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Abstract
Rapid population growth, industrialization, and urbanization have contributed to the generation of large volumes of 
waste, causing disposal challenges. This present study examined the impact of dumping sites on air, soil, and water 
pollution in five Southern African countries. The five selected Southern African countries have unique situations 
concerning landfill pollution caused by a mix of environmental, social and health issues. These countries encounter 
significant water, air and soil pollution due to inadequate waste management techniques. The study adopted a 
literature survey approach, reviewing published papers and reports on chemical pollutants. A total of 151 
downloaded papers, obtained through systematic keyword searches across multiple databases, were analyzed. The 
chemical pollutants investigated include heavy metals, polybrominated diphenyl ethers (PBDEs), per- and 
polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbon (PAH) substances in water resources, and 
polychlorinated biphenyls (PCBs). The reported levels of heavy metals (lead), PBDE, PFAS, PAHs, and PCBs ranged 
from 23,000 to 14,600,000 µg/kg, 127-3,702 pg·L-1, 310-1,089 ng·L-1, 45-95 mg/kg, and 0.2-5.3 mg/kg, 
respectively. The results indicate that landfills, as well as open dumping sites, are major threats to surface and 
underground water resources. The study suggests that policies to regulate and monitor landfills should be 
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implemented to mitigate the environmental impact of landfills.

Keywords: Landfills, PBDE, PFAS, PAHs, PCBs, heavy metals, water resources

INTRODUCTION
Municipal solid waste (MSW) generation has rapidly increased recently due to high population growth, 
economic progression and urbanization[1]. Today, MSW disposal is an issue of global concern not only in 
developing nations, but also in developed ones, mainly due to rapid urbanization. Such being the case, the 
management of solid waste has become a public health and environmental concern in most urban areas[2]. 
This has resulted in a severe challenge, especially in most developing countries whose ability to handle such 
waste is inadequate[3]. In a recent World Bank report, the authors highlighted the need for mandatory 
extension of solid waste management (SWM), considering the rapid and uncontrolled increase in waste 
generation. The report further projected a double increase in waste generation by the year 2025[4]. However, 
effective waste management is a critical aspect of building sustainable cities. This is because waste 
management is a key component of the environmental management process, directly influencing a city’s 
socio-economic and political development, as well as its overall attractiveness[5].

The world’s solid waste generation ranges from seven to ten billion tonnes every year. The largest 
percentage of the generated waste is from the municipalities. MSW is said to be approximately two billion 
tonnes yearly[6]. Furthermore, reports indicate that by the year 2025, waste generation in the municipalities 
is expected to be around 2.2 billion tonnes per year[7]. During the period from 2012 to 2016, the MSW 
generation in Africa alone had increased by a whopping 55%. Although the quantity of MSW generated in 
Africa is recorded to be on a tremendous increase, the average MSW generation per capita per day is still far 
lower than that of other continents[8].

Waste production in Sub-Saharan Africa (SSA) is projected to be 62 million tonnes per year. It is further 
documented that African towns produce waste at a ratio of 0.3 to 1.4 kg per capita per day, as compared to 
the average 1.22 kg per capita of waste produced by each developed country daily[9]. MSW remains a major 
setback to most SSA countries. Despite the knowledge of the ecological and environmental impact 
associated with improper handling of MSW, very little effort is being made to effectively respond to the 
challenges[10]. SSA countries have experienced large volumes of solid waste production over the past years, 
due to the increase in rural-urban migration, progress in production processes and standards of living[11]. It 
is further documented that SSA is the fastest-urbanizing region in the world, with the fastest-growing 
poverty trend[4,12]. Mismanagement and improper handling of large quantities of solid waste are associated 
with health and environmental risks[13].

Environmentalists have suggested that knowledge of the quantity and composition of MSW is necessary for 
proper planning of waste management systems[14]. However, in most developing countries, MSW 
management does not get the serious attention it requires due to several factors, namely lack of awareness, 
use of inexpensive or adaptable technology, finances, and proper governance[15]. The common traditional 
way of disposing of MSW worldwide is by landfilling, as it is considered the most inexpensive option to 
eliminate MSW[16]. MSW landfills can naturally absorb and reduce a range of contaminants[17].

Landfilling and thermal treatment are the most significant components of the safe final waste treatment 
technologies adopted in developed countries. However, most developing nations can hardly adopt these 
technologies due to financial constraints. Hence, they resort to open dumping and open burning[15]. Land-
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Figure 1. Schematic representation of landfill leachate water resource pollution.

based waste disposal poses several environmental problems, including gas emissions, pollution of water and 
land, noise and rodents, dust and odor [Figure 1][18]. Thus, landfills are categorized as possible harmful 
places owing to the assortment of chemical substances that are discarded into them. Municipal landfills are 
considered to be the source of several hazardous chemical substances that pose risks to the environment, 
wildlife and human health[19].

Environmental degradation induced by insufficient good waste disposal sites is characterized by 
contamination of surface and ground water through leaching, as well as soil contamination. Air pollution 
may also happen when waste is burned or left to decompose, as the case may be. Landfills dispose of trash 
directly on the soil surface, and the byproducts of waste decomposition are at risk of leaching by rain, which 
causes them to accumulate beneath the landfill and eventually migrate into the shallow groundwater table, 
surface water, and soil profile, ultimately polluting water resources[20]. Municipal landfills and open dumps 
are recognized as the sources of various compounds with environmental, wildlife, and human health 
concerns.

Despite the existence of MSW management protocols and strategies, agreements of conventions and 
multilateral environmental treaties, an efficient SWM system in Southern African countries is still deficient 
because of the gap between established policies and their implementation[6]. Therefore, this paper has 
presented and discussed the effects of landfills or dumping sites on air, water and soil in selected Southern 
African countries. The countries were chosen for the study as there are landfill issues and reports pertaining 
to soil, air, and water pollution threatening public health and the ecosystem. This research paper has 
analyzed how dumping sites contribute to water, soil and air pollution, with different chemical pollutants 
such as polybrominated diphenyl ethers (PBDEs), per- and polyfluoroalkyl substances (PFAS), 
polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and heavy metals (including 
mercury, lead and arsenic), and the implications of these pollutants on human health and the environment 
at large as summarized in [Table 1]. Additionally, the paper has evaluated the effectiveness of existing 
policies in regulating and monitoring these sites, as well as the potential for necessary policy adjustments to 
increase capacity and mitigate the environmental impacts associated with landfills. Finally, the paper has 



Page 4 of Njewa et al. Water Emerg. Contam. Nanoplastics 2025, 4, 3 https://dx.doi.org/10.20517/wecn.2024.7124

Table 1. Human health and environmental effects associated with chemical pollutants

Pollutant Source/industry Health effects Environmental impact Ref.

