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Abstract
Partial nephrectomy, a standard treatment for small renal cancers, has evolved through minimally invasive 
procedures such as laparoscopic and robot-assisted partial nephrectomy. The use of three-dimensional (3D) 
kidney models derived from preoperative computed tomography (CT) images has been investigated to improve 
surgical outcomes. This review explores various navigation techniques, such as 3D printing, virtual reality (VR), and 
augmented reality (AR), to address organ movement and deformation challenges during surgery. Despite the 
promising positive impact of these methods, as revealed by a systematic review in 2022, achieving the desired 
navigation accuracy remains elusive. The use of Virtual Reality and Augmented Reality, capable of overlaying the 
3D model onto the surgical image in real-time, has shown potential. Still, we need advanced techniques, for 
instance, non-rigid 3D models employing nonlinear parametric deformation, to adapt to organ deformation. 
Additionally, the application of deep learning from artificial intelligence for high accuracy 3D navigation is an 
emerging area of interest. Although considerable progress has been achieved, a comprehensive, widely adoptable 
solution has yet to be discovered. The paper underscores the necessity for ongoing research and development in 
3D navigation methods, anticipating their substantial contribution to future surgical procedures.
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INTRODUCTION
In the field of small renal cell carcinoma, partial nephrectomy (PN) has been established as a standard 
treatment strategy[1,2] and is recommended by the EAU Guidelines[3]. To achieve the goal of preserving renal 
function in PN, techniques such as the zero-ischemia approach are being researched[4]. As minimally 
invasive surgical techniques advance, both laparoscopic (LPN) and robot-assisted PN (RAPN) have become 
increasingly common for treating cT1 and some cT2 renal tumors, with good outcomes reported[5-8].

In cases where a tumor is primarily located within the kidney (endophytic tumor), it can be difficult to 
visually locate the tumor and determine the extent of resection required. This increases the complexity of 
the surgical technique and the risk of complications[9]. Surgeons typically use preoperative computed 
tomography (CT) scans to understand the anatomical characteristics of the tumor and vascular system, but 
in cases where it is challenging to visually identify the tumor, intraoperative ultrasound is an effective and 
common method for confirming its location[10].

With the advancements in technology, it has become easier to reconstruct three-dimensional (3D) images 
from the two-dimensional (2D) images taken from preoperative CT scans[11]. Using these reconstructed 3D 
kidney models can improve the accuracy of locating difficult-to-see tumors and blood vessels, leading to 
research into navigation systems for LPN and RAPN that utilize these models. This 3D navigation 
technology has the potential to improve treatment outcomes of PN and expand its indications even in 
challenging cases such as endophytic renal masses[12]. This review will discuss the use of 3D kidney models 
in navigation for LPN and RAPN.

CURRENT STATE OF 3D NAVIGATION IN MINIMALLY INVASIVE PN
Three main navigation methods using 3D models include 3D printed models, augmented reality (AR), and 
virtual reality (VR)[13]. A systematic review conducted in 2022 has reported significant improvement in 
surgical outcomes when using these techniques for navigation during RAPN surgeries[14]. However, while 
their utility is acknowledged, some opinions suggest that there is insufficient evidence to demonstrate 
improvement in surgical outcomes[15], and there may still be room for debate regarding sufficient scientific 
evidence for their effectiveness. When conducting navigation using 3D models, information about the renal 
tumor and blood vessels is first extracted from contrast-enhanced CT scans, and a 3D model is then created. 
Information captured in contrast-enhanced CT scans is processed through segmentation and then 
reconstructed into 3D. It is further optimized for medical purposes, and then navigation is performed using 
3D printers, AR, or VR[11] [Figure 1].

3D printed model
For patient education, 3D printed models tend to be preferred[13], and there have been reports of improved 
patient understanding of their anatomical structure and surgical approach[16]. In navigation for PN, these 
models have been used for preoperative training and surgical simulations, with reports indicating 
significantly less blood loss compared to when navigation was not performed[17]. There have also been 
reports of a significant decrease in warm ischemia time when 3D printed models were employed for 
preoperative planning and intraoperative navigation[18]. In addition, it has been reported that they are not 
only useful for patient education but also for resident education, and they are beneficial in achieving the 
trifecta during the initial implementation of RAPN[19,20].

VR
VR, a technology that provides an independent virtual world, is used for preoperative simulation and 
training in surgical navigation[21]. When used during surgery, 3D models are displayed side-by-side on 
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Figure 1. (A) Generation of a 3D kidney model through 3D reconstruction from CT scans; (B) 3D printed model, which is fabricated from 
the kidney’s 3D model using a 3D printer, aids in understanding anatomical features such as the kidney, tumor, and blood vessels; (C) 
3D navigation via VR. The 3D model of the kidney can be viewed from various angles using devices such as a head-mounted display; (D) 
3D navigation via AR. By overlaying the 3D kidney model onto the actual surgical view, detailed anatomical features can be grasped 
during surgery. No direct patient identifiers are included in this image. 3D: Three-dimensional; CT: computed tomography; VR: virtual 
reality; AR: augmented reality.

surgical or head-mounted displays to provide surgeons with navigation[22-24]. In VR navigation, there is no 
overlay (registration) of 3D models onto the surgical view.

