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Abstract
This paper presents a comprehensive overview of recent developments in formation control of multiple autonomous
underwater vehicles (AUVs). Several commonly used structures and approaches for formation coordination are listed,
and the advantages and deficiencies of each method are discussed. The difficulties confronted in synthesis of a prac-
tical AUVs formation system are clarified and analyzed in terms of the characteristic of AUVs, adverse underwater
environments, and communication constraints. The state-of-the-art solutions available for addressing these chal-
lenges are reviewed comprehensively. Based on that, a brief discussion is made, and a list of promising future work
is pointed out, which aims to be helpful for the further promotion of AUVs formation applications.

Keywords: Autonomous underwater vehicles (AUVs), formation control, challenges and difficulties, state-of-the-art
solutions

1. INTRODUCTION
Unmanned underwater vehicles (UUVs) as effective devices have played a key role in exploration and ex-
ploitation of marine resources for human beings since about 1960s. In particular, remotely operated vehicles
(ROVs) [1,2] as the typical UUVs, tethered with a cable used for data transmission and power supply, have been
widely applied in the oil and gas industry and other common fields where underwater inspection, maintenance
and intervention necessitate. Nonetheless, such a vehicle does not seem to be cost-effective, since in order to
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execute missions, an associated support vessel and operators are always needed. While there has been a so-
called fully autonomous ROV recently without requiring any intervention from operators, the tether or supply
ship can still not be removed, which sometimes yields the most expenditure [3,4]. To overcome this drawback
while improving working performance, autonomous underwater vehicles (AUVs) have received increasing at-
tention in the past few decades from both industry and academia. As an obvious distinction from the ROVs,
AUVs get rid of the tethers, operate automatically for the assigned missions, and require neither human inter-
vention nor support ships. Therefore, the cost of each operation can be reduced to a great extent, andmoreover,
due to the characteristics mentioned, AUVs can even be adopted to access restrictive areas, e.g., shallow wa-
ter or under-ice areas. The growing applications in practice can even be found as the efficient alternative to
ROVs [5–10]; for example, they are used frequently to perform various survey and inspection tasks in the deep
sea, such as hydrographic survey (i.e., positioning or locating the underwater surroundings), submarine cable
inspection, oil and gas pipeline inspection and maintenance, etc. Besides, such mechatronic systems are also
helpful for the science purpose; that is, a great many marine organisms can be discovered and identified with
the assistance of high-quality cameras, and many ancient shipwrecks can be surveyed and excavated using
these effective tools. In addition to that, AUVs have even been employed by several navies for military use,
such as mine neutralization, intelligence gathering, reconnaissance or even nuclear bomb searching, etc.

However, as the complexity of missions grows, it is becoming nearly impossible for a single AUV system
to attain a satisfactory result. As a consequence, along with the recent advances of the multi-agent systems
theory, the developments of multiple autonomous underwater vehicle systems have received much attention
in communities of control and ocean engineering over the past few decades [11,12]. It is natural that a vast
amount of difficulties can be handled efficiently by employing a group of AUVs. Besides that, such a multi-
agent system has many beneficial inherent features, including high degree of flexibility, ease of extension and
maintenance, and better robustness against perturbations and failures [13,14], etc.

The research efforts on a swarm of AUVs are mainly focused on designing efficient protocols and algorithms
such that some useful collective behaviors among individuals can emerge, which is roughly categorized into
problems such as formation control, flocking, hunting, pursuit-evasion [15–20], etc. It is observed from literature
review that formation control of AUVs fleet has attracted the most attention among those research topics, due
to its considerable potential in practical maritime operations, which also motivates this brief survey. Notice
that there are several definitions of formation control found in the literature [21]. For example, some definitions
are either forcing the constraints on relative positions of agents or just simply demand speed synchronization
of each individual (without the need to maintain a specific distance from each other). In this article, formation
control is referred to as designing controllers for a fleet of AUVs so that some prescribed formation shapes can
be formed and kept, and meanwhile, the velocities of each AUV in the group are agreed to move along with
a desired route as a whole. In short, formation control attempts to control the relative distance and bearing
between vehicles while maneuvering together. It is worth noting that AUV formation is totally different from
the problem of AUV-assisted underwater acoustic networks (UANs) [22,23], while they both seek to employ
multiple AUVs to construct a communication network. In vehicle assisted UANs, AUVs play a role in short-
ening the distance of information connection from the stationary nodes to the surface vessels or buoy beacons.
In such a way, the communication quality can be improved considerably through AUV relay. Nonetheless, in
this process, the shapes of the AUVs fleet are not necessarily constrained, and indeed people are concerned
more about the AUVs path planning or task assignment so as to obtain the shortest routes with relatively lower
energy consumption [24]. In contrast, as mentioned earlier, the AUVs formation control is mainly focusing on
the design of efficient and robust control techniques for AUVs in order to strictly meet the prescribed forma-
tion constraints. The recent advances in sensor technologies and algorithms used for underwater localization
and navigation can be found in the survey papers [25,26], which also serve as critical factors contributing to
better formation control performance. This paper is mainly from a control point of view to examine the AUV
formation applications. In addition, it is worth noting that there exist three types of AUVs, i.e., fish-like AUV,
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underwater glider, and torpedo-like AUV. Due to a balanced performance of torpedo-like AUV as reported
in literature [27], in this brief we are specifically concerned with the formation control of this type of AUV. For
more details on performance comparison among three types of AUVs, the readers of interest are referred to
the paper [27]. In what follows, for convenience, the term AUV is referred to as the torpedo-like AUV.

