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Abstract
Protonic solid oxide fuel cells (P-SOFCs), as a promising power generation technology, have garnered increasing 
attention due to their advantages of cleanliness, high efficiency, and high reliability. As a critical component of 
P-SOFCs, proton-conducting electrolytes exhibit high ionic conductivity, enabling high chemical-to-electrical 
energy conversion efficiency at intermediate temperatures. However, there are still many challenges in further 
enhancing the proton conductivity and stability of the currently widely used Ba(Zr, Ce)O3 electrolytes through 
traditional experimental methods. Herein, this review firstly summarized the current research status of 
proton-conducting oxides, including ABO3 perovskite-type oxides and other structural oxides, and highlighted the 
challenges faced by electrolyte development in terms of proton conductivity, compatibility with other components, 
and long-term durability. Then, the relevant progress of machine learning (ML) in the research of P-SOFC 
electrolytes was meticulously discussed and the promising applications of ML in proton-conducting electrolyte 
performance screening, stability prediction, and morphology analysis were pointed out. More importantly, the 
challenges and solutions of proton-conducting electrolytes designed by ML were uncovered by considering the 
reliable database, feature engineering, accurate model, and experimental validation. Overall, this review concluded 
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the advances of ML-assisted P-SOFC electrolytes and addressed the future research directions in the synergy of 
ML and electrolytes.

Keywords: Proton-conducting electrolytes, machine learning, conductivity, chemical stability, fuel cells

INTRODUCTION
Global emission of carbon caused by the extensive utilization of traditional fossil fuel has posed an 
unprecedented challenge to the ecological environment, prompting countries around the world to 
accelerate the search for clean, efficient, sustainable, and renewable energy alternatives. Various new energy 
technologies, such as solar photovoltaic cells, wind power generation, and fuel cells, have emerged 
accordingly[1-3]. Among them, solar photovoltaic cells have the advantages of clean, renewable, and low 
maintenance costs. However, they are limited by weather conditions and their energy conversion 
efficiencies need to be improved[4,5]. Although the wind power generation technology is mature, it has 
requirements for geographical locations and may have impacts on the ecological environment[6,7]. 
Hydroelectric power generation is stable and schedulable, but it has requirements for water resources and 
may affect river ecosystems[8]. Geothermal energy technology is stable and schedulable, but it is restricted by 
the high initial investment cost and the potential impacts on ecosystems and natural resources[9]. Fuel cells 
can directly convert chemical energy into electrical energy through electrochemical reactions. Since the 
process does not involve combustion, it has the advantages of high efficiency, low emissions, and high 
flexibility[10].

At present, the typical fuel cells include proton exchange membrane fuel cells (PEMFCs), alkaline fuel cells 
(AFCs), phosphoric acid fuel cells (PAFCs), solid oxide fuel cells (SOFCs), etc., as summarized in 
[Figure 1][11-14]. Among them, PEMFCs have the advantages of low operating temperature and rapid startup. 
However, they have extremely high requirements for the purity of hydrogen fuel. In addition, the catalysts 
of PEMFCs rely on expensive noble metals such as platinum. These features not only significantly increase 
the cost of the cell manufacture and purification of hydrogen, but also limit the speed of large-scale 
commercial promotion[10,15]. AFCs possess relatively fast electrode reaction kinetics, and their energy 
conversion efficiency is comparatively high. Moreover, non-precious metal catalysts can be used for AFCs, 
such as nickel, reducing the cost. However, AFCs are very sensitive to CO2 and easy to form carbonates due 
to the reaction between electrolytes and CO2 during operation, thereby reducing the conductivity of the 
electrolyte and the performance of the cells. Therefore, the working environment requires extremely low 
CO2 concentration, which increases the complexity of the system and the operating cost[16,17]. PAFCs have a 
relatively wide adaptability and flexibility to fuels and moderate operating temperature, which is already 
applied as stationary power stations. However, their energy conversion efficiency is slightly lower compared 
to other fuel cell technologies[18]. In comparison, SOFCs have a higher energy conversion efficiency and can 
reduce energy waste. Their high operating temperature also enables internal fuel reforming, eliminating the 
complex external reforming devices, thus broadening the selectivity of fuel and reducing the fuel processing 
cost. In terms of materials, SOFCs can use relatively inexpensive ceramic materials as electrolytes and 
electrodes, which reduces material costs. Moreover, they can maintain stable electrochemical performance 
during long-term operation, making them more suitable for large-scale energy application scenarios such as 
distributed power generation and combined heat and power schemes.

Protonic SOFCs (P-SOFCs), as a new generation of SOFCs, have become a focus of attention in recent years 
and are considered as one of the most promising hydrogen utilization technologies. Among the components 
of P-SOFCs, the electrolyte directly determines the overall efficiency of the cell and the widely used 
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Figure 1. Schematic diagram of (A) PEMFC, reproduced with permission from Tellez-Cruz et al.[11] Copyright 2021 MDPI; (B) AFC, 
reproduced with permission from Das et al.[12] Copyright 2022 MDPI; (C) PAFC, reproduced with permission from Petrovic et al.[13] 
Copyright 2020 IEEE; (D) SOFC and (E) P-SOFC, reproduced with permission from Jang et al.[14] Copyright 2024 American Chemical 
Society. PEMFC: Proton exchange membrane fuel cell; AFC: alkaline fuel cell; PAFC: phosphoric acid fuel cell; P-SOFC: Protonic solid 
oxide fuel cell.

