ML the combined full dataset. We also find that while 
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feature nonlinearity is important, inter-feature coupling terms are unimportant or non-recoverable, in 
individual data subsets and in the combined full dataset, demonstrating the feasible utility of more robust 
and interpretable 1st order additive models.

MATERIALS AND METHODS
Data sets
The training dataset is constructed based on first-principles calculations of alloyed Nb and α-Nb5Si3. Nb has 
a body-centered cubic (BCC) crystal structure, while α-Nb5Si3 adopts a body-centered tetragonal (BCT) 
structure. In the pure Nb supercell, all Nb atoms are equivalent due to their symmetrical nature. In contrast, 
the conventional cell of α-Nb5Si3 contains two inequivalent Nb sites (dubbed NbI and NbII) and two 
inequivalent Si sites (dubbed SiI and SiII) that can be substituted with alloying elements. Figure 1 shows Nb 
and α-Nb5Si3 systems with substitution sites for alloying elements. See Ref.[41] for a more detailed description 
of the crystal structure and sites. This 32-atom conventional cell consists of 20 Nb atoms and 12 Si atoms, 
with four NbI, 16 NbII, four SiI, and eight SiII atoms, respectively. By considering site substitutions at the 
non-equivalent site pairs with 14 different alloying elements, including B, Al, Si, Ti, V, Cr, Fe, Co, Ni, Y, Zr, 
Nb, Mo, and Hf, we compiled a total of 3,738 double-site substitution energies (EDS), which includes 210 
data points for Nb and 3,528 for α-Nb5Si3 from the literature[41]. In α-Nb5Si3, the four non-equivalent sites 
NbI, NbII, SiI, and SiII contain 588, 1,764, 784, and 392 data points, respectively. During the ML model 
constructions in this work, 80% of the data were used for training and 20% for testing with random splits for 
each dataset.

Features
The CE features, which encode information about local structure and composition, have been successfully 
utilized to study alloys, oxides, and surface catalytic reactions[39,40]. The CE feature model can be given as an 
(n + 1) dimensional compound feature vector as follows:

Here, P consists of n elementary features of an element or pure substance (Pi) and the target property T. 
Each Pi is a two-dimensional vector representing the i-th elementary property, which includes the center 
and environment components given by:

where

and

The normalized weight ωE,j is defined as:

(1)

(2)

(3)

(4)

(5)
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Figure 1. (A) Nb supercell BCC structure containing non-equivalent substitutional models of XNb0YNb1 and XNb0YNb2; (B) α-Nb5Si3 BCT 
conventional cell containing four non-equivalent sites: NbI, NbII, SiI, and SiII. The M (subscripts I) and L (subscripts II) represent the 
more and less closely packed layers, respectively. BCC: Body-centered cubic; BCT: body-centered tetragonal.

where C and E refer to the center and environment atoms, respectively; i is the index for the elementary 
property, and j denotes the index of the environment atoms. The variable pc,i represents the i-th elementary 
property of the center atom, while pE,j,i denotes the i-th property of the j-th environment atom surrounding 
the center atom. The weight ωE,j reflects the influence of the elementary properties based on the distance rj 
between the center and environment atoms. The weights are normally inversely proportional to the rj 
distance.

It is well-known that feature engineering significantly influences the accuracy of ML modeling[2,3,30,42]. The 
CE features are composite characteristics derived from an assembly of elementary property features, 
incorporating local structural information as specified by the center and environment atoms 
[Supplementary Text 1 and Supplementary Figure 1]. The CE features consist of two main types:

(1) Elementary property features: These are various physicochemical properties readily available from 
fundamental databases[43], such as atomic mass, radius, electronegativity, and the number of valence 
electrons, as well as properties of pure substances such as density, melting temperature, and bulk modulus.

(2) Compound property features: These features are constructed through a linear combination of the 
elementary properties of the center or the environment atoms, with weights inversely proportional to the 
distance between the center atom and the environment atom (rj

-1).

This approach allows CE features to effectively encode elementary properties along with local composition 
and structure information, offering a comprehensive digital representation of the materials’ composition 
and structure.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jmi5005-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jmi5005-SupplementaryMaterials.pdf
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Figure 2. The distribution of features (scaled on unit cube) of different subsets: blue - Nb, red - NbI-Nb5Si 3, green - NbII-Nb5Si 3, black - 
SiI-Nb5Si3, magenta - SiII-Nb5Si3 alloys.