Industrial Activities (e.g. 
mining, smelting) 
Transportation (e.g. gasoline)

Lead (developmental delays, anemia 
and damage to nervous system)

[21-
24]

Mercury (damage to kidneys, brain, 
and developing fetus)

Heavy metals 
(lead, mercury, 
cadmium)

Consumer products (e.g., 
batteries)

Cadmium (kidney damage and 
cancer)

Accumulate in soils and sediments, 
contaminate water ways and can 
bioaccumulate in the food chain, harming 
wildlife populations [25]

PCBs Industrial applications (e.g. 
non-stick coatings) 
Consumer products (e.g. 
fluorescent lights) 
Contaminated waste sites

Neurological and development 
effects, immunological effects and 
increased risk of cancer

Persistent in the environment, can 
bioaccumulate in the food chain, and can harm 
wildlife populations

[26-
28]

PFAS Industrial applications (e.g. 
non-stick coatings) 
Consumer products (e.g. strain 
resistant fabrics) 
Firefighting foams

Increased cholesterol levels, 
decreased fertility, developmental 
effects, increased risk of cancer

Persistent in the environment, can accumulate 
in organisms and detected in water supplies

[29-
31]

PAHs Incomplete combustion of 
fossil fuels (e.g. coal, oil. etc.) 
Wildlife and cigarette smoke

Increased risk of cancer, 
developmental defects, 
reproductive problems

Accumulate in sediments and soils, can harm 
aquatic organisms and can be toxic to plants

[32-
34]

PBDEs Flame retardants in consumer 
products (e.g. electronics, 
furniture) 
Building materials

Neurological and developmental 
effects, thyroid hormone disruption, 
increased risk cancer

Persistent in the environment, can accumulate 
in organisms, can harm wildfire wildlife, 
populations

[35-
37]

PCBs: Polychlorinated biphenyls; PFAS: per- and polyfluoroalkyl substances; PAHs: polycyclic aromatic hydrocarbons; PBDEs: polybrominated 
diphenyl ethers.

provided recommendations that require implementation to improve waste management practices currently 
existing in Southern African countries.

The occurrence of these reported chemical substances in landfill leachate poses serious threats to human 
health and the environment. Their existence is associated with short- and long-term health threats to both 
human health and the environment. Leachate is recognized as hazardous due to its greater concentration 
levels of organic materials, inorganic substances (heavy metals), and xenobiotic organic compounds, which 
can resist decomposition and persevere in the environment for long periods[38].

Studies have indicated that short-term effects associated with landfill leachate can result in acute health 
effects, such as skin irritation, respiratory difficulties, and gastrointestinal disorders[39]. Other researchers 
have reported that the presence of macro pollutants in landfill leachate poses short- and long-term 
hazardous effects [Figure 2]. The occurrence of several severe health impacts, such as neurological disease, 
cancers, and teratogenic effects, are associated with the breathing in of benzene, toluene, ethylbenzene and 
xylenes (BTEX) particles[40]. Still more, PAHs are recognized to be carcinogenic in nature and also pose risks 
to the ecosystem for living organisms[41-43]. Perfluorinated chemical substances (PFCs) are reported to cause 
oxidative toxicity in aqueous organisms[44]. Another study has stated that exposure to leachate can cause 
stress responses in mammalian cells, which signifies the cytotoxic effects[45]. Another separate study 
indicated that the occurrence of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) 
in landfill leachate has raised serious worries regarding the possibility of these pathogens entering the 
human food chain, causing high sickness linked with resistant infections[46,47]. Furthermore, on ecological 
effects, studies have indicated that landfill leachate can result in the death of aquatic organisms and disrupt 
local ecosystems.
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Figure 2. Short- and long-term hazardous effects of landfill leachate components.

The release of leachate into the surrounding ecosystem can result in long-term soil deterioration, loss of 
biodiversity, and disturbance of natural water cycles[48]. Furthermore, prolonged exposure to various 
chemical substances leads to bioaccumulation in the food chain, and these substances are consumed 
together with food items, resulting in long-term health effects[49,50]. Studies have further indicated that PFCs 
are extremely resistant in the environment and can continue to exist for long periods of contact[44,51,52]. 
Leachate containing high levels of inorganic pollutants, such as ammoniacal nitrogen and heavy metals, can 
pollute groundwater and adjacent surface water, leading to long-term environmental and ecological 
damage[53-55]. Long-term exposure to leachate contamination is more dangerous, as it is associated with the 
prevalence of serious health issues, such as cancer, developmental disorders, and reproductive problems. 
These conditions are linked to chronic exposure to hazardous substances found in leachate, such as heavy 
metals and organic contaminants[53,56]. Additionally, leachate is also documented to induce phytotoxicity, 
affecting plant growth and soil health, which are significant for ecological balance[57].

METHODOLOGY
Five selected Southern African countries were considered in this study. The countries have unique 
situations concerning landfill pollution caused by a combination of environmental, social, and health issues. 
These countries encounter significant water, air, and soil pollution due to inadequate waste management 
techniques. The present study adopted a literature-based approach, conducting a thorough search for 
relevant published papers for the selected Southern African countries. Key words such as “landfill leachate, 
air quality, water pollution, soil contamination, PFASs, PCBs, PAHs and MSW” were used in searches 
across different databases such as Google Scholar, PubMed, Sciencedirect.com, Web of Science, and Scopus. 
The selection criteria focused on peer-reviewed articles published in reliable journals in recent decades to 
ensure the relevance and correctness of the outcomes. A total of 246 articles were retrieved from the 
databases and were screened based on relevance and research quality standards on landfill leachate 
pollution to soil, air, and water resource pollution. Thereafter, the screening process narrowed down to 151 
papers, which were finally studied in depth and analyzed thoroughly to extract the required information 
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and data presented in this paper.

Study locations
The study focused on five selected Southern African countries, all of which are part of the SSA countries. 
These countries are South Africa, Zimbabwe, Botswana, Zambia, and Malawi. Studies conducted in South 
Africa and Zimbabwe have reported the detection of chemical pollutants in soil and water resources near 
landfills, surpassing allowable limits. Zambia and Malawi share similar issues with landfill pollution. Studies 
done in Zambia reported leachate from municipal landfills contaminating local water supplies. In Malawi, 
dependence on open dump waste and burning of waste contributes to air quality issues, leading to 
respiratory issues for nearby residents. Botswana does not experience severe impact from landfill leachate 
pollution, but challenges remain to ensure that all landfills are engineered to prevent leachate groundwater 
pollution.