electrolyte materials are limited to the BaZr1-x-yCexMyO3 (BZCM, M = Y, Yb, etc.) systems[3,19], whose proton 
conductivity at low temperature (≤ 500 °C) is far from meeting the requirements of operation performance. 
Therefore, rapidly developing excellent electrolyte materials has become the core issue in achieving the 
iterative innovation of P-SOFCs. Traditional material development methods mainly rely on trial-and-error 
experiments, which are not only time-consuming and costly, but also make it difficult to systematically 
understand the structure-property relationships of materials. With the advancement of artificial intelligence 
(AI) technology and the continuous improvement of materials databases, machine learning (ML) has 
demonstrated unique advantages and enormous potential in material development. The advantages of 
ML-assisted materials development are mainly reflected in the following aspects: First, ML possesses 
powerful data analysis capabilities, rapidly processing and analyzing massive materials data to extract 
complex structure-property relationships and establish accurate prediction models. Second, ML can 
simultaneously consider and optimize multiple parameters, exploring new material combinations in a larger 
design space, thus providing more possibilities for materials optimization. Third, through continuous 
learning and iterative optimization, the accuracy of prediction models steadily improves, significantly 
reducing experimental costs and time investment. Fourth, ML methods demonstrate good universality and 
scalability, applicable to different types of material systems. Fifth, this data-driven approach can reveal 
material performance patterns that are difficult to discover through traditional methods, providing new 
theoretical guidance for materials design[20-22]. For example, recently, Divilov et al. introduced a disordered 
enthalpy-entropy descriptor (DEED) to capture the balance between entropy gains and enthalpy costs and 
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to classify the functional synthesizability of multicomponent ceramics, including carbides, carbonitrides, 
borides, and related materials, which is independent of chemistry and structure. In addition, the developed 
convolutional algorithm makes it possible to significantly reduce computational resources and to rapidly 
screen out new single-phase compositions. Such a method not only guided the discovery of 9 ceramics, but 
also presented a new tool for autonomous materials development[22].

ML-assisted P-SOFC electrolyte material development has made significant progress, including 
high-throughput material screening, performance prediction, and structural optimization[23,24]. However, the 
electrolyte materials often require the coupling of multiple properties such as high proton conductivity, 
good chemical stability, and appropriate mechanical properties. There remain challenges to achieving 
directed design and performance optimization of multifunctional materials, such as obtaining high-quality 
data, model interpretability, and the reliability of prediction results. Accordingly, this review summarized 
the research status of proton-conducting electrolytes and systematically introduced the advances of ML in 
the development of electrolyte materials for P-SOFC. Subsequently, the future development directions of 
ML in proton-conducting electrolytes were discussed by deeply analyzing existing challenges and 
corresponding solutions. Through this review, we hope to provide a beneficial reference for researchers in 
this field, promote the innovative discovery of P-SOFC electrolytes, and contribute to the advancement of 
hydrogen energy technology.

OVERVIEW OF ELECTROLYTES
As the most important component of P-SOFCs, the primary function of the electrolyte is to facilitate proton 
transport while blocking electron transfer and gas molecule permeation. In order to realize the possible 
applications of such electrochemical devices in energy conversion and storage, the electrolyte must meet 
some stringent requirements, especially in terms of proton conductivity and stability. Therefore, in this 
chapter, an overview of the efforts that have been devoted to protonic electrolyte materials is provided.

Operating principles and requirements of electrolytes
In P-SOFCs, hydrogen gas is first oxidized at the fuel electrode to produce protons, and then, the protons 
are driven by concentration gradients to diffuse through the dense electrolyte to the air electrode. Some 
protons can also be produced by hydration reaction [Figure 2A-C] in wet hydrogen fuel. At the air 
electrode, these protons react with oxygen ions generated by oxygen reduction reaction (ORR) to produce 
water[25-29]. Simultaneously, the electrons flow through the external circuit to form a loop, thus completing 
the entire cell operation. The operating principle of proton-conducting electrolytes is based on the 
conduction processes of protons in solid oxides [Figure 2D and E], which are mainly divided into two 
categories: One is the Vehicle mechanism considering the proton defect (OH-) formed through the 
combination of proton with lattice oxygen and then transport by the diffusion of oxygen vacancies 
[Figure 2D][30,31]. The other is Grotthuss mechanism, where protons rotate and jump from one oxygen ion to 
an adjacent oxygen ion, accompanied by the breaking and formation of O-H bond bonds [Figure 2E][32-34]. 
In addition to the desired proton conductivity, the electrolytes also permit the transport of oxide ions and 
electronic holes, which leads to a decreased proton transfer number, especially under high partial pressure 
of oxygen and high operating temperatures. Thus, the high proton (> 10-2 S cm-1) and low electronic 
(< 10-3 S cm-1) conductivity is one of the most important requirements of electrolytes[35]. Besides the 
conductivity, proton-conducting electrolytes also need to maintain chemical stability in various 
environments to ensure their long-term electrochemical performance and reliability. Such chemical and 
thermal stability usually involves electrolyte tolerance to variations in temperature, humidity, and 
atmosphere (such as CO2). For example, different sintering temperatures for proton-conducting electrolytes 
can result in varying degrees of grain boundary resistance, which hinders proton transport and reduces 
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Figure 2. Schematic illustration of proton defect formation and diffusion in perovskite-type structure, reproduced with permission from 
Seong et al.[35] Copyright 2021 John Wiley & Sons.

conductivity. During the operation of P-SOFCs, the electrolytes need to show good compatibility including 
appropriate mechanical strength and thermal expansion coefficient with other materials (such as electrodes 
and sealing materials.) to ensure the stability and reliability of the entire system. Under specific atmospheric 
conditions, especially high-water vapor pressure or CO2 environments, the electrolyte may undergo 
hydrolysis reactions or form carbonate species, leading to performance degradation. In summary, the 
prominent proton-conducting electrolytes require a high proton transfer number and outstanding stability.