Data distribution
The CE features result in a D = 40-dimensional space in this work [Supplementary Table 1]. The analysis of 
data distribution in high-dimensional spaces is difficult, but we can get some insight from the distributions 
of individual features for the five subsets shown in Figure 2. While the extent of their overlap is feature-
dependent, overall, these distributions indicate that the subsets only partially overlap and extend the volume 
of feature space rather than increase the sampling density internally. This is also corroborated by Figure 3 
where distributions of pairwise distances in the feature space are plotted. Within individual datasets, 
pairwise distances are distributed around 1-2 and taper off after about 3. Among the subsets, the 
distributions indicate that SiI-Nb5Si3 data occupy a relatively larger extent of space. The distances of the 
combined dataset are distributed until about 5, which is an indication that subsets cover different parts of 
the feature space. Figure 4 shows the distribution of energy values in different datasets; these also only 
partially overlap. Most of the elementary property features are relatively independent of each other due to 
the nature of their definitions associated with alloying elements. Moreover, the structural characteristics of 
various substitutions add further distinctions to the uniqueness of CE features. The variations in both 
elements/compositions and structures lead to somewhat different feature distributions among each sub-
dataset. The partial decoupling of feature distributions implies that dataset combination in this case might 
not necessarily facilitate ML; this is exactly what would be observed below.

ML methods
Kernel regression
In this study, we employed support vector regression (SVR)[44,45] with a radial basis function (RBF) kernel. 
SVR is a powerful regression technique that excels in non-linear scenarios under sparse data, as the 
nonlinear kernel provides high expressive power while regression coefficients are linear contributing to the 
method’s robustness associated with linear regression. To optimize the performance of the SVR model, we 
implemented hyperparameter optimization through a grid search strategy. This method involved 
systematically exploring a pre-defined set of hyperparameter values to identify the optimal combination that 
minimizes prediction error. Key hyperparameters optimized for the SVR include the penalty 
(regularization) parameter and the coefficient gamma g for the kernel function, which significantly 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jmi5005-SupplementaryMaterials.pdf
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Figure 3. The distribution of pairwise distances between datapoints in the space of features (scaled on unit cube). Solid curves are for 
alloys of: blue - Nb, red - NbI-Nb5Si 3, green - NbII-Nb5Si 3, black - SiI-Nb5Si 3, magenta - SiII-Nb5Si 3. Black circles are for the combined 
dataset. The curves were scaled by 1/3 for NbII-Nb5Si3 and by 1/6 for the combined set for better readability.

Figure 4. The distribution of substitution energies (in eV/cell) in different datasets. Solid curves are for alloys of: blue - Nb, red - 
NbI-Nb5Si3, green - NbII-Nb5Si 3, black - SiI-Nb5Si 3, magenta - SiII-Nb5Si 3. Black circles are for the combined dataset.

influence the model’s ability to generalize to unseen data. In SVR, gamma g is the inverse of twice the 
squared length parameter (σ) of the RBF kernel. The value of gamma determines the reach of a single 
training example: a low gamma value suggests a far-reaching influence, leading to a smoother, more 
generalized model, whereas a high gamma value implies a more localized influence that is more sensitive to 
the data and potentially more complex. The results of this optimization are detailed in Table 1.
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Table 1. Modeling hyper-parameter optimization candidates by grid search with the optimal parameters highlighted in bold

Regression algorithm Parameter list

C: 0.1, 1, 10, 100,1000SVR

Kernel function: RBF 
gamma γ: 0.001, 0.01, 0.1, 0.5

n_estimators: 20, 50, 70

max_depth: 3, 4, 5, 7, 10

RF

min_samples_split: 2, 4, 6, 10

SVR: Support vector regression; RBF: radial basis function; RF: random forest.

Random forest
Random forest (RF)[46] is an ensemble learning method that constructs multiple decision trees during 
training and merges their outputs for more accurate predictions. This approach not only improves 
performance but also helps mitigate overfitting by averaging predictions across numerous trees, each 
trained on a random subset of the data. Similar to SVR, the hyperparameters of the RF model were 
determined using the grid search method. This process allows for efficient tuning of parameters such as the 
number of trees, maximum depth of the trees, and minimum samples required to split an internal node. By 
focusing on these critical hyperparameters, we ensured that the RF model was well-optimized for our 
dataset. The optimal hyperparameters for the RF model are also outlined in Table 1.