In fact, it is not easy to develop high-performance formation controllers for a group of AUVs [5–7]. Major tech-
nical problemsmay arise from the following several aspects. First, it is notorious that the dynamics of AUVs are
highly nonlinear with 6 degrees of freedom (DOF), but not fully actuated; that is, the control actions are not di-
rectly applied in the sway and heave motion directions. Besides, subject to the severe effects of hydrodynamics,
a set of hydro-related plant parameters in AUV dynamic model are always time-varying, and furthermore, the
ocean waves and currents have significant impacts on the dynamics of AUVs as well. Those mentioned factors
even make the motion control of a single AUV fairly challenging [28]. More importantly, to control the forma-
tion of AUVs fleet, it is imperative to establish a communication network to exchange information between
the vehicles. Nevertheless, due to the underwater environments, radio frequency and optical based communi-
cation technologies are usually inefficient, when the communication zone becomes broad, which is the case in
AUVs formation in order to attain maximum coverage. In such a case, acoustic-based technology is regarded
as the most suitable way to provide communication support for AUVs formation applications [27,29,30]. As a
result, the communication constraints induced, e.g., low data rate, high propagation delays, path loss, noises,
Doppler effect, etc., cannot be neglected. There have been a variety of surveys discussing and summarizing
the formation control techniques available for multi-agent systems, especially including integrator-modeled
systems [11,31], unmanned ground vehicles (UGVs) [31–33], unmanned aerial vehicles (UAVs) [34–37], unmanned
spacecraft [38,39]. It is clear that due to the distinct applications as well as the characteristics, the technical
challenges encountered in these systems may have an apparent difference from the autonomous underwater
vehicles. For example, as a stark contrast, the communication channels for formation control of UGVs, UAVs
and spacecraft are much better than those of AUVs, since for the former, the base stations and satellites can
offer a stable high data rate and lower transmit errors. Consequently, the communication constraints may not
be considered critical or pressing for such systems in order to achieve a high-precision formation performance.
In addition, most of the existing available surveys on AUVs formation are mainly concerned with the motion
control techniques and formation coordination strategies [29,40–43], but with limited focuses on communication
problems which are, as mentioned, vital for the AUVs to reach a robust formation performance in underwater
environments.

In light of the aforementioned observations, we believe that it is timely and helpful to present a brief overview
of recent advances in AUVs formation control techniques that includes, particularly, a sufficient survey in
handling underwater communication constraints. Notice also that due to the vast amount of the literature,
it would be intractable to extensively review the existing results. We are thus concentrating on the major
technical challenges and practical issues that significantly affect the formation control quality. In particular,
we discuss the influence arising from the underwater communication constraints, which may deteriorate the
formation performance in practice, but not well-studied in previous surveys. The contributions of this paper
are listed: (1) Several popular formation coordination structures and approaches used for AUVs formation
are presented, and their advantages and drawbacks with respect to the implementation, analysis, robustness
and flexibility are discussed in-depth; (2) The difficulties in the development of a practical AUVs formation
system are classified and analyzed in terms of the characteristic of AUVs, adverse underwater conditions, and
communication constraints. Based on that, a comprehensive literature review of recent advances to handle
these challenges is conducted; (3) According to the results of the survey, a summary is made, and several
promising research directions are pointed out, which may be beneficial to promote the development of this
field.

The rest of the paper is arranged in the following. Section 2 provides some preliminaries on AUVs forma-
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tion control systems. Several widely used formation coordinating structures and approaches are presented in
Section 3. The technical problems and practical considerations in applications are clarified, and the existing re-
search solutions are reviewed extensively in Section 4. Section 5 gives a summary and points out some valuable
future works. Section 6 concludes the paper.