RESULTS AND DISCUSSION
Chemical pollutants from dumping sites and/or landfills on water pollution
The impact of dumping sites and/ or landfills on water pollution is a crucial issue. Chemical pollutants from 
household waste, industrial chemicals, agricultural runoff, and hazardous wastes can leak or be washed 
away into local streams, lakes, and coastal areas[58-62]. These chemical pollutants have the potential to 
significantly impact water quality, leading to potential health complications for both humans and aquatic 
life. Polluted water from dumping sites has the potential to contaminate drinking water in some areas, 
leading to a risk of public health crisis[63]. The results obtained in this study, thus, for heavy metals, PBDEs, 
PFAS, PAHs, and PCBs, are summarized in Table 2.

Heavy metals
Previous studies carried out in Southern African countries on heavy metal pollution reported 
contamination of water aquifers, which is mostly attributed to inappropriate land-based activities including 
agriculture, industries, and waste disposal[64]. In South Africa, for example, studies conducted in 
Bloemfontein to find out the impact of landfills on soil quality, surface and ground water quality indicated 
that most of the physiochemical and microbiological parameters exceeded permissible limits of the South 
African National Standards and the World Health Organization (WHO).

These results suggest possible contamination from leachate originating from the landfills. In a study 
conducted by Nevondo et al., mercury determination in leachate and sediment samples taken from four 
selected landfill sites in Gauteng Province showed that  Thohoyandou and Soshanguve registered higher 
levels of mercury for groundwater samples[81]. At Hatherly and Onderstepoort, they detected higher mercury 
levels in leachate and borehole water, respectively. The results obtained indicate the possibility of 
groundwater contamination by mercury emanating from landfill leachate. The levels of mercury were 
examined in leachate, sediment, and groundwater samples from monitored boreholes within the study area.

In a related study conducted on physico-chemical analysis in surface water around a closed sanitary landfill 
in Gaborone, Botswana, it was revealed that most of the tested parameters exceeded the permissible limits of 
the Botswana Bureau of Standards and the WHO[82].

Furthermore, another study that focused on physico-chemical parameter assessment of ground water 
quality of selected boreholes around two MSW sites in Bloemfontein City in South Africa, has shown that 
the water was dominated by Ca, Mg, SO4, and HCO3 ions. Other major cations tested in the water samples 
exceeded permissible limits of the South African National Standards and the WHO for drinking water. 
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Table 2. Results for different chemical pollutants detected in sediments, leachate and water resources

Chemical pollutants Sediments Leachate Water Country/location Ref.

0.03-0.48 μg/g 0.12-2.07 μg/L 0.09-2.12 μg/L Thohoyandou [64]

0.04-0.62 μg/g 0.10-1.20 μg/L 0.1-1.66 μg/L Shoshanguve [65]

0.06-0.78 μg/g 0.42-1.31 μg/L Hatherly

Mercury

0.03-0.50 μg/g 0.12-2.41 μg/L 0.05-2.44 μg/L Onderstepoort

Manganese 598-742 μg/L

Iron 589-3,221 μg/L

Eastern cape

Copper 2.26 mg/kg

Zinc 0.96 mg/kg

Manganese 10.3 mg/kg

Iron 18.2 mg/kg

Bloemfontein [2]

Chromium 1,225 mg/kg

Lead 46 mg/kg

Heavy metals

Cadmium 67 mg/kg

Johannesburg [66]

Sulfamethoxazole BDL-0.133 µg·L-1

Flumequin 0.222-0.686 µg·L-1

Antibiotics

Trimethoprim BDL-0.0618 µg·L-1

Soweto [67]

0.8-8.4 ng·g-1 127-3,702 ng·L-1

0.04-0.48 µg·L-1

Gauteng [68]PBDEs

5.652-240, 0.28-20.51  μg·L-1 Cape town [69]

10.7-772, 2.53-21.1 ng·g-1 Western cape [70]

310-1,089 ng·L-1 [71]

PFAS

54.2 and < 14.6 ng·L-1

Napth 0.0339-0.0382 mg/L Klip [72]

Ace 00815-0.0828 mg/L Vaal

Phe 0.0214-0.0263 mg/L Vaal

Anth 0.0073-0.0092 mg/L Vaal

Anth 0.3582-0.4072 mg/L Klip

2.4-6.3 mg/kg 45-95 mg/kg Johannesburg [73]

2.8-42.0 µg/kg 170.07-12.7 µg/L Kwazulu Natal

19 µg/kg 2.0-10.4 µg/L

PAH

2.8-3.9 µg/kg 2.5-3.5 µg/L [74]

0-482 ng·L-1 (summer) KWT [75]

South Africa
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0-2,383 ng·L-1 (autumn)

0.17–0.80 mg/kg 0.2-5.3 mg/kg Johannesburg [73]

Copper 0.92 0.013-0.246 mg/L

Lead 1,124.19 0.005-2.591 mg/L

Chromium 47.2 0.007-2.699 mg/L

Cadmium 994.17 0.004-1.149 mg/L

Zinc

HMI

1.48 0.008-2.032 mg/L

Zambia Chunga Lusaka [76]

Chromium 71 mg/kg 0.38 mg/L 0.113 mg/L

Lead 89 mg/kg 1.08 mg/L 0.183 mg/L

Copper 111 mg/kg 0.37 mg/L 0.003 mg/L

Bulawayo [77]

Lead 0.196 mg/L

Chromium 0.015 mg/L

Zinc 0.033 mg/L

Mutare [78]

23,000-14,600,000 µg/kg Ponoma, Harare [79]Lead

30,000-1,800,000 µg/kg

Zimbabwe

Norton, Harare

Lead 0.0-0.71 mg/L

Chromium 0.0-0.39 mg/L

PCBs

Zinc 0.0-0.10 mg/L

Malawi Zomba [80]

BDL: Below detection limit; PBDEs: polybrominated diphenyl ethers; PFAS: per- and polyfluoroalkyl substances; PAH: polycyclic aromatic hydrocarbon; PCBs: polychlorinated biphenyls; KWT: King William’s Town; 
HMI: heavy metal index.

Most of the boreholes had higher values of the total dissolved solids and electrical conductivity than those described by South African National Standards and 
WHO[65]. Similar research carried out in the Roundhill landfill vicinity reported dominance in pollution by Mn2+, Fe2+ and NH4

+, which exceeded South African 
permissible limits for groundwater[83]. The results suggest human activities specifically responsible for landfill leachate as the main cause of the pollution.