We have explored other methods [other kernel regressions and neural networks (NNs)] and arrived at a 
similar prediction accuracy. It is natural that when hyperparameters are optimal, all major ML methods will 
result in similar regression model accuracy. We therefore limit the present presentation to SVR results, as 
kernel regression has few hyperparameters and avoids issues with large numbers of nonlinear parameters 
and initializations (leading to different local minima) characteristic of other ML methods, notably NNs.

Analysis of nonlinearity and coupling
To analyze the effects of nonlinearity and coupling among features, we used the GPR-NN method[47]. The 
method represents the target function f(x), x ∈ RD, with the help of a set of redundant coordinates y that 
linearly depend on x, y = Wx, y ∈ RN>D. The representation is a 1st order additive model in y:

where wn are rows of matrix W. The univariate component functions fn(yn) are in general non-linear and are 
expressed with kernel regression,

where y(m) = Wx(m) are training data points. The kernel functions may in principle depend on n, but in 
practice the method works well when k(χ, χ′) is the same for all n, for example, one of commonly used 
Matern kernels. We use here the RBF kernel k(χ, χ′) = exp(-2l2(χ, χ′)2) for all n. We did not observe an 
advantage of using other kernels. As we scale the data on the unit cube, we use a single length parameter l.

(6)

(7)

The method has several advantages. For a given W, all terms fn(yn) are constructed in a single linear step by 
using an additive kernel in y, k(y, y′) = Σn=1

N exp(-2l2(yn-y′n)2). The shape of these terms is optimal for given 
data and W. Any GPR/KRR engine (code in any programming environment) can be used, one only needs to 
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provide the additive kernel. The cost of the method does not differ from conventional kernel regression 
except for the summation in the kernel. The method is robust as only one-dimensional kernels are used to 
represent the component functions fn(yn), avoiding issues with multidimensional kernels. One consequence 
of it is a less critical sensitivity to the hyperparameters.

One notes that Equation (7), while in y it is a 1st additive model obtained with additive GPR[48,49], in the 
original coordinates (feature space) x, it has the form of a single-hidden later NN with a linear output 
neuron and optimal neuron activation functions individual to each neuron. W has the meaning of the 
weight matrix of an NN; contrary to a conventional NN, it is not optimized but is set by rules. Because 
neuron activation functions are optimized, biases are subsumed into them. As no non-linear optimization is 
done, the method is stable with respect to overfitting: one need not know an optimal number of terms N; 
exceeding the optimal (sufficient for a given dataset) value of N does not lead to overfitting, contrary to 
growing the number of neurons of a conventional NN beyond optimal, see reference[47] for a demonstration.

With respect to the purpose of the present work, the method is advantageous as it allows disambiguating the 
contributions from nonlinearity in an additive model and that of coupling among the features. When 
setting W = I, i.e., y = x, one obtains a 1st order additive model. Magnitudes of fn(xn) can serve as indicators 
of feature importance and their shapes reveal the type of functional dependence of the target on individual 
features. fn(xn) are in general nonlinear but may also come out linear when the optimal component function 
shape is linear. Growing the number of terms (neurons) N with wn generates coupling terms among 
features. Different ways of setting wn are possible[47,50]; here we take wn to be elements a D-dimensional 
pseudorandom Sobol sequence[51]. A MATLAB code for GPR-NN method is available in the supporting 
information of Ref.[47], and a version modified for the present work in available (see data availability 
statement).

RESULTS AND DISCUSSION
Assessing prediction accuracy with full-dimensional regression
ML modeling, utilizing the CE feature model, was employed to predict the substitution energies of dopant 
elements in Nb and α-Nb5Si3 alloys. The results indicate that the SVR method with a nonlinear kernel 
function outperforms the RF method [Table 2]. In the study of α-Nb5Si3 alloys, the dataset size for the four 
non-equivalent sites significantly affects the prediction outcomes. Notably, the SiII site, despite having the 
smallest dataset, achieves the highest prediction accuracy. This finding suggests that smaller datasets can 
yield more accurate predictions in certain scenarios, particularly when data quality is high with minimal 
noise and the intrinsic distribution is clearly describable. Furthermore, for comprehensive datasets that 
include multiple inequivalent sites, the prediction error does not simply compound the errors from each 
individual site. This implies that the interactions between different sites and the complexity of the data 
distribution play a crucial role in influencing prediction accuracy. That the error for the combined set is 
higher corresponds to the fact that the data from subsets only partially overlap in the feature space, which 
increases the volume of feature space aggravating the data scarcity challenge, rather than increasing the 
density of internal sampling that would improve ML prediction.