2. PRELIMINARY
In this section, some preliminaries are presented. Particularly, graph theory is introduced, which serves as a
useful tool to represent and analyze the interaction of AUV networks. Then, the mathematical model of the
AUVs is given to describe the motion of each autonomous underwater vehicle.

2.1. Basic knowledge on graph theory
To analyze the properties of a AUVs formation system, graph theory can be used as a useful tool. This
subsection aims to introduce some fundamental concepts in graph theory. The graph, denoted by a triple
𝐺 = {𝑉, 𝐸, 𝐴}, can be used to represent the communication topology among a AUVs fleet, including the
vertex set 𝑉 = {𝜈1, 𝜈2, . . . , 𝜈𝑁 }, edge set 𝐸 ⊆ 𝑉 × 𝑉 and weighted adjacency matrix 𝐴 =

[
𝑎𝑖 𝑗

]
∈ RN×N. In

particular, the element 𝜈𝑖 in the vertex set𝑉 , termed a node, represents the AUV 𝑖 in the group, where 𝑖 belongs
to an accountable index set Γ = {1, . . . , 𝑁}. The element

(
𝜈𝑖 , 𝜈 𝑗

)
in the edge set 𝐸 describes the interaction

between AUVs 𝑖 and 𝑗 , and associated with weights 𝑎𝑖 𝑗 = 𝑎 𝑗𝑖 > 0, which are the entries of adjacency matrix
𝐴. In such a case, we call AUV 𝑗 a neighbor of AUV 𝑖, and all the neighbors of AUV 𝑖 can be described by
the set 𝑁𝑖 =

{
𝑗 |
(
𝜈𝑖 , 𝜈 𝑗

)
∈ 𝐸

}
. If there is no connection between AUVs 𝑖 and 𝑗 , then let 𝑎𝑖 𝑗 = 𝑎 𝑗𝑖 = 0 and(

𝜈𝑖 , 𝜈 𝑗
)
is not the element of 𝐸 . We may further define 𝑎𝑖𝑖 = 0 for all 𝑖 ∈ Γ, and out-degree of the node 𝑖 as

𝑑𝑖 =
∑

𝑗∈𝑁𝑖
𝑎𝑖 𝑗 , after which the degree matrix and the Laplacian matrix of the graph 𝐺 can then be defined as

𝐷 = diag {𝑑1, . . . , 𝑑𝑁 } ∈ RN×N and 𝐿 = 𝐷 − 𝐴, respectively.

In addition, a path in graph is defined by a sequence that contains a set of successive adjacent nodes, starting
from the initial node and ending at the final node. If there exists at least one path between any two nodes
in a graph 𝐺, then, say, graph 𝐺 is connected. Furthermore, in order to make the AUVs fleet move along
with a desired path as a whole, a reference trajectory must be defined ahead of time. Thus, the availability of
the information of reference trajectory for 𝑖-th AUV is characterized by a parameter 𝑏𝑖 ; that is, if AUV 𝑖 is
permitted to access this information, then 𝑏𝑖 > 0; otherwise, 𝑏𝑖 = 0, and define 𝐵 = diag {𝑏1, . . . , 𝑏𝑁 }. Based
on that, we may have the following important lemma, which is useful to help analyze the stability of AUVs
formation systems based on the graph theory.

Lemma 1 For the considered AUVs formation control network, described by graph𝐺, if𝐺 is connected and there
is at least one AUV able to access the information of the reference trajectory, i.e., the elements of 𝐵 are not all equal
to zero, then the matrix 𝐿 + 𝐵 is positive definite.

2.2. Mathematical models of AUVs
The kinematics of each AUV is described as [28]

¤𝑥𝑖 = cos 𝜃𝑖 cos𝜓𝑖𝑢𝑖 − sin𝜓𝑖𝑣𝑖 + sin 𝜃𝑖 cos𝜓𝑖𝑤𝑖 ,

¤𝑦𝑖 = cos 𝜃𝑖 sin𝜓𝑖𝑢𝑖 + cos𝜓𝑖𝑣𝑖 + sin 𝜃𝑖 sin𝜓𝑖𝑤𝑖 ,

¤𝑧𝑖 = − sin 𝜃𝑖𝑢𝑖 + cos 𝜃𝑖𝑤𝑖 ,

¤𝜃𝑖 = 𝑞𝑖 ,

¤𝜓𝑖 =
1

cos 𝜃𝑖
𝑟𝑖 , (1)

where (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) and (𝜃𝑖 , 𝜓𝑖) are the position and orientation of the 𝑖-th vehicle (𝑖 ∈ Γ), respectively, expressed
in the earth-fixed frame 𝐸 I =