Furthermore, similar studies were conducted to determine the linkage between groundwater contamination and contaminants at the Roundhill landfill site in 
South Africa. The water samples collected from boreholes indicated the occurrence of heavy metal contamination, including lead, mercury, and arsenic, 
exceeding permissible limits defined by South African National Standards. The researchers linked the presence of these metals to leachates originating from the 
landfill, which resulted from the disposal of toxic and hazardous chemical waste materials[84]. Another study carried out in Bulawayo, Zimbabwe, assessed 
heavy metal pollution in groundwater samples from unlined landfills. The investigators reported high levels of heavy metal pollution of lead and cadmium, 
exceeding the WHO’s standards for drinking water. The results of the study suggested health risks to the communities that depended on the water for 
domestic purposes[77]. The findings from the studies conducted on physicochemical parameters on water samples collected from closed Gaborone Sanitary 
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landfill in Botswana indicated high levels that exceeded the permissible limits for drinking water standards 
BOS 32: 2000, WHO (2004) and USEPA (1991). The results indicated that the landfill had negatively 
impacted the water resources surrounding the community, posing a serious health threat[82]. Another study 
carried out in Malawi[80] evaluated the physical and chemical parameters of water samples collected from the 
Likangala River. The study revealed considerable river water pollution with chemical pollutants associated 
with indiscriminate solid waste disposal along the river.

PBDEs
A separate study assessed PBDEs in landfill sediments and leachate samples from Gauteng Providence, 
South Africa. The PBDEs were detected in two distinct matrices involved in the study. BDE-209 was notably 
found in the sediments and was frequently detected[68]. The results showed a strong statistical correlation, 
suggesting a potential effect of trace metals on PBDE levels in leachates. In the same province, another study 
detected brominated flame retardants in leachate samples collected from eight sites. Although the PBDEs 
and six bromine substituents were below the detection limit, the mean values were still measurable. The 
investigation revealed a weak correlation between dissolved organic carbon and PBDEs[69]. A comparable 
study conducted on landfill leachate at three sites in Cape Town, South Africa, also reported varying mean 
levels of total PBDEs, including BDE 209, at the Bellville, Coastal Park, and Vissershok landfill sites[69]. The 
results suggest the possible groundwater and surface water sources PBDEs pollution originating from 
landfill leachate.

PFAS substances in water resources
Chemicals known as PFAS are frequently found in consumer and industrial goods due to their ability to 
withstand strain and water. They have the potential to negatively impact both human and animal health, 
and they are known to persist in the environment[85]. There is an increasing concern for PFAS 
contamination in water resources globally, and landfill sites are recognized as one of the PFAS pollution 
sources due to the disposal of PFAS-containing waste. Southern Africa is facing various environmental 
challenges, such as the management of solid waste with limited research on PFAS pollution[70].

Studies done by[71] investigated the existence and distribution of PFAS in aquatic resources in Western Cape, 
South Africa. The levels of PFOS detected in the River Diep were higher than those of PFOA. However, the 
study suggested the need for continuous monitoring of PFAS in the region due to the potential long-term 
environmental risks associated with PFAS contamination. A similar study by[86] investigated the presence of 
PFOA and PFOS in surface and pore water in South Africa. The study reported measurable levels of PFAS 
in the surface water, with higher concentrations of PFOA detected in the aMatikulu and uMvoti sources, 
respectively. The highest concentration of PFOS in these two sources was recorded at 54.2 ng·L-1. These 
studies highlighted that the pollution was linked to improper disposal of PFAS-containing compounds, as 
well as the role of landfill sites in causing water pollution in South Africa.  These findings, therefore, suggest 
the need for more research to assess the extent of PFAS pollution in water resources in the Southern African 
region and to innovate effective approaches for monitoring and managing PFAS contamination.

PAH substances in water resources
PAHs are a class of organic compounds produced by the incomplete combustion of fossil fuels. PAHs are 
generally distributed in the environment and are considered to be persistent organic pollutants (POPs). This 
is due to their resistance to degradation. Landfills are one of the major sources of PAH pollution in water 
resources in many parts of the world. Studies conducted in South African countries on water quality have 
reported water pollution by PAHs triggered by human activities.
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The study conducted by[72] on surface water resources in the Vaal Triangle, South Africa, reported detectable 
concentrations of PAHs. Ten PAHs were analyzed from collected water samples. Of these, only seven were 
detected, with variations in their concentrations. Specifically, detectable concentrations were measured for 
Naph in the Klip River, Ace in Vaal and Klip Rivers and Vaal Barrage, phe in the Vaal and Klip Rivers and 
Vaal Barrage, Anth in the Vaal and Klip Rivers and Vaal Barrage, Fluo in the Vaal and Klip Rivers and Vaal 
Barrage, and lnPy only at the Barrage locations. Furthermore, water and sediment samples from the Klip 
River in Johannesburg were analyzed for PAHs. The study reported higher concentrations of PAHs in water 
than in sediment samples[73]. The investigators suggested that anthropogenic activities were the major 
leading cause of pollution and that the sites were at potential ecological risk.

Another study by[74] also reported levels of PAHs in surface water, wastewater and sediment samples 
collected from the Msunduzi River in KwaZulu Natal province, South Africa. The study involved a total of 
100 samples, thus, both water and sediments for PAHs quantitative analysis. The water samples were 
collected along the Msunduzi River while waste water samples were sampled from four separate WWTPs. 
Finally, the sediment samples were taken along Msunduzi River and Cedara Farm. The PAHs (naphthalene, 
acenaphthene, 16 acenaphthylene, fluorine, anthracene, phenanthrene, and pyrene) were detectable in water 
samples such as wastewater, river water, and dam water. Similarly, PAHs were also found in samples from 
both the river and dam. The results indicated significant contamination of water resources at the dumpsite.

PCBs
PCBs are toxic chemicals that had been in use in various industrial and commercial applications before their 
banning in many countries due to their harmful effects on human health and the environment. PCBs are 
POPs that do not easily break down in the environment, and they can bioaccumulate in the food chain, 
posing a significant risk to human health. There have been some studies on PCBs pollution in some 
Southern African countries, but the extent of the problem and its associated impact on human health and 
the environment is not well documented.