Electrolyte materials
ABO3 perovskite-type electrolytes
Iwahara discovered the proton conductivity in ABO3 perovskite-type oxides and elucidated the possibility of 
this characteristic in energy applications in the early 1980s and 1990s[36-41], which has a profound impact on 
the development of P-SOFC electrolytes. The most typically protonic ABO3 perovskite electrolytes are 
obtained by various dopants at different sites as shown in Figure 3A[42]. Cerate- and zirconate-based oxides 
(BaCeO3 and BaZrO3) have been intensively studied by such doping approaches due to their excellent 
proton conductivity[43]. As summarized in Figure 3B, BaCeO3 oxides with B-site dopants of Y, Er, or Gd 
exhibit high proton conductivity. However, the increase of the doping ratio may lead to the formation of 
impurity phases due to the solid solution boundary, which degrade the proton conductivity. BaCeO3-based 
oxides generally possess favorable sintering properties, allowing for the achievement of larger grain sizes at 
relatively low sintering temperatures, thereby reducing grain boundary resistance. Nevertheless, due to the 
intrinsic characteristics of these materials, they are highly susceptible and can react with CO2 or H2O to 
form BaCO3 or Ba (OH)2

[44]. Therefore, more efforts are still needed to develop stable electrolyte materials. 
Doped BaZrO3 oxides exhibit exceptional chemical stability in the aforementioned environments, and the 
Y-doped BaZrO3 electrolyte thin films demonstrate superior proton conductivity [Figure 3C]. However, 
their high sintering temperatures complicate the subsequent preparation of P-SOFC and result in higher 
grain boundary resistance. Furthermore, BaZrO3-based oxides are prone to oxidation reaction that 
introduces holes, leading to an electronic leakage phenomenon, which deteriorates the efficiencies of the 
devices. Therefore, the BaZrO3 and BaCeO3 solid solution has become the most extensively studied oxide. 
By adjusting the Zr-Ce ratio and the dopant elements, a series of excellent electrolyte materials have been 
developed, exhibiting exceptionally superior electrochemical performance for P-SOFC. As shown in 
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Figure 3. ABO3 perovskite-type electrolytes. (A) Possible element doping strategies of ABO3 perovskite electrolytes, reproduced with 
permission from Tarasova et al.[42] Copyright 2024 Elsevier. Conductivity of doped; (B) BaCeO 3, (C) BaZrO 3, and (D) Ba(Ce, Zr)O3 
electrolytes as a functional of temperature, reproduced with permission from Matkin et al.[43] Copyright 2024 Royal Society of 
Chemistry; (E) XRD patterns of BZCYYb4411 before and after exposure to 100% CO2 at 500 °C, reproduced with permission from Choi 
et al.[47] Copyright 2018 Springer Nature. XRD: X-ray diffraction.

Figure 3D, Y and Yb co-doped BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb1711) possesses extremely high proton 
conductivity of ~1.35 × 10-2 S cm-1 at 500 °C[45]. However, according to the report of Duan et al., 
BZCYYb1711 still decomposed under 30 vol% CO2 + 30 vol% H2O + 40 vol% Ar for 100 h at 500 °C[46]. 
Subsequently, Choi et al. proposed the BaZr0.4Ce0.4Y0.1Yb0.1O3-δ (BZCYYb4411) electrolyte by increasing the 
Zr content. The X-ray diffraction (XRD) patterns before and after exposure to 100% CO2 for 100 h at 500 °C 
confirmed the outstanding stability of BZCYYb4411 [Figure 3E], and the material maintained high proton 
conductivity of ~2.02 × 10-2 S cm-1 at 500 °C under wet N2

[47]. Recently, Saito et al. reported BaSc0.8Mo0.2O2.8 
oxide with high proton conductivity of 1 × 10-2 S cm-1 at 320 °C and excellent chemical stability under 
reducing, oxidizing and CO2 atmospheres. This also implies that the design of proton conductors should 
not be limited to traditional materials, necessitating the exploration of new dopant ions and structures[48].

Electrolytes with other structures
In addition to the ABO3 perovskite-type electrolytes, the proton conductivities of many other materials with 
different structures have also been studied, such as oxides with An+1BnO3n+1 Ruddlesden-Popper structure, 
hexagonal perovskites with mixed hexagonal and cubic-packing layers, A2B2O5 Brownmillerite structure, 
ReMO4 structure, A2B2O7 structure and A10-xB6O26±δ apatite-type structure, as shown in Figure 4[49]. The total 
conductivity of some typical proton conductors at 500 °C was summarized in Figure 5[45,47,50-57]. However, the 
proton conductivities of these materials are still lower than 10-3 S cm-1 and the proton transfer number of 
some materials is also relatively low. For example, Tarasova et al. prepared a BaLaInO4 Ruddlesden-Popper 
structure oxide and characterized its conductivity in dry and humid to be ~2 × 10-7 and ~7 × 10-7 S cm-1 near 
500 °C, respectively. The calculated proton transfer number is only 0.7[50], which is lower than that of 
BZCM-based electrolytes. Ba5Er2Al2ZrO13 oxide was reported as a new class of proton conductor, which 
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Figure 4. Electrolytes with other structure types. (A) Oxides with An+1BnO3n+1 Ruddlesden-Popper structure; (B) Hexagonal perovskites 
with mixed hexagonal and cubic-packing layers; (C) Oxides with A2B2O5 Brownmillerite structure; (D) ReMO4 phase; (E) A2B2O7 oxides 
(F) Oxides with A10-xB6O26±δ apatite-type structure. Reproduced with permission from Fop et al.[49] Copyright 2021 Royal Society of 
Chemistry.

Figure 5. Total conductivity of proton conductors at 500 °C. Abbreviations: (1) BaZr0.1Ce0.7Y0.2O3- δ, BZCY172[45]; (2) BZCYYb1711[45]; 
(3) BZCYYb4411[47]; (4) BZCYYb4411[53]; (5) BaSc0.8Mo0.2O2.8

[48]; (6) BaLaInO4
[50]; (7) Ba7Nb4MoO20

[54]; (8) Ba5Er2Al2ZrO13
[51]; (9) 

γ-Ba4Ta2O9
[55]; (10) Ba2In2O5

[49]; (11) La0.99Ca0.01NbO4
[56]; (12) La0.99Ca0.01TaO4

[52]; (13) Nd0.99Ca0.01TaO4
[52]; (14) Gd0.99Ca0.01TaO4

[52]; 
(15) Er0.99Ca0.01TaO4

[52]; (16) La0.8Ba1.2GaO3.9
[49]; (17) La1.95Ca0.05Zr2O7

[49]; (18) La2Ce2O7
[49]; (19) La1.95Ca0.05Ce2O7

[57].
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consists of triple-layer cubic perovskite blocks that are separated by an oxygen-deficient hexagonal BaO 
layer[51]. The proton conductivity of Ba5Er2Al2ZrO13 can reach ~3 × 10-3 S cm-1 at 500 °C and the proton 
transfer number is about 1. La0.99Ca0.01NbO4 and La1.95Ca0.05Zr2O7-δ with ReMO4 and A2B2O7 structures also 
have ideal proton transfer number, but the proton conductivity is limited to 10-4 S cm-1 at 500 °C[52]. The 
proton conductivities of these materials have not reached the ideal level; their performance needs to be 
further improved by a large number of experimental explorations in the future. Overall, the development of 
proton-conducting electrolytes still faces many challenges.