Analysis of the role of nonlinearity and coupling
We used the GPR-NN method to fit uncoupled (additive) and coupled models. We performed 100 fits 
differing by random train-test splits of the data. Hyperparameters (kernel length parameter and the noise 
parameter) were chosen to minimize the average (over the 100 fits) test set error. Representative results of 
ML with the GPR-NN method in the additive model regime (i.e., y = x) are shown in Figure 5 for individual 
subsets as well as for the combined set, showing correlation plots between model-predicted and reference 
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Table 2. ML prediction results of substitution energies (eV/cell) for Nb and α-Nb5Si3 alloys using SVR and RF methods

RMSE (SVR) RMSE (RF)
Data sets (No. of data points)

Training Test Hyperparameter l training test

Nb (210) 0.077 0.092 0.1 0.170 0.248

NbI-Nb5Si3 (588) 0.195 0.264 0.1 0.316 0.476

NbII-Nb5Si3 (1,764) 0.189 0.271 0.5 0.361 0.514

SiI-Nb5Si3 (784) 0.227 0.269 0.1 0.252 0.347

SiII-Nb5Si3 (392) 0.047 0.115 0.1 0.254 0.359

Combined Nb5Si3 (3,528) 0.416 0.495 0.5 0.675 0.780

ML: Machine learning; SVR: support vector regression; RF: random forest; RMSE: root mean square error.

Figure 5. Correlation plots between ML model-predicted and DFT reference (“exact”) values of substitution energies (in eV/cell) of 
alloy systems for different datasets. (A) Nb alloys, (B) NbI-Nb5Si3 alloys, (C) NbII-Nb5Si3 alloys, (D) SiI-Nb5Si3 alloys, (E) SiII-Nb5Si3 
alloys, (F) combined data set. Blue points are for the training and red points for the test set. Correlation coefficients are given on the 
plots (mean over 100 train-test splits). ML: Machine learning; DFT: density functional theory.
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data for training and test data points. The RMSE values are summarized in Table 3.

Figures 6-8 show the shapes of the component functions fi(xi) in the order of their importance for some of 
the datasets selected to illustrate a case of a data subset with linear component functions, a case with non-
linear component functions, and the functions for the combined dataset. The shapes of the component 
functions for the other datasets are shown in the Supplementary Figures 2-4). Their importance [evaluated 
as a square root of the variance of fi(xi)] is shown in Figure 9.

The following can be concluded from these results. Optimal hyperparameters are quite different among the 
subsets. This, coupled with data distributions indicating only partially overlapping volumes of sampled 
space [Figures 2-4], explains difficulties of obtaining a better model by combining the subsets that were also 
observed with SVR. It might instead be advisable to use separate ML models that are used depending on the 
type of dataset (a category). The difference between the optimal length parameter (l) corresponds to 
different roles played by nonlinearity. In particular, GPR-NN reveals that the dependence on the features is 
practically linear for the Nb alloys dataset [Figure 6], with any noticeable nonlinearity appearing only in 
fi(xi) whose contributions are minor [Figure 9]. For the datasets corresponding to Nb-Nb5Si3 alloys, 
nonlinearity is substantial [Figure 7 and Supplementary Figures 2-4]. It is very pronounced in the combined 
dataset [Figure 8] as the algorithm attempts to learn a heterogeneous dataset leading to a small length 
parameter [Table 3].

The relative feature importance is different between the datasets. Feature importance is known to be 
method-dependent. Here it is clearly data-dependent and is different not just between Nb and Nb-Nb5Si3 
alloys but also between Nb-Nb5Si3 alloys alloyed at different substitution pair sites. Each vertical set of points 
in Figure 9 shows the spread of feature importance values over 100 runs differing by random train-test split. 
The existence of a substantial spread indicates a relatively sparse-data regime, but a relative persistence of 
relative feature importance with different train-test splits indicates a degree of reliability of ML. 
Nevertheless, we would caution against reading too much into feature importances obtained with black-box 
algorithms as they are algorithm-dependent and may return nonsensical results (see Ref.[52] for a spectacular 
example of significant importance attached by ML to features which are numeric IDs of molecular blocks 
devoid of any physical meaning).