{
𝑒I
𝑜, 𝑒

I
𝑥 , 𝑒

I
𝑦 , 𝑒

I
𝑧

}
, and (𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖) and (𝑞𝑖 , 𝑟𝑖) are the linear and angular velocities
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Figure 1. Earth-fixed frame and body-fixed frame systems of 𝑖-th AUV

of the 𝑖-th vehicle, respectively, which is expressed in the body-fixed frame 𝐸B =
{
𝑒B
𝑜,𝑖 , 𝑒

B
𝑥,𝑖 , 𝑒

B
𝑦,𝑖 , 𝑒

B
𝑧,𝑖

}
, as shown

in Figure 1.

The dynamics of the 𝑖-th vehicle is modeled by

𝑚𝑖1 ¤𝑢𝑖 = 𝑚𝑖2𝑣𝑖𝑟𝑖 − 𝑚𝑖3𝑤𝑖𝑞𝑖 − 𝛽𝑢𝑖𝑢𝑖 + 𝜏𝑖1 + 𝑑𝑖1,

𝑚𝑖2 ¤𝑣𝑖 = −𝑚𝑖1𝑢𝑖𝑟𝑖 − 𝛽𝑣𝑖𝑣𝑖 + 𝑑𝑖2,

𝑚𝑖3 ¤𝑤𝑖 = 𝑚𝑖1𝑢𝑖𝑞𝑖 − 𝛽𝑤𝑖𝑤𝑖 + 𝑑𝑖3,

𝑚𝑖4 ¤𝑞𝑖 = (𝑚𝑖3 − 𝑚𝑖1) 𝑢𝑖𝑤𝑖 − 𝛽𝑞𝑖𝑞𝑖 − 𝛽𝑏𝑖 sin 𝜃𝑖 + 𝜏𝑖2 + 𝑑𝑖4,

𝑚𝑖5 ¤𝑟𝑖 = (𝑚𝑖1 − 𝑚𝑖2) 𝑢𝑖𝑣𝑖 − 𝛽𝑟𝑖𝑟𝑖 + 𝜏𝑖3 + 𝑑𝑖5, (2)

where 𝑚𝑖1 = 𝑚𝑖 − 𝛽 ¤𝑢𝑖 , 𝑚𝑖2 = 𝑚𝑖 − 𝛽 ¤𝑣𝑖 , 𝑚𝑖3 = 𝑚𝑖 − 𝛽 ¤𝑤𝑖 , 𝑚𝑖4 = 𝐼𝑦𝑖 − 𝛽 ¤𝑞𝑖 and 𝑚𝑖5 = 𝐼𝑧𝑖 − 𝛽 ¤𝑟𝑖 ; 𝑚𝑖 is the mass of
the 𝑖-th vehicle; 𝐼𝑦𝑖 and 𝐼𝑧𝑖 are the moments of inertia around the axes of 𝑒B

𝑦,𝑖 and 𝑒B
𝑧,𝑖 , respectively; 𝛽(·) is set of

hydrodynamic related terms associated with the 𝑖-th vehicle, 𝜏𝑖 = [𝜏𝑖1, 𝜏𝑖2, 𝜏𝑖3]T ∈ R3 is the control input, and
𝑑𝑖 = [𝑑𝑖1, 𝑑𝑖2, 𝑑𝑖3, 𝑑𝑖4, 𝑑𝑖5]T ∈ R5 is the disturbance acting on the 𝑖-th vehicle.

Remark 1 It is worthwhile noting that the complete motion of the equation of an AUV is of 6 DOF, but, as we
surveyed, almost all of the literature studying 3-dimensional (3D) formation applications employ the AUV model,
as presented in Equation (1) and Equation (2), with 5 DOF. This relies on the fact that for an AUV formation
fleet, the rotational motion around 𝑒B

𝑥,𝑖 axis, i.e., roll motion, sometimes is not required in many practical AUV
maneuvering, and hence the equation governing the roll motion is intentionally omitted, which does not cause loss
of the practicality. Indeed, it is easy to check that the roll motion is passively bounded [28]. Particularly, its impacts
on the other DOF can be treated as unmodeled dynamics and handled effectively by some disturbance rejection
techniques.