Current challenges of electrolytes
As discussed in the section of electrolyte materials, the BZCM oxides still exhibit higher proton conductivity 
compared to other structural oxides. However, there are also several challenges in BZCM electrolyte design 
and preparation, primarily including the following aspects: (1) the balance between the stability and the 
proton conductivity should be achieved. This can be optimized by changing the preparation method of the 
electrolytes, such as using wet chemical methods or choosing some superior sintering additives to reduce 
the fabrication temperature of electrolytes with a high Zr content. Simultaneously, the influence of 
electronic leakage can be mitigated through the optimization of doped ions or functional layers. For 
electrolytes with a high Ce content, depositing some barrier layer on the electrolyte surface can prevent 
direct contact of electrolytes with the reactive atmosphere, thereby enhancing their stability; (2) The 
mechanical strength of the electrolytes and the compatibility with electrodes should be improved. 
Optimizing the size and shape of the cells can reduce the stress distribution on the materials, thereby 
improving mechanical strength. Additionally, the compatibility between the electrolyte and electrodes can 
be enhanced by closely matching their thermal expansion coefficients. Adjustments to the coating method 
of the air electrode and annealing process can also be made to reduce cracking and peeling during startup, 
shutdown, or thermal cycling of the devices; (3) Optimization of the electrolyte-air electrode interface. The 
high-temperature sintering process during the preparation of half-cells often leads to deviations in the 
composition of the electrolyte surface from its actual composition. This, combined with the subsequent 
assembly process with the air electrode, generates significant interface resistance, hindering proton 
transport at the interface and thus limiting the overall performance of the cells. Overcoming the 
aforementioned challenges and verifying the performance of designed electrolytes usually require 
considerable time and cost. Recently, the data-driven ML technology has garnered increasing attention. The 
combination between experiments and ML prediction models should be promising to streamline the 
electrolyte discovery process from design to validation.

ADVANCES AND PERSPECTIVES OF ML IN ELECTROLYTES
In the development of electrolytes for P-SOFCs, ML has shown significant advantages in material 
optimization, performance prediction, and mechanism research[58-61]. In addition to the above benefits, ML 
can deeply investigate proton conduction mechanisms and doping effects, achieving customized oxide 
development. This data-driven research paradigm has not only greatly improved the efficiency of electrolyte 
development but also provided new insights for innovative electrolyte design. Therefore, this chapter 
reviewed the latest advances in ML for P-SOFC electrolyte development, analyzed its advantages and 
limitations, and explored future applications.

Screened electrolytes by ML
In 2021, Hyodo et al.[23] constructed gradient boosting regressor (GBR) model to predict the hydrated 
proton concentrations (CH), equilibrium constants for hydration reactions (Khyd), hydration entropies 
(ΔHhyd) and hydration enthalpies (ΔShyd) [Figure 6A]. The model trained with 761 data predicted CH and Khyd 
in high accuracy with the root mean square error (RMSE) of 0.0264 and 0.599, ΔHhyd and ΔShyd with RMSE of 
20.1 kJ mol-1 and 41.9 J mol-1 K-1, respectively. As a result, data-driven structure-property maps [Figure 6B] 
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Figure 6. (A) Schematic workflow for discovering proton-conducting oxides by constructing gradient boosting regressor (GBR) model; 
(B) Structure-property maps for hydration in 540 perovskites (in the case of CH); (C) 761 data for proton concentration; (D) Proton 
conductivity for SrSn0.8Sc0.2O3-δ and other oxides. Reproduced with permission from Hyodo et al.[23] Copyright 2021 American Chemical 
Society.

are presented for hydration reaction, revealing that the melting temperature, atomic density, first ionization 
energy, and electronegativity are the important factors. Then, the accurate and interpretable model was used 
to screen the promising electrolyte with a high CH value as shown in Figure 6C. Finally, SrSn0.8Sc0.2O3-δ was 
selected with the ΔHhyd and ΔShyd of ±1 to ±26 kJ mol -1 and ±2 to ±39 J mol -1 K-1. The proton conductivities 
(1.4 × 10-3 S cm-1 at 380 °C) of SrSn0.8Sc0.2O3-δ are higher than those for La-based 3+/3+ perovskites, Sc-doped 
BaTiO3 and Y-doped SrZrO3-δ, but lower than those for Sc-doped BaZrO3 that shows higher symmetry in 
cubic structure [Figure 6D]. In the same year, Priya et al.[24] used ML tools for the design and discovery of 
ABO3-type perovskite oxides for various energy applications, which included a database of over 7000 data 
points from the literature. They demonstrated a robust learning framework for efficient and accurate 
prediction of total conductivity of perovskites. These oxides are classified based on the type of charge carrier 
at different conditions of temperature and environment. Moreover, the average ionic radius, minimum 
electronegativity, minimum atomic mass, and minimum formation energy of oxides are identified as crucial 
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and relevant predictors for determining conductivity and the type of charge carriers. Finally, 1793 undoped 
and 95,832 A-site and B-site doped perovskites with high conductivities are selected for different energy 
applications. Recently, Luo et al.[62] reported that BaSnxCe0.8-xYb0.2O3-δ (BSCYb) is a promising candidate 
electrolyte. BSCYb was screened from 932 oxides, whose oxygen vacancy formation energy, hydration 
energy, and adsorption energy of H2O and CO2 were systematically calculated [Figure 7A-D]. BSCYb 
showed superior proton conductivity, ionic transference numbers and chemical stability compared to the 
widely used BZCYYb oxides. The cell with BSCYb as electrolyte achieved extraordinary current density 
(2.62 A cm-2 at 1.3 V and 600 °C) in the electrolysis mode and peak power density (0.52 and 1.57 W cm-2 at 
450 and 600 °C) in fuel cell mode, which is much higher than other reported values [Figure 7E-I]. As 
illustrated in the section of electrolyte materials, the proton conductors not only limit to ABO3 perovskite, 
but also include many unconventional materials with various structures. By considering the dopant 
dissolution and hydration reactions [Figure 8A and B], Fujii et al. discovered two unconventional materials, 
Bi10.8Pb1.2SiO20-δ (BPS) sillenite and Bi3.6Sr0.4Ge3O12-δ (BSG) eulytite-type oxides for proton-conducting 
electrolytes using a sequential high-throughput computation and physically interpretable ML model. The 
established model can realize the quantitative predictions and physical interpretations for selecting 
synthesizable host-dopant combinations that can be hydrated from a wide range of possible structures and 
compositions. From the alternating current (AC) impedance spectrum, the activation energies of bulk 
proton conductivity of BPS is 0.42 eV, much lower than BSG (0.98 eV) and is competitive with BaZrO3 
perovskites as shown in Figure 8C. The H-D isotope measurement also reveals a decrease in conductivity by 
a factor of 1.2 [Figure 8D], indicating the proton conduction in BSG[63].