Importantly, when adding coupling terms [i.e., Equation (6) with increasing N] there is little statistically 
significant improvement in RMSE of test dataset for any of the subsets or for the combined set [Table 4]. In 
some of the subsets there was only improvement in the training set error. This indicates that while 
nonlinearity is important, inter-feature coupling terms are unimportant or non-recoverable probably due to 
low sampling density in this case.

Analysis of feature dimensionality reduction
We performed uniform manifold approximation and projection (UMAP) dimensionality reduction of the 
features and projection of substitution energies predicted via the CE-SVR models on the various datasets 
[Figure 10]. The UMAP feature analyses show that the two feature vectors after dimensionality reduction 
were not able to distinguish the target properties unambiguously in most datasets except for Nb and 
SiI-Nb5Si3 with fewer data. These indicate the highly nonlinear relationships between the features and target 
properties. Moreover, the distribution patterns with such non-linear feature-property relationships differ 
significantly among various datasets. The various distribution patterns in the feature maps demonstrate that 
the CE features indeed capture the structural variations of different substitution sites while they have the 
same composition associated with the same substitutional elements. It also suggests that it is necessary to 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jmi5005-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/jmi5005-SupplementaryMaterials.pdf
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Table 3. RMSE in substitution energies (in eV/cell) of alloying elements predicted by GPR-NN and optimal hyperparameters (kernel 
length parameter l and noise parameter logσ) for different datasets

RMSE (GPR-NN) Hyperparameters
Data set

Training Test l logσ
Nb (210) 0.17 ± 0.01 0.21 ± 0.05 20 -6

NbI-Nb5Si3 (588) 0.18 ± 0.01 0.25 ± 0.03 3 -5

NbII-Nb5Si3 (1,764) 0.23 ± 0.01 0.29 ± 0.02 0.5 -5

SiI-Nb5Si3 (784) 0.27 ± 0.01 0.32 ± 0.04 0.5 -3

SiII-Nb5Si3 (392) 0.11 ± 0.003 0.14 ± 0.02 1.5 -4

Combined Nb5Si3 (3,528) 0.43 ± 0.01 0.52 ± 0.03 0.1 -2.5

The spread of values indicated by “±” is for 1 standard deviation over 100 runs differing by random train-test splits. RMSE: Root mean square error; 
GPR-NN: Gaussian process regression-neural network.

Table 4. RMSE of substitution energies (in eV/cell) of alloying elements when using different numbers of terms N in the coupled 
model of Equation (6)

N = 100 N = 200 N = 500
Data set

Training Test Training Test Training Test

Nb 0.17 ± 0.01 0.21 ± 0.05 0.16 ± 0.02 0.22 ± 0.05 0.16 ± 0.01 0.22 ± 0.06

NbI-Nb5Si3 0.13 ± 0.01 0.26 ± 0.05 0.12 ± 0.01 0.25 ± 0.05 0.12 ± 0.01 0.25 ± 0.05

NbII-Nb5Si3 0.11 ± 0.01 0.30 ± 0.07 0.11 ± 0.01 0.35 ± 0.11 0.11 ± 0.01 0.35 ± 0.13

SiI-Nb5Si3 0.24 ± 0.01 0.31 ± 0.04 0.24 ± 0.01 0.31 ± 0.04 0.24 ± 0.01 0.31 ± 0.04

SiII-Nb5Si3 0.09 ± 0.003 0.13 ± 0.01 0.09 ± 0.003 0.13 ± 0.02 0.09 ± 0.003 0.13 ± 0.01

Combined Nb5Si3 0.36 ± 0.004 0.52 ± 0.05 0.37 ± 0.003 0.53 ± 0.04 0.38 ± 0.003 0.54 ± 0.03

The spread of values indicated by “±” is for 1 standard deviation over 100 runs differing by random train-test splits. RMSE: Root mean square error.

Figure 6. Component functions of the additive model for Nb alloys.

calculate various configurations to cover the full feature space more uniformly and adopt the CE feature 
models incorporating both compositional and structural information. It also helps explain why the model 
on the combined dataset performed worse than the individual models on the data subsets since these 
features are orthogonal independently each other.
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Figure 7. Component functions of the additive model for NbI-Nb5Si3 alloys. See Supplementary Figures 2-4 for the plots of the 
component functions for other Nb5Si3 alloys.

Figure 8. Component functions of the additive model for the combined dataset.