In a study by[75], a total of 19 samples were sourced from King William’s Town (KWT), Izele (IZ), Zwelitsha 
(ZW), Maden (MD), Mdantsane (MSN), and Buffalo River Estuary (BRE) in Eastern Cape Province, South 
Africa, for PCB testing. The results varied across seasons, with the lowest levels observed in summer and the 
highest in autumn. Specifically, the highest levels in summer were found at KWT, while BRE registered the 
highest levels in autumn. The summer results were below the permissible limits of the WHO for human 
consumption. However, the autumn results exceeded WHO limits, except for one site, MD. Furthermore, 
the study showed that the hazard quotients slightly exceeded the maximum threshold of 1, as set by the 
United States Environmental Protection Agency (USEPA).

Olasupo et al. assessed the presence of PCBs in the water and sediments of the Klip River wetland in 
Johannesburg, South Africa[73]. The wetland serves as a source of water for domestic use and the purification 
of chemical pollutants. The concentrations of PCBs ranged from 0.2 to 5.3 mg/kg in water and from 0.17 to 
0.80 mg/kg in sediments. The results indicated that the downstream areas were highly polluted with PCB 
residues due to human activities, especially from Soweto and Lenasia residents. The researcher concluded 
that these sites could be classified as highly polluted, with potential toxicological risk. Overall, the findings 
highlight that PCB contamination in water resources is a significant issue in South Africa, underscoring the 
need for efforts to mitigate this pollution. Recommended measures include improved waste management 
practices, the remediation of contaminated sites, and continuous monitoring of PCB levels in water 
resources.
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Negative effects of dumping sites and/or landfills on air pollution
The impact of landfills on air pollution is a significant concern. The uncontrolled dumping of wastes in 
landfills and other sites has been shown to release both toxic and non-toxic air pollutants. These pollutants 
pose potential significant health risks to human populations and can negatively affect local ecosystems.

Recent studies in Zimbabwe have highlighted the issue of medical waste management. A study by[87] 
reported that infectious diseases, respiratory diseases, gastrointestinal problems and injuries were mainly 
caused by poor medical waste handling. Similarly, research in Gweru City attributed high levels of air 
pollution to the illegal disposal of MSW[88]. Another study conducted in Makokoba, Bulawayo City, found a 
high prevalence of diarrhea among inhabitants residing within a 90-meter radius of dumping sites[89].

Similar studies conducted in South Africa have shown that 78% of residents living near landfills complained 
of serious air quality contamination, primarily due to unpleasant odors emanating from the landfill site. 
Furthermore, cases of flue, eye irritation, and general body weakness were more frequently recorded among 
those living close to the landfill compared to those residing at a greater distance[90]. Additionally, a study 
by[91] examined the levels of methane, carbon dioxide, and volatile compounds (VOCs) in the air around the 
Roolkraal landfill in Gauteng Province, South Africa. The results revealed that the concentrations of these 
gases were much higher than WHO’s standards, suggesting the presence of potential air pollution around 
the landfill. Another related investigation conducted at the Chunga dumpsite in Lusaka, Zambia, reported 
that smoke and several gases produced from the burning and decomposition of waste negatively impacted 
air quality in nearby communities. These areas were also plagued by flies, mosquitos, and other vermin. 
Residents frequently experienced illnesses such as coughing, respiratory issues, headaches, and diarrhea[92].

Impact of landfills on soil contamination
Soil contamination often occurs when pollutants such as heavy metals or hazardous chemicals from landfills 
and dumpsites seep into the soil. This contamination can have long-lasting environmental effects, as it is 
challenging to contain and remove. Soil contamination resulting from landfills and dumpsites has been 
linked to various health issues in both humans and animals, including birth defects, infertility, and cancer. 
Additionally, this type of contamination leads to soil infertility, which ultimately results in decreased 
agricultural productivity in nearby areas. However, it should be noted that SWM practices differ from state 
to state and city to city[60,93,94].

The study that assessed four heavy metals in soil and water samples from the surrounding Gamodubu 
landfill in Botswana showed higher concentrations in the soil, which were comparable with those in the 
water samples, except for lead. However, the study’s results did not suggest that the landfill was the possible 
source of pollution, as the detected metal concentrations were very low and below Botswana’s permissible 
standards[95]. Studies conducted at two Zimbabwean waste dumping sites examined lead exposure among 
children and scavengers (adults) through contaminated air, water, soil, and food. The detected levels ranged 
from 23,000 to 14,600,000 µg/kg and 30,000 to 1,800,000 µg/kg for the two separate sites[79]. The calculated 
inadvertent daily exposure amounts were higher than the daily ingestion rate of 20-500 mg of soil/dust 
provided by the WHO. The results indicated a potential health risk to the scavengers. Additionally, a related 
study on soil samples from a landfill in Cape Town, South Africa, found high levels of heavy metals. 
However, the concentration of these metals decreased with distance from the landfill, except for Cd, which 
still remained elevated[96].

Several published studies have reported that the regional characteristics of water pollution caused by 
leachate worldwide, including in South African countries, have become a serious human health and 
environmental concern, especially in areas where landfills are insufficiently managed. The characteristics of 
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leachate differ depending on several factors such as the age of the landfill, the type of waste deposited, and 
local climatic conditions such as temperature and rainfall. In South Africa, researchers stated that leachate 
emanating from landfills contains high levels of organic matter, ammonia nitrogen, heavy metals, and other 
noxious substances[83,97,98]. For instance, studies have indicated that leachate can penetrate underlying soil 
layers and contaminate underground and surface water resources, which are important drinking water 
supplies for numerous South African households, such as in provinces Mpumalanga and Northwest[69]. 
Several studies have reported that the presence of chemical pollutants, such as heavy metals lead, cadmium, 
and mercury, can cause serious harm to human health, including neurological disorders and developmental 
issues in children[68,99]. Furthermore, the toxic effects of leachate are also reported to negatively impact 
aquatic life and disrupt local ecosystems[100,101].

In recent years, pollutant levels in landfill leachate have revealed significant trends influenced by factors 
such as landfill management practices, waste composition, and environmental conditions[102]. Several studies 
have shown increased concentrations of heavy metals and organic pollutants in leachate from aging landfills 
that were not designed to handle electronic waste or other hazardous wastes[69]. These elevated levels are 
linked to operational constraints in landfills, including insufficient lining and illegal dumping, which 
exacerbate leachate generation and pollutant load[66,83]. Studies analyzing leachate from South African 
landfills have detected high concentrations of heavy metals that exceed the tolerance limits for effluent 
discharge guidelines, posing risks to both surface and groundwater quality[97]. Furthermore, the detection of 
flame retardants and other hazardous compounds in leachate raises concerns about the impact of recent 
waste streams on leachate quality[67].