In addition to the performance data from literature, the results from first-principles calculations can also 
serve as valuable input data for ML models. Several of the cited references are based on this type of 
calculation. For instance, in 2022, Islam et al.[64] reported systematic first-principles calculations on a wide 
range of terpolymer oxide materials to identify new proton conductors and to understand the role of cations 
and compositions on material stability and proton conductivity [Figure 9A]. By analyzing the calculated 
results of more than 5000 kinds of oxide materials, the effects of cation type and mole fraction on water 
stability and hydrogen insertion ability were revealed. By studying proton diffusion in many different 
materials, the analysis showed that oxide materials with connected BO6 octahedrons were most suitable for 
fast proton diffusion, and a dozen oxides with good water stability, good proton binding ability, and fast 
proton diffusion were identified using high-throughput calculations. This study provides basic 
understanding and design principles for developing oxide materials with fast proton diffusion and good 
stability [Figure 9]. In 2024, Szaro et al.[65] performed a high-throughput scan of 4,793 materials to 
determine how different cations regulate stability, electronic conductivity, and defect formation. As a result, 
116 materials were identified as electrically inactive and stable under reduction and oxidation conditions, 
and 43 materials were also identified as stable under pure carbon dioxide. Moreover, the stability, formation 
of oxygen vacancies and proton defects of all 116 materials were analyzed to determine trends in ionic 
conductivity. This study provided an additional understanding of the role of elemental identity and doping 
ratios in material stability and activity, aiding in the design of perovskite oxides for proton conduction 
applications. To conclude, this subsection provided examples and summarized recent ML applications in 
screening proton-conducting electrolytes.

Perspectives of ML in electrolyte
Both ML and first-principles calculation speed up the development of electrolytes, thus accelerating the 
development of P-SOFCs. First-principles calculations are renowned for their universality and high 
precision, capable of providing accurate predictions of properties such as electronic structures for systems 
ranging from simple molecules to complex materials. These prediction results are directly related to physical 
laws, possess good theoretical interpretability, and, in most cases, do not rely on empirical parameters, thus 
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Figure 7. High-throughput calculation results of hydration energy of (A) BaCeO3-derived; (B) BaZrO3-derived; (C) BaHfO3-derived; and 
(D) BaSnO3-derived oxides; (E) Cross-sectional SEM image of BSCYb172/BSCYb172/BPHYC single cell; (F) Typical I-V curves 
measured in electrolysis mode at 500-650 °C air (30% H2O) in the air electrode; (G) and (H) I-V-P curves measured in the fuel mode 
at 400-650 °C with H2 (3% H2O) in the fuel electrode and air in the air electrode; (I) Comparison of peak power densities of 
proton-conducting solid oxide fuel cells at 400-650 °C. Reproduced with permission from Luo et al.[62] Copyright 2024 John Wiley & 
Sons. I-V: Current-voltage; I-V-P: current-voltage-power.

reducing human errors. However, first-principles calculations require a large number of computational 
resources[66,67]. Especially for large systems or complex quantum chemistry problems, it may take hours or 
even days to complete a single calculation, which limits their application in large-scale material simulations 
and the construction of material big data. Meanwhile, ML stands out for its advantages such as fast 
computing speed, cost-effectiveness, and strong scalability. Once a model is trained, predictions can be 
completed rapidly and can be easily extended to new datasets. However, its prediction results are highly 
dependent on data quality, and ML models are usually regarded as “black boxes”, whose prediction results 
may be difficult to interpret from a physical perspective. Moreover, when trained on limited datasets, 
models may overfit, resulting in poor generalization ability[68,69]. Therefore, combining first-principles 
calculations with ML can fully utilize the advantages of both. First-principles calculations can generate 
accurate and relatively large databases for ML, while ML can significantly improve the efficiency of 
prediction and accelerate the iterative update of materials. Meanwhile, we can introduce physical knowledge 
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Figure 8. (A) The activation process of proton conduction in oxides; (B) Schematic workflow to screen the unconventional 
proton-conducting oxides; (C) and (D) Proton conductivities and H-D isotope effects of predicted Bi10.8Pb1.2SiO20-δ and Bi3.6Sr0.4Ge3O12-δ 
oxides. Reproduced with permission from Fujii et al.[63] Copyright 2023 John Wiley & Sons.

into ML models to improve their accuracy and interpretability. For example, by combining first-principles 
calculations and ML, a theoretical-based proton conduction transport path can be constructed for more 
precise prediction of proton migration energy barriers. In conclusion, ML technology has already played an 
important role in the development of proton-SOFC electrolytes, but there are not many relevant reports at 
present. In the future, ML technique can play an even greater role, which is specifically manifested in the 
following aspects as shown in Figure 10.