AR
AR is a method that allows surgeons to visualize organ details by overlaying a 3D model created from CT 
images onto the surgical view. Due to this feature, it is often preferred over VR for intraoperative 
navigation[13]. The use of 3D models derived from CT for AR in intraoperative navigation for PN was first 
reported by Ukimura et al. in 2008[25]. Since then, numerous reports have followed about its application in 
actual surgery[26-32]. Furthermore, studies have also reported that 3D navigation using AR can display the 
blood flow of the kidney in segments and enhance the outcomes of selective clamping strategies[33]. 
Although not as widely adopted as echo guidance, 3D navigation has become more accessible thanks to 
software programs (such as SYNAPSE VINCENT and others) that can create 3D models from CT scans.

CHALLENGES
As discussed in the section on the current state of 3D navigation in minimally invasive PN, the proof of 3D 
navigation effectiveness in PN remains a subject of debate. In fact, 3D navigation in PN has not become as 
widespread as the navigation systems used in other specialties such as otolaryngology, dentistry, and 
orthopedics[34,35]. This discrepancy is largely due to the unique challenges presented by the surgical area. For 
instance, the organs dealt with in otolaryngology undergo very little movement or deformation, making the 
application of preoperative CT information to the surgical site straightforward, with navigation accuracy 
reaching under 1 mm[36]. In contrast, organs involved in urology or gastrointestinal surgery are subject to 
intraoperative manipulations and insufflation, resulting in movement and deformation that make 
navigation challenging[37]. Even in the case of the rectum, an organ relatively immobile within the pelvic 
cavity, errors of around 19mm have been reported when attempting 3D navigation[38]. This confirms the 
difficulty of high-precision navigation.
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Various methods have been researched to adjust navigation to organ movement and deformation. However, 
most reports involving 3D navigation during renal PN use rigid models, which do not accommodate 
deformation. Reports that employ deformable, non-rigid models are rare[14]. Even fifteen years after 
Ukimura et al. reported in 2008 about navigation for renal PN using a 3D model[25], manual navigation 
using a rigid model remains the norm. To achieve more accurate 3D navigation, it is crucial that methods 
able to cope with organ deformation and movement become widely available.

Despite most methods reported for actual renal PN using rigid models, a multitude of research has been 
done to accommodate organ deformation and movement. From here, we will focus on AR, where the most 
significant technological advancements are expected, and introduce its research contents [Figure 2].

Manual registration
The simplest method is manual registration, adopted from early stages due to its low technological 
barrier[25]. There have been reports proving its effectiveness in actual surgery[14,39,40]. Most of these studies 
lack a comparative counterpart, but Porpiglia et al. conducted a retrospective study comparing an AR group 
of 48 cases with a control group of 43 cases guided by ultrasound[27]. They demonstrated a significant 
reduction in the total arterial clamping rate, a reduction in the urinary tract opening rate, and a similar 
complication rate.

Fiducial-based registration
Fiducial markers serve as landmarks for registration, commonly used in 3D navigation in fields such as 
otolaryngology. For navigation during renal PN, these markers placed in the kidney can accommodate 
organ movement and deformation. Unlike in otolaryngology, kidneys move, so markers need to be placed 
in the organ itself rather than fixed landmarks such as the body surface. Animal experiments with pigs have 
reported kidney bleeding due to markers embedded directly into the kidneys to prevent movement[41]. 
Conversely, studies reported safe execution of AR navigation using fiducial markers in LPN[28,31]. Adhesive 
markers have also been proposed to allow non-invasive fiducial-based registration without inserting 
markers into the target organ[42,43].