Another factor contributing to the rising concentrations of pollutants in leachate is seasonal variation in 
precipitation, which significantly affects leachate generation. Heavy rainfall can increase leachate 
production, diluting some pollutants while simultaneously introducing new contaminants from surface 
runoff[103,104]. These findings highlight the need for effective leachate management strategies that consider 
seasonal changes and the specific characteristics of the waste being landfilled.

The relationship between soil, air, and water pollution
The relationships among water, air, and soil pollution are crucial to understanding the broader implications 
of environmental deterioration. These forms of pollution not only directly affect the environment but also 
trigger cascading effects on  one another, creating a complex web of ecological and health issues.

Water resource pollution is generally aggravated by air pollution, especially through the deposition of 
airborne contaminants. Studies report that sulfur dioxide and nitrogen oxides produced from industrial 
activities result in the formation of acid rain, consequently contaminating water bodies and soil[105,106]. The 
acidification can damage aquatic life and disturb the chemical stability of the ecosystem, resulting in an 
additional decline in water quality. Moreover, chemical pollutants such as heavy metals and PAHs can be 
transported via atmospheric routes and deposited into water resources. This further complicates water 
quality management challenges[107,108]. Further, the Lancet Commission on Pollution and Health has reported 
that toxic pollutants in air and water contribute greatly to global health crises, with millions of deaths 
associated with pollution-related illnesses[109].

Soil pollution is linked to air and water pollution. Chemical contaminants originating from landfill leachate 
can leach into the soil profile, altering its structure and affecting its capacity to support plant growth[110,111]. 
Studies have indicated that the leachate emanating from MSW landfills can lead to high levels of chlorides, 
sulfates, nitrates, and heavy metals in the nearby soil, greatly affecting its value for agricultural 
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production[100]. The existence of heavy metals in soil does not only decrease agricultural productivity but 
also result in bioaccumulation in the food chain, affecting human health[112]. A study carried out in 
Bloemfontein on a landfill found that leachate compromised soil and water quality, raising concerns about 
the safety of the food grown in contaminated areas. The presence of heavy metals in crops irrigated with 
contaminated water was further exacerbated by the migration of leachate from landfills. This highlights the 
urgent need for improved leachate management in South Africa[26]. Furthermore, the use of fertilizers and 
pesticides in agriculture promotes both soil and water pollution since runoff from farms transports these 
chemicals into proximate water bodies, causing eutrophication and further deterioration of aquatic 
ecosystems[113]. The link between soil health and air quality is also significant; for instance, soil deterioration 
can increase the amount of dust and particulate matter in the air, inducing breathing difficulties for nearby 
residents[114,115].

Air pollution, in turn, can affect both water and soil quality. Methane and hydrogen sulfide gases are 
produced in landfills due to the decomposition of organic waste; these gases have strong offensive odors and 
endanger the health of those nearby[116,117]. Chemical pollutants such as particulate matter and volatile 
organic compounds can settle on soil and water surfaces, causing contamination[106,118]. The interaction of 
these chemical pollutants coupled with environmental factors can trigger complex chemical reactions that 
further degrade water and soil quality. For instance, the existence of certain atmospheric pollutants can also 
promote the leaching of hazardous substances from soil into groundwater, posing risks to drinking water 
supplies[119,120]. Furthermore, studies indicate that air pollution has serious negative health impacts, and 
exposure to airborne pollutants is significantly correlated with a number of illnesses, including circulatory 
and respiratory disorders[114].

Technical aspects of waste leachate treatment
The handling of landfill leachate is a significant environmental issue due to its complicated composition, 
which can comprise organic and inorganic contaminants; the existence of heavy metals and nutrients poses 
serious risks to soil and water quality if not handled properly. Several viable treatment technologies have 
been created and employed to resolve these challenges, each with its own success and setbacks. The existing 
knowledge and recommendations on the technical aspects of waste leachate treatment are discussed below.

The primary strategy for decreasing leachate production involves waste segregation at the source. This 
approach reduces the quantities of leachate produced and improves the quality of waste deposited in 
landfills, thereby decreasing the operational costs related to leachate treatment. It is reported that effective 
waste segregation can lead to significant cost savings in leachate treatment processes and enhance the 
sustainability of landfill operations by minimizing the need for new landfill sites. Furthermore, reducing 
leachate volumes through segregation can relieve the burden on subsequent treatment processes, making 
them more efficient and cost-effective[121].

Research recommends implementing biological treatment technologies due to their success in removing 
organic pollutants and nutrients from leachate. One study found that young landfill leachate, which 
contains a higher proportion of biodegradable organic matter, can be effectively managed with biological 
treatments such as anaerobic digestion and activated sludge processes[122]. However, as leachate ages, 
managing it becomes more demanding due to the accumulation of recalcitrant compounds and a lower 
biochemical oxygen demand to chemical oxygen demand (BOD/COD) ratio[98]. In such cases, integrated 
treatment methods that combine biological processes with advanced oxidation or membrane technologies 
are necessary to improve overall treatment performance.
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Advanced oxidation processes (AOPs) and membrane technologies such as reverse osmosis and 
nanofiltration are recognized as efficient and reliable options for treating mature leachate. AOPs can 
efficiently decompose complex organic contaminants, while membrane processes can separate 
contaminants from treated water. Published studies have indicated that membrane processes can achieve 
high removal efficiencies; however, they are associated with the production of concentrated retentate, which 
requires additional management. Nonetheless, the recirculation of produced retentate back to the landfill 
has been reported as a viable and cost-effective method for handling this waste stream[102].

Electrocoagulation and the use of constructed wetlands are reported to be effective in the treatment of 
leachate. Electrocoagulation technology involves passing an electric current through leachate, which 
enhances the coagulation and flocculation of pollutants. Studies have shown that electrocoagulation is 
effective in eliminating the heavy metals and organic pollutants from leachate[123,124]. Nevertheless, the 
performance of electrocoagulation is dependent on the presence of organic load in the leachate, requiring 
the pretreatment steps in some cases[123]. On the other hand, the use of constructed wetlands symbolizes a 
natural treatment option that can be both cost-effective and ecologically friendly. Another study 
recommended subsurface constructed wetlands as a reliable solution for leachate treatment, suggesting their 
ability to reduce organic and inorganic pollutants while providing extra ecological benefits[125]. This method 
is particularly appealing for sustainable waste management, as it leverages the filtration capacities of wetland 
plants and microorganisms.