Screen of high-performance electrolytes
By applying ML techniques, build models for predicting formation energy of oxides as the preliminary 
screening criteria for potential electrolytes. For the oxides with lower formation energy, ML models can 
further predict key properties such as proton conductivity, concentration of proton defects in hydration 
reaction, and thermal expansion coefficient[70-72]. Combined with first-principles calculations, to predict and 
screen thermodynamic parameters such as proton migration energy barriers, reaction equilibrium 
constants, entropy changes, and enthalpy changes in the hydration reaction of substances, clarify the ion 
transport mechanism in the electrolyte and the thermodynamic essence of the reactions in the electrolyte. 
Through integrating the results of ML and theoretical calculations, a composition-structure-property 
relationship model can be established to provide guidance for the design and optimization of electrolyte 
materials.

Prediction of electrolyte stability
The stability of electrolytes is one of the key indicators for measuring their performance. During the actual 
working process, electrolytes need to be in contact with oxidizing and reducing gases at high temperatures, 
such as oxygen and hydrogen. Therefore, electrolytes must possess sufficient chemical stability to avoid 
adverse reactions with these gases. For this case, the first-principles calculations can be used to calculate 
changes in some energies. By analyzing the energy changes of reactions, the reactivity and stability of 
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Figure 9. (A) High-throughput computational workflow for studying proton-conducting materials. Low-energy proton migration 
pathways and the energy profiles in representative proton-conducting materials; (B) and (C) perovskite YbCoO3; (D) and (E) SrMnO3, 
(F) and (G) Tb2Mo2O 7, (H) and (I) CrMoO4, (J) and (K) MoPO5, (L) and (M) Eu3MoO 7. Reproduced with permission from Islam et al.[64] 
Copyright 2022 American Chemical Society.

electrolytes under specific conditions can be predicted. Specifically, indicators such as reaction energy, 
adsorption energy, and migration energy barriers can be calculated, and in-depth understanding of the 
electronic interactions among them can be achieved through electronic structure analysis, so as to evaluate 
the stability of electrolytes as follows:

Reaction energy: By calculating the energy difference before and after the reaction between the electrolyte 
and gas molecules, the thermodynamic feasibility of the reaction can be evaluated. If the reaction energy is 
high, it indicates that the reaction is difficult to proceed and the electrolyte has good stability.

Adsorption energy: Analyzing the adsorption energy of gas molecules on the surface of the electrolyte can 
help understand the strength of the interaction between gas molecules and the electrolyte. A lower 
adsorption energy usually means a weaker interaction, which is beneficial to the stability of the electrolyte.
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Figure 10. Future applications of ML in electrolyte in terms of properties, stability, and microstructure prediction. ML: Machine learning.

Migration energy barriers: Calculating the migration energy barriers of gas molecules in the electrolyte can 
predict the diffusion behavior of gas molecules in the electrolyte. Higher migration energy barriers help to 
limit the diffusion of gas molecules, thereby improving the stability of the electrolyte.

Electronic structure analysis: By analyzing the electron density distribution and energy band structure 
between the electrolyte and gas molecules, an in-depth understanding of the electronic interactions between 
them can be achieved, so as to evaluate the stability of the electrolyte.

In summary, through these calculations, the stability of electrolyte materials in high-temperature and gas 
environments can be comprehensively evaluated, providing a theoretical basis for the selection and 
optimization of materials. This method helps to screen out electrolyte materials with high stability in 
practical applications.

Analyzation of microstructure of electrolytes
Combining image recognition technology and materials science, use high-resolution microscopes [such as 
scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images] to obtain 
microstructure information of electrolyte materials[73-75]. Apply image recognition techniques, such as edge 
detection, texture analysis, and pattern recognition, to process and analyze these images, and extract key 
microstructure features of electrolytes, such as grain size, shape, distribution, grain boundary characteristics, 
pores, and other microscopic defects. Utilize ML algorithms to correlate the extracted microstructure 
features with performance data such as the conductivity, mechanical strength, and thermal stability of 
electrolyte materials, and construct a microstructure-property (conductivity, etc.) mapping model. By 
analyzing the changes in microstructure under different conditions (such as temperature, humidity, and 
electrochemical environment), predict the evolution law of the microstructure of electrolyte materials and 
analyze the performance degradation mechanism. Meanwhile, according to the prediction results of the 
microstructure-property mapping model, adjust the composition and processing technology of the 
electrolyte to optimize its microstructure and improve the performance and stability of the materials.
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In conclusion, the combination of ML technology and first-principles calculations provides a powerful tool 
for the research on electrolyte materials, making the screening and optimization process of materials more 
efficient and accurate. With the continuous progress of ML technology and the expansion of its application 
scope, it is expected that more breakthroughs will be achieved in the field of P-SOFCs in the future. 
Meanwhile, this interdisciplinary approach is becoming an active research field in materials science. It can 
provide strong support for the development of future clean energy technologies and pave the way for the 
progress of sustainable energy conversion technologies.

CHALLENGES AND SOLUTIONS OF ML IN ELECTROLYTES
Although ML has shown great potential in the research on P-SOFC electrolytes and provided new 
possibilities for accelerating the discovery of new materials and the iterative innovation of P-SOFCs, it still 
faces several challenges. In this chapter, we summarize the existing challenges of ML in the design of 
electrolyte materials and their future solutions, as shown in Figure 11.