CONCLUSIONS
To elucidate fundamental alloying effects of multi-component alloys, it is crucial to develop accurate ML 
methods to predict the formation energies of Nb and Nb-Nb5Si3 eutectic alloys substituted with various 
alloying elements in the Nb and Nb5Si3 phases. Various complex factors influence the accuracy of ML 
prediction. This case study is instructive, in particular, because it presents the problem of ML of materials 
properties from relatively sparse data often encountered in doped materials systems, and it presents a typical 
doped system where the data can be naturally divided into subsets based on the type of substitutional site. 

-SupplementaryMaterials.pdf
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Figure 9. Feature importance in the additive model for (A) Nb alloys, (B) NbI-Nb5Si3 alloys, (C) NbII-Nb5Si3 alloys, (D) SiI-Nb5Si3 alloys, 
(E) SiII-Nb5Si3 alloys, (F) combined data set. Blue points are for the training, and red points are for the test set. The distribution of 
vertical points at each feature is over 100 runs differing by random training-test splits.

This allowed us to explore the effect on the quality of ML of using individual data sets for each type of 
substitution or aggregating data corresponding to different types of substitutional sites. Under sparse data, 
data combination is typically believed to be promising. We demonstrated here on the example of NbSi 
alloys that data combination does not necessarily improve the quality of an ML model if the data do not 
sample similar areas in the feature space. The prediction error for the combined dataset is higher than 
prediction errors for subsets corresponding to individual different site types. This reflects data distribution, 
namely that the data from subsets only partially overlap in the feature space and, rather than increasing the 
density of internal sampling which would facilitate ML, increase the volume of feature space. In this case, it 
may be recommended to use individual models for the subsets as the perceived advantages of a bigger 
combined dataset may not be realized. The transferability issues should be paid attention to for doped 
systems with different substitution configurations.
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Figure 10. UMAP feature analyses on various data subsets of substitutions where the substitution energies are predicted by the CE-SVR 
models: (A) Nb, (B) NbI-Nb5Si 3, (C) NbII-Nb5Si 3, (D) SiI-Nb5Si 3, (E) SiII-Nb5Si 3, and (F) combined Nb5Si 3. UMAP: Uniform manifold 
approximation and projection; CE-SVR: center-environment-support vector regression.

We also explored the functional form of the dependence of the target property on the features, in particular 
the roles of nonlinearity and inter-feature coupling. This was possible with the use of GPR-NN hybrid ML 
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method. We showed that while for Nb alloys nonlinearity is unimportant, it is critical to Nb-Nb5Si3 alloys. 
We find that inter-feature coupling terms are unimportant or non-recoverable, demonstrating the utility of 
more robust and interpretable additive models for the decoupled feature space. The method allows for 
estimation of feature importance, although one should not exaggerate the general physical meaning of 
feature importances during the interpretation of ML models. The relative importance of features can be 
quite sensitive to detailed local configurations and feature distributions rather than generic to a class of 
physically similar systems. Overinterpretation should be avoided when one correlates the feature’s 
importance tightly with its physical significance, as commonly found in the literature.

We hope that this study will be helpful to researchers in designing optimal ML approaches, including 
dataset augmentation, algorithm optimization, and feature analysis, for ML of materials properties under 
limited data in solving doping problems for alloys or semiconductors. For example, if it is understood that 
combining data is not advantageous as different subsets may not increase the density of sampling and have 
different optimal hyperparameters, complicating rather than facilitating the ML task, this knowledge can 
then be used to select appropriate methods for such data, such as methods taking into account data 
hierarchy[25,53]. Once the kind of dependence of the target on the features (linear vs non-linear or coupled vs. 
uncoupled) is understood, it can also be used to select more appropriate methods (e.g., simple linear 
regressions or polynomial models instead of complex ML schemes[20]). Moreover, this work suggests that 
data-driven feature learning becomes increasingly important rather than the optimization of algorithm and 
parameters alone due to the feature dependent prediction accuracy.

The prediction of energy changes for substitutional elements in alloys serves as a fundamental theoretical 
approach to guide the design and optimization of alloy compositions. By accurately forecasting energy 
changes due to substitution, the CE-based ML approach makes it possible to identify stable alloy phases and 
preferred occupancy for understanding and evaluating alloying effects, inform the selection of appropriate 
alloying elements, and mitigate the necessity for extensive empirical experimentation.
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