Other studies have proposed the integration of several treatment options to overcome adverse effects 
associated with landfill leachate. Excellent results have been reported. For instance, the combination of 
biological treatment with membrane filtration was reported to promote treatment efficiency while reducing 
the setback connected with each protocol[54]. Similarly, a hybrid method was developed that united 
electrocoagulation with biofiltration, which demonstrated remarkable outcomes by reducing levels of 
turbidity and organic load in leachate. The integrated treatment systems can be developed based on the 
specific characteristics of the leachate being treated to improve performance and resource use[54].

Landfill leachate can also be treated by incorporating emerging technologies such as microbial fuel cells 
(MFCs). MFCs have gained the attention of researchers toward landfill leachate treatment. The MFCs 
protocol not only promotes the removal of toxic organic pollutants but also produces electricity, offering a 
double advantage for waste handling and management. This treatment method supports the increasing 
emphasis on sustainability and resource recovery in waste management practices[126].

CHALLENGES ASSOCIATED WITH MSW MANAGEMENT  IN SOUTHERN AFRICAN 
COUNTRIES
Control and decision making
The controls and decisions made by the central government are one of the challenges faced by the 
municipalities when dealing with SWM. In most selected Southern African countries, operations and 
decisions are controlled by a centralized system of government rather than a decentralized system. For 
example, in Malawi, power has been decentralized to the municipal level; however, municipalities are 
regarded as the implementers of the decisions made at the ministerial level. This weakens the operations of 
local governments in waste management[127].

High urbanization growth rate
Another key challenge is attributed to the expansion in size of the cities and towns due to the ever-
increasing urban population. The African continent faced an alarming human population growth from 294 
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million in 1960 to 1.0 billion in 2010, and it is anticipated to increase to 2.2 billion by the year 2050. The 
urban population growth rate is expected to reach 47% in 2050 from 20% in 1960[128]. This rapid urban 
growth contributes to the development of urban slums and unplanned settlements in most developing 
African cities and towns. Usually, informal settlements have little or no access to sanitation and waste 
management systems[129]. Though waste generation per individual in such slums could be lower, the overall 
quantity of waste increases due to population growth and urbanization. This results in further challenges in 
waste management systems which are already crippled and incapacitated to provide sufficient services[128].

Furthermore, existing dumping sites are now surrounded by housing estates and communities as a result of 
the fast rise in urbanization. Initially, disposal sites were situated outside of the municipal limits at a safe 
distance. However, because of the current rate of urbanization, waste disposal sites are located near 
residential areas[130]. People who live close to these landfills run the danger of getting sick from the dust, 
odor, and other pollutants they release. For example, research conducted on 328 children living near the 
Dandora dumpsite in South Africa found that half of them had elevated blood lead levels. Anaemia, skin 
infections, asthma, and other respiratory infectious disorders also disproportionately impacted them. High 
levels of pollutants at the landfill, which receives plastics, rubber, wood, metals, chemicals, and medical 
waste, were linked to these negative health impacts[131].

Insufficient funding
Lack of financial resources is another key challenge encountered by the municipalities. SWM is a cost-
intensive service as it involves waste collection, transportation, and disposal at designated dumping sites. 
For instance, in developing countries, the biggest portion of the municipalities’ budget is spent on SWM, 
with a large portion spent on solid waste collection[9]. The district and city councils receive their revenue 
from central government grants, which are usually subject to cuts and/or unreliable disbursements. In 
addition, most local governments are weak and underfunded, thus incapable of rendering enough and 
effective SWM[128]. Consequently, they resort to environmentally unfriendly waste disposal methods.

Selection of inappropriate MSW disposal methods
The majority of Southern African municipalities opt to dispose of solid waste in landfills using open dumps. 
Waste is typically dumped in open spaces with low elevations. There are no engineering safeguards against 
leachate or gas in open landfills[88]. Thus, leachates, which can contaminate surface and ground water, are 
frequently produced by the biological and chemical processes that take place in open landfills[132]. 
Additionally, methane produced by the breakdown of organic materials has the potential to cause gas 
explosions and fire in open dumps. In unplanned communities, the issue is significantly worse since there is 
either no solid waste collection or it is done haphazardly. This results in major environmental risks such as 
air pollution from burning, direct contact, and rodents[129].

Weak law enforcement
SWM problems are exacerbated by the failure to enforce existing SWM laws by responsible institutions. 
Municipal, political, and bureaucratic officials and community leaders refuse to enforce municipality waste 
management by-laws for their own political reasons. As a result, solid waste is indiscriminately disposed of, 
resulting in massive pollution of very delicate areas such as rivers and swamps[12,133].

Unstable governance and inefficient implementation of policies
Corrupt leadership is also another major setback faced by municipalities in SWM. Some city officials take 
advantage of solid waste to siphon public funds for their own benefit[129]. Corruption in SWM is manifested 
in several ways, including the illegal sale of sorted garbage, illegal sale of public land, misrepresentation of 
documents, inflating procurement costs, direct embezzlement of public procurement funds, false 
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accounting, encroachment and grabbing dumping site land, and inadequate supervision of workers (such as 
drivers and their turn boys, and sorters). This is coupled with inadequate monitoring of factory and private 
hospital owners[130,134]. Consequently, this leads to the loss of revenue for the municipality as money 
generated ends up in the pockets of the corrupt leaders, who, in turn, encourage the indiscriminate disposal 
of hazardous industrial and hospital waste.

Lack of community participation in SWM
Most community members, especially those from very low-income urban areas in developing nations, 
believe that the government has the responsibility to manage and dispose of waste[135]. This misperception 
has led to improper waste disposal, with the expectation that the government will provide cleaning services 
to remove large piles of solid waste. This issue is commonly observed in most urban markets in developing 
nations, where heaps of waste are left to decompose on the ground, resulting in the emission of terrible 
odors that contribute to air pollution[133].

RECOMMENDATIONS
● An integrated approach to SWM is required to enable local or national authorities to reduce the overall 
amount of waste generated and to recover valuable materials for recycling and for the generation of energy. 
SWM should incorporate integrated waste management programs like recycling, composting, and 
incineration with energy recovery[136].

● Municipal councils should streamline and encourage practices that improve settlement patterns, reduce 
slums, improve the livelihoods of low-income earners and promote behavioral changes to discourage 
indiscriminate dumping of garbage[128].

● Landfill gas (LFG) recovery could be a solution and an opportunity for energy recovery and a potential 
source of energy in areas with low access to energy[11].