Data scarcity and quality
Data plays a crucial role in promoting AI’s understanding and innovation of material properties, and its 
quality directly determines the accuracy of prediction results[76,77]. In materials science, the scarcity of high-
quality experimental data is a significant problem, especially for data that systematically characterizes 
material properties, such as proton conductivity and transport number. These data form the basis for 
understanding and predicting the behavior of materials. However, due to the complexity of experimental 
conditions and the limitation of resources, obtaining such data is both costly and time-consuming. In 
addition, the lack of uniformity in data standards is also a challenge. Different laboratories and research 
institutions may adopt different experimental conditions and testing methods, making it difficult to directly 
compare and integrate data from different sources. This heterogeneity of data limits the effectiveness of 
model training and may affect the accuracy and reliability of the model. The widespread absence of failed 
experiment data is another issue, which leads to biases in datasets. In scientific research, unreported failure 
cases may distort the results of model learning and affect the model’s ability to comprehensively understand 
material properties. Furthermore, some key parameters, such as interface properties and microstructural 
features, are difficult to accurately quantify. The uncertainty of these parameters increases the complexity of 
model prediction and may affect the generalization ability of the model. In conclusion, ML models in 
materials design face multiple challenges regarding data quality and availability. These challenges need to be 
overcome by enhancing datasets, unifying data standards, collecting and utilizing failed experiment data, 
and developing new measurement techniques to improve the accuracy and reliability of the models.

The materials science has already adopted a series of strategies to improve the data quality and availability. 
Firstly, establishing a standardized materials database is the foundation, including unifying characterization 
methods and data formats to ensure that data from different sources and types can be effectively compared 
and integrated. Meanwhile, a data quality assessment system is crucial for monitoring and improving the 
accuracy and reliability of data. By this way, the multi-source experimental data can be integrated, thus 
providing a more comprehensive view of material properties and enhancing the generalization ability of the 
model. Secondly, developing a high-throughput experimental platform with automated material 
preparation and standardized testing procedures is important for improving experimental efficiency and 
ensuring consistency of experimental conditions, which is essential for comparing the properties of different 
materials and building a reliable database. Real-time data acquisition and analysis can quickly provide 
feedback on experimental results and deliver immediate data support for model training. Finally, 
constructing a data-sharing mechanism is a key strategy to enhancing data quality. An open data platform 
encourages collaboration among researchers and accelerates new material discovery, while standardized 
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Figure 11. The challenges and possible solutions for ML in proton-conducting electrolyte predictions. ML: Machine learning.

sharing protocols ensure data reliability, interoperability, and reproducibility across studies. Through these 
strategies, the data quality in the field of materials science can be significantly improved, providing more 
accurate and reliable training data for ML models, and thus promoting the process of materials design and 
discovery.

Descriptor selection and feature engineering
In materials design, descriptor selection and feature engineering are crucial steps that directly affect the 
performance (accuracy and interpretability) and prediction ability of ML models[78-80]. However, this process 
faces a series of challenges. Firstly, it is extremely difficult to establish a comprehensive and effective 
material descriptor system. The properties of materials are influenced by multiple factors, including their 
chemical composition, crystal structure, and electronic properties, and there are complex interactions 
among these factors. Therefore, to comprehensively capture the impact of these factors on material 
properties, it is necessary to construct a descriptor system that considers various physical and chemical 
attributes. Secondly, the structure-property relationships in materials are complex and difficult to fully 
express with simple features. This is because the properties of materials are often jointly influenced by their 
microscopic structure and macroscopic properties, and there are nonlinear and multiscale interactions 
among these properties. For example, the ion conduction mechanism involves multiscale factors and 
requires multi-level descriptors to comprehensively capture its influence. Thirdly, it is challenging to 
characterize the features of dynamic processes and interface effects. The dynamic behavior of material 
interfaces, such as the dynamic enrichment, movement, and trajectories of molecules, is crucial for 
understanding the interface properties of materials. However, due to the inherent fluidity and deformability 
of liquid interfaces, these interfaces exhibit complex dynamic interface properties that are different from the 
basic chemical and physical properties of the two phases, and the dynamically changing structures are 
inhomogeneous. In addition, the state of interface molecular behavior is affected by the states of the two 
phases (e.g., the concentration distributions of impurities and specific molecules) and the environmental 
conditions of the interface (e.g., temperature and pressure), making it challenging to distinguish locations 
and interfaces in a short time. In conclusion, the importance of descriptor selection and feature engineering 
in materials design is self-evident; however, at the same time, it also faces difficulties in establishing a 
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comprehensive descriptor system, challenges in expressing complex structure-property relationships, and 
problems in characterizing dynamic processes and interface effects. Solving these problems requires 
interdisciplinary cooperation, innovative experimental techniques, and advanced computational methods.

To overcome these challenges, optimization strategies for feature engineering are particularly important. 
Firstly, constructing a multiscale descriptor system is crucial for comprehensively capturing the complex 
properties of materials. This includes combining quantum mechanical calculations to understand the 
behavior of materials at the atomic and electronic levels, integrating experimental characterization data to 
obtain the macroscopic properties of materials, and introducing physicochemical features to describe the 
thermodynamic and kinetic properties of materials. This multiscale approach can provide more 
comprehensive inputs for the model, thereby improving the prediction accuracy. Secondly, dynamic feature 
characterization is the key to capturing the behavior of materials in practical applications. Developing in 
situ characterization techniques can monitor the performance changes of materials under different 
environments and conditions in real time; capturing the interface evolution process provides an in-depth 
understanding of the stability and reaction mechanism of materials, and quantifying dynamic parameters 
can reveal the response characteristics of materials under actual working conditions. Finally, feature 
selection and dimensionality reduction are important steps to improve the efficiency and interpretability of 
the model. Applying dimensionality reduction techniques such as principal component analysis can help 
identify the key influencing factors in the data, remove redundancies and noise, and thus simplify the 
feature space. This not only reduces the complexity of the model but also improves the computational 
efficiency and helps researchers understand which features have the most significant impact on material 
properties. In conclusion, the execution of these strategies can significantly improve the applications of ML 
models in materials design, enabling them to predict and optimize the properties of materials more 
accurately.