Additional methods utilized in actual surgeries
Porpiglia et al. implemented surgical navigation with nonlinear parametric deformation and reported its 
effectiveness compared to a group guided only by 2D ultrasound[27]. Nonlinear parametric deformation can 
accommodate complex operations such as bending, stretching, and twisting, allowing for more realistic and 
natural movements and shape changes. While registration was performed manually, using this technique in 
3D navigation for RAPN significantly improved surgical outcomes compared to the group guided only by 
2D ultrasound. Kobayashi et al. reported a method using an infrared reflective marker placed on the camera 
and tracked with an optical sensor in 2020[44]. Initially, the surgical scene was manually registered with the 
3D model, and then the camera movement was tracked to maintain navigation accuracy. This method 
reportedly yielded effective treatment results in actual RAPN procedures. Amparore et al. have reported on 
effectively using selective clamping of blood vessels by evaluating kidney blood flow using indocyanine 
green (ICG) and combining this with AR[30]. Blood flow areas of the 3D kidney model, created from CT, are 
color-coded using a Voronoi diagram, and compared with blood flow areas confirmed intraoperatively with 
ICG injection. This method does not directly enhance registration accuracy in response to organ 
deformation or movement but successfully improves navigation accuracy by enhancing the precision of 
blood flow evaluation.
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Figure 2. Overview of the technique for overlaying the 3D model and the surgical view in AR. No direct patient identifiers are included in 
this image. AI: Artificial intelligence; CNN: convolutional neural network; ICP: iterative closest point; CPD: coherent point cloud; SfM: 
structure from motion; SGBM: semi-global block matching; Mask R-CNN: Mask Region-based CNN; FEM: finite element method; 3D: 
Three-dimensional; AR: augmented reality.

Other registration innovations
Despite the potential of fiducial-based navigation, a key drawback is the time-consuming correction process 
in case of significant misalignment. Without fiducial markers, a registration method utilizing affine 
transformations was proposed in 2013 to accommodate organ movement[45]. Affine transformations 
manipulate geometric objects, enabling translation, rotation, scaling, and shearing. Yet, its major limitation 
is the inability to realize bending deformation. B-spline curves, capable of complex nonlinear deformation 
such as bending and twisting, have been used in some studies[46], but accuracy drops when deformation is 
significant. Recent research has explored deep learning-based registration methods. In 2021, Jia et al. 
reported that using SiamMask, a deep learning method for object tracking and segmentation, they 
substantially improved SLAM accuracy and accommodated organ movement and deformation[47]. In 2022, 
Padovan et al. presented a study using two convolutional neural networks (CNNs) to identify organ 
positions from RGB images captured by a camera and register these with a CT model[48].

All the aforementioned 3D navigation techniques involve overlaying 3D models derived from CT onto 2D 
images. If the surgical scene could be reconstructed in 3D and then superimposed with the 3D CT-derived 
model, it would possibly lead to more precise navigation. However, the technical hurdles are high, and there 
are currently no reports of its effective use in actual surgeries. This section will overview research on PN 
navigation using 3D-3D registration.

To perform 3D-3D registration, not only is it necessary to reconstruct the kidney model in 3D from CT 
images, but also to reconstruct the surgical scene in 3D. Furthermore, 3D point cloud registration methods 
differ from those of 2D-3D registration. The first method of 3D-3D navigation in PN was reported by Su 
et al.[49]. They reconstructed the surgical scene in 3D from the disparity of a stereo camera and manually 
registered it with the 3D model of the kidney derived from CT using the Iterative Closest Point (ICP) 
algorithm. However, while ICP is a common 3D registration method, it is incomplete due to its requirement 
for the point clouds to be somewhat close together and its difficulty registering deformation models. 
Zampokas et al. used a strategy known as Quasi-dense matching, combining sparse and dense matching, to 
create a 3D point cloud in 2018[50]. A subsequent study in 2022 used the DynamicFusion method for the 
registration of this 3D point cloud with the 3D kidney model[51]. There has also been a report of extracting 
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feature points from the surgical field, capturing them as a 3D point cloud through Structure from Motion 
(SfM), and tracking them, but no mention was made of registration with the 3D kidney model[52]. Zhang 
et al. used Semi-Global Block Matching (SGBM) to extract 3D point clouds from stereo image disparity[53]. 
They also used a deep learning method, Mask Region-based CNN (Mask R-CNN), for kidney segmentation 
to assist with 3D point cloud extraction.

Other research exists that, while not strictly creating a 3D point cloud, captures the position and posture of 
the kidney in real time using particle filtering and then registers it with the 3D model derived from CT[54]. 
This study compared it with registration via Coherent Point Drift (CPD), showing that particle filtering was 
faster in terms of calculation speed in real-time intraoperative navigation.

Various studies have also been conducted on methods for creating deformable 3D models for high-
precision registration with deforming organs. One approach combined shape matching with cluster-based 
deformation to create a non-rigid model[55]. The effectiveness of this method was confirmed by creating a 
model from a pig kidney captured by CT and conducting experiments. Another study used a finite element 
method (FEM) model as a non-rigid model, reproducing organ deformation and movement in conjunction 
with the positional change of fiducial markers attached to the kidney[41].

CONCLUSION
Numerous studies have aimed to achieve high-precision 3D navigation, and some attempts in actual 
surgeries have yielded certain effects. However, none have led to a complete solution that could be widely 
generalized. Further advancements in 3D navigation research capable of accommodating deforming organs 
are expected to contribute to surgical procedures in the future.
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