● Ensuring that all factories and hospitals have suitable and appropriate SWM plans and facilities before 
being approved to operate in the municipality. Factories without proper waste management facilities should 
have their operating licenses revoked until they establish appropriate facilities for dealing with waste. Again, 
the municipalities should conduct regular and unannounced inspections of these sites to ensure that the 
individuals or organizations operating the facilities are really utilizing them. Unannounced visits should be 
used to identify any violations of the rules, and those found in breach must be fined according to the 
laws[135].

● Promote community participation in waste management. Community participation involves an active 
process in which beneficiaries initiate development projects to promote their social welfare. It involves the 
engagement of various stakeholders, including community members, government institutions, local 
businesses, community-based organizations (CBOs), and non-governmental organizations (NGOs), who 
work together in decision-making processes that influence the outcomes of developmental agendas within 
municipal jurisdictions[127,135]. Involving communities in SWM can help achieve healthier, more sanitized 
environments, foster a sense of patriotism, and promote responsibility in sustainable environmental 
management, as households - who are primary handlers of solid waste - are actively included in the process.
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STRATEGIES FOR DEALING WITH SWM
Prevention approach
● Supporting education and awareness programs: Local governments must regularly run campaigns in 
schools and communities. As a result, people will be more inclined to cooperate and take part in 
appropriate waste management procedures[12]. In addition, people must occasionally be informed of the 
significance of environmental consciousness and the health hazards connected to inadequate waste 
management techniques[137].

● People living close to municipal areas should understand the value of paying for waste management 
services and segregate their waste to encourage recycling practices.

● Furthermore, raising public awareness and encouraging community participation are important for 
effective landfill management. Involving local communities in decision-making processes concerning 
landfill operations can foster transparency and responsibility. Studies have shown that communities near 
landfill sites are generally the most affected by pollution, and their input can be invaluable in shaping 
policies that address their concerns[138,139]. Therefore, it is recommended that policymakers should facilitate 
community forums and educational programs to inform residents about the potential impacts of landfills 
and the importance of regulatory compliance.

● Implementation of strict leachate management systems is one of the major strategies for effectively 
managing landfills. Leachate is the liquid that drains or leaches from landfills and consists of a complex 
mixture of organic and inorganic pollutants, including heavy metals and harmful pathogens[138,140,141]. Studies 
have shown that leachate can significantly degrade groundwater quality, rendering it unsafe for 
consumption and domestic purposes[65,139]. Consequently, it is recommended that policies mandate the 
installation of modern leachate collection and treatment systems at landfill sites to prevent the migration of 
contaminants into the surrounding environment[142].

● Besides these approaches, the design and operation of landfills must adhere to best management practices 
to reduce the environmental effects. This includes ensuring that landfills are built with appropriate liners 
and covers to safeguard leachate penetration and gas emissions[63,142]. Regulatory frameworks should support 
the adoption of state-of-the-art technologies in landfill design and operation, ensuring that environmental 
safeguards are in place.

● Another fundamental policy for addressing the environmental impacts of landfills involves the integration 
of scientific research. It is advisable for policymakers to team up with researchers to stay informed about the 
latest findings on landfill effects and treatment approaches. This partnership can lead to the development of 
evidence-based policies that efficiently resolve the problems caused by landfills[143,144]. For example, research 
on leachate contamination dynamics can inform the design of more effective leachate management systems 
and groundwater protection strategies.

Control approaches
● Transform the open dump to managed landfills. Open dumping remains the most cost-effective method 
for solid waste disposal; however, it is essential to improve this system. Disposal sites ought to be fenced, 
covered with soil, and equipped with a compacted base. The compacted base prevents the spread of disease-
causing vectors and the infiltration of leachate into the ground. The fence serves to keep animals out of the 
landfills[88].
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● Furthermore, leachate management can be achieved by establishing buffer zones around landfill sites. 
These zones serve as protective shields, reducing the catastrophic impact of leachate on nearby water 
resources. Research has shown that the lack of geological barriers can result in higher concentrations of 
pollutants in groundwater[143,145]. By implementing policies that ensure the creation of sufficient buffer zones, 
policymakers can help safeguard water quality and reduce the risk of contamination from landfill 
operations.

● Air quality is another significant issue associated with landfill operations. Landfills are known sources of 
greenhouse gases and VOCs, which are major contributors to air pollution and climate change[140,142]. 
Implementing protocols that capture and treat LFG emissions can significantly lower these emissions. For 
instance, the installation of gas collection systems can convert methane, a potent greenhouse gas, into a 
renewable energy source, offering the dual benefits of decreasing emissions and generating renewable 
energy[146,147]. It is recommended that policymakers should consider incentivizing the adoption of such 
technologies through grants or tax credits to promote compliance among landfill operators.

Mitigation approach
● Encourage recycling and resource recovery initiatives. These efforts, often led by the unorganized sector 
and typically carried out under hazardous conditions, have gained acceptance in developing nations. In 
certain instances, local officials even hinder these recovery efforts. Local governments and businesses that 
will ultimately utilize the recovered materials should foster positive attitudes toward informal waste 
recovery. Additionally, businesses should offer higher compensation to scavengers for the waste they 
collect[129].

● Similarly, promote alternative waste management practices, such as recycling and composting, to reduce 
the volume of waste sent to landfills[148]. By implementing policies that encourage waste reduction and 
resource recovery, governments can lessen the pressure on landfill capacity and minimize their 
environmental footprint. In this context, extended producer responsibility (EPR) policies are particularly 
important, as they hold companies responsible for the entire lifecycle of their products, fostering sustainable 
waste management practices[148].

● Moreover, regular motoring and assessment of groundwater quality near landfill sites are essential 
components of effective policy implementation. The use of indices such as the Landfill Water Pollution 
Index (LWPI) provides a quantitative measure of groundwater contamination levels[145,149]. Continuous 
monitoring enables the timely detection of pollution trends, facilitating prompt interventions to mitigate 
environmental effects. Policies should require landfill operators and managers to conduct continuous 
groundwater assessments and report the outcomes to regulatory authorities[150,151].

CONCLUSION
This paper has examined the environmental impact of dumping sites on air and water pollution. It 
highlights how waste from illegal dumping sites significantly contributes to air, soil, and water pollution, 
with far-reaching consequences for both the environment and human health. While existing policies aimed 
at regulating and monitoring waste management in dumping sites serve as valuable tools, they are 
inefficient in effectively mitigating the environmental damage caused by improper waste disposal practices. 
The findings underscore the need for further policy enhancements to address these issues comprehensively 
and protect the environment from the harmful effects of dumping sites and/or landfills. Ultimately, this 
paper demonstrates that the effective management of dumping sites and/or landfills is essential to 
sustainable environmental health and well-being.
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