Model limitations
In the fields of ML and materials design, the limitations of models are a problem that cannot be ignored. 
Firstly, prediction models are highly dependent on the training dataset, which means that the performance 
and accuracy of the models are largely limited by the quality and diversity of the training dataset[81,82]. If the 
training data is biased or incomplete, the prediction results of the model will also be affected, resulting in 
limited extrapolation ability of the model when facing materials with completely new structures and making 
it difficult to make accurate performance predictions. In addition, many models, especially deep learning 
models, are regarded as “black boxes” whose internal decision-making processes are opaque and difficult to 
interpret, which limits our understanding of the deep physical mechanisms behind the model prediction 
results. Finally, in materials design, it is often necessary to optimize multiple performance indicators 
simultaneously, such as strength, toughness, and electrical conductivity. There may be conflicts among these 
objectives, and quantifying the trade-off relationships among these objectives is a challenge because they 
may be affected by multiple factors, including the microscopic structure of materials and processing 
conditions. These limitations jointly restrict the application effect of ML models in materials design and 
need to be overcome through methods such as enhancing datasets, transfer learning, interpretable ML, and 
multi-objective optimization algorithms.

Model optimization strategies are crucial for improving the accuracy and reliability of predictions. Firstly, 
the adoption of hybrid modeling methods can effectively combine the advantages of physical models and 
data-driven models. This method can more comprehensively capture the complexity of material behavior 
by integrating physics-based first-principles calculations and data-based ML techniques. Multi-model 
integrated prediction can combine the prediction results of different models to improve the overall 
prediction performance, and introducing expert knowledge to guide model training can further enhance the 
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generalization ability and prediction accuracy of the model. Secondly, the application of transfer learning is 
another important direction for model optimization. By utilizing the knowledge of existing models, the 
demand for a large amount of labeled data can be reduced, especially in the prediction of new materials or 
unknown materials. Transfer learning enables models to quickly adapt to new tasks, improves the accuracy 
of predictions, and reduces training costs and time. Finally, uncertainty quantification is the key to 
optimizing model reliability. Establishing an error assessment system can help us understand the sources of 
uncertainty in model predictions, and providing confidence intervals can provide important information 
for decision-makers about the credibility of prediction results. In conclusion, through these methods, the 
reliability of the model can be optimized, which makes it more robust in practical applications and provides 
strong support for the discovery and development of new materials.

Experimental verification bottlenecks
Experimental verification is a crucial link for the prediction results of ML models, but this process faces a 
series of challenges and bottlenecks[81]. Firstly, the prediction results of ML models require a large number of 
experiments for verification, which involves high costs. Secondly, the preparation and characterization 
processes of materials themselves are time-consuming, which makes the cycle from prediction to 
verification quite long and affects the efficiency of new material research and development. In addition, it is 
difficult to standardize the performance testing conditions. Different laboratories or research teams may 
adopt varying testing methods and conditions, making it difficult to directly compare and integrate data and 
increasing the complexity of experimental verification. Finally, it is challenging to integrate the 
experimental feedback data. Due to the diverse data sources and inconsistent formats, effectively integrating 
these data and using them for further training and optimization of the model is a technical challenge. These 
bottlenecks not only limit the speed of material research and development but also affect the reliability and 
universality of the research results. Therefore, to accelerate the research and development process of new 
materials, it is necessary to develop new experimental techniques and data processing methods to improve 
the efficiency and accuracy of experimental verification.

In materials science research, the establishment of an experimental verification system is crucial for 
ensuring the accuracy and practicability of the prediction results of ML models. Firstly, intelligent 
experimental design, by adopting active learning strategies, can effectively optimize the experimental 
scheme and select the most valuable experiments to be conducted, thereby reducing the verification cost 
and improving the experimental efficiency. This strategy allows researchers to decide the next best 
experiment according to the current knowledge state of the model, making the experimental process more 
goal-oriented. Secondly, the development of rapid characterization methods is crucial for accelerating the 
experimental verification process. High-throughput testing techniques make it possible to test multiple 
materials simultaneously, and automated data analysis can quickly process a large amount of experimental 
data, providing a real-time feedback mechanism that enables researchers to quickly adjust the research 
direction or optimize the experimental conditions to obtain more accurate results. Finally, a standardized 
evaluation process is the key to ensuring the reliability and comparability of the experimental verification 
results. Establishing a performance index system can provide a unified standard for the performance 
evaluation of different materials, and unifying the testing conditions ensures the consistency of the results of 
different experiments. Standardizing the evaluation method can reduce the errors caused by differences in 
experimental operations and improve the accuracy and reliability of the experimental results. In conclusion, 
the above methods can significantly improve the efficiency and effect of materials science research, 
providing a solid experimental basis for the predictions of ML models and accelerating the discovery and 
development process of new materials.
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CONCLUSION AND OUTLOOK
This review comprehensively summarized the different sustainable energy utilization technologies, 
including PEMFC, AFC, PAFC, and SOFC, and discussed their advantages and challenges. Specially, the 
promising prospects of P-SOFC in the field of hydrogen energy utilization were addressed. The working 
mechanism of P-SOFC relies on proton-conducting electrolyte materials, which require high proton 
conductivity and extremely low electronic conductivity to ensure efficient energy conversion processes. 
More importantly, the P-SOFC electrolytes should be endured to the operating temperature, high-water 
vapor pressure and CO2 environments. Accordingly, an overview of the proton conductivities and the 
chemical stabilities of the most popular Ba(Zr, Ce)O3 perovskite electrolytes were addressed and only a 
handful of electrolytes can meet these requirements despite decades of efforts. Recently, ML has shown 
excellent advantages and enormous potential in electrolyte material development. Following these, the latest 
ML-assisted advances of electrolyte properties, including hydration ability, conductivity, and oxygen 
vacancy formation energy were summarized and discussed. The integration of ML with first-principles 
calculations can achieve efficient and precise screening of high-performance and high-stability electrolytes 
in the future. Additionally, by combining image recognition technology, it becomes feasible to investigate 
the microstructure-property relationships of electrolytes under various operating conditions. However, the 
design of electrolytes by ML still faces multiple challenges in high-quality and availability data, effective 
material feature engineering, model limitations and experimental verification. Finally, corresponding 
solutions including establishing standardized materials databases, constructing multiscale descriptor 
systems, applying hybrid modeling methods, and developing intelligent experimental processes were 
proposed to solve these challenges. Thus, accelerating the design of P-SOFC electrolytes and the discovery 
of other energy conversion materials by effective and accurate ML models.
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