Remark 2 It is clear that the dynamics of AUVs are highly nonlinear and underactuated as in Equation (2); in
other words, the sway and heave velocities, i.e., 𝑣𝑖 and 𝑤𝑖 , are not fully actuated and there are no actual control ac-
tions allowed to be applied. In the sequel, this underactuation feature will be demonstrated as a major challenge to
designing high-performance formation controllers for AUVs. In addition, besides the environmental disturbances
described by 𝑑𝑖 , as observed in Equation (2), there are many system parameters subject to the perturbation due to
the effect of hydrodynamics, which is characterized by the time-varying parameters 𝛽(·) . Such uncertainties in the
dynamic model of AUVs give rise to another significant difficulty for the formation control design. Furthermore,
the angle of 𝜃𝑖 is constrained and not allowed to take values at ±𝜋/2 in order to avoid the singularities, which
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should be guaranteed by the formation controller. Therefore, from the control point of view, addressing such a
system continues to be challenging.

2.3. Problem statement
This subsection aims to formulate the considered formation control problem of a fleet of AUVs. As mentioned
earlier, one of the requirements of formation control is to drive the AUVs to form a prescribed static or time-
varying geometric shape and maintain it. Typically, the expected geometric pattern can be determined by the
appropriate assignments of the relative positions between vehicles, denoting asΔ𝑖 𝑗 =

[
𝛿𝑥,𝑖 𝑗 , 𝛿𝑦,𝑖 𝑗 , 𝛿𝑧,𝑖 𝑗 , 𝛿𝜃,𝑖 𝑗 , 𝛿𝜓,𝑖 𝑗

]T

for AUV 𝑖 (𝑖 ∈ Γ) and its neighboring nodes 𝑗 ∈ 𝑁𝑖 . To this end, the formation control is cast to the problem
of controlling relative positions and orientations of vehicles with respect to their neighbors so that Δ𝑖 𝑗 can be
achieved as time tends to infinity, and particularly these desired relative poses could even be set to be time-
varying as necessary. Another practical requirement is that it is most desirable for an AUVs fleet in applications
to track a reference trajectory as a group, in which case not only the positions, but also the velocities of the
vehicles in the fleet are needed to be in consensus; that is, ( ¤𝑥𝑖 , ¤𝑦𝑖 , ¤𝑧𝑖) converges to a common reference speed
( ¤𝑥𝑑 , ¤𝑦𝑑 , ¤𝑧𝑑), as 𝑡 → +∞ . Such an objective is also referred to as the problem of formation tracking control in
the literature.

In short, the formation control objective can be summarized as designing controllers for AUVs such that a set
of desired relative positions and orientations, i.e., Δ𝑖 𝑗 (𝑖, 𝑗 ∈ Γ), can be achieved and maintained while the
AUVs fleet tracks a common reference trajectory, moving in the same speed together.

3. AUV FORMATION CONTROL PROTOCOLS
In order to achieve the preceding formation objective, an appropriate formation control protocol is a must
to coordinate the motions of AUVs efficiently. In general, multi-agent coordinating strategies can be roughly
categorized into two forms depending on the information used, i.e., centralized coordination and decentralized
coordination [11,31]. In centralized form, the control commands or control actions of each AUV are planned
through a central control procedure which is allowed access to the global information of the whole formation
system. On the contrary, in a decentralized structure, there is no such a controller planning actions for every
AUV in the group, and instead, AUVs make their own decisions based on their local information accessed. In
fact, on the basis of an extensive review, there are few research efforts made to design centralized coordination
protocols for AUVs formation applications, which owes to the fact that each AUV employed has sufficient
capabilities to sense the surroundings, plan its control actions accordingly and communicate with neighbors.

Based on this observation, we are mainly concerned with the approaches adopting a decentralized coordinat-
ing control structure, which includes leader-following structure, virtual structure, behavior-based approach,
artificial potential field approach, and other common structures.

3.1. Leader-following structure
Leader-following structure is one of themost popular schemes used for the formation control of multiple agent
systems because of its straightforward descriptions [11]. In such a scheme, one or several agents are selected as
the leaders, and the rest of the agents are grouped into followers, as depicted in Figure 2. The desired reference
signal is merely known to the leaders, and in conventional leader-following structure, the goal of the leaders is
simply to track this prescribed reference and there is no explicit interaction between their following agents. The
sole goal of the remainders is aimed to keep the desired relative pose (i.e., position and heading) with respect
to their leading agents. As such, the formation control objective, as stated in section 2.3. can be achieved if
each vehicle’s goal is reached. The major advantages of such a method are that it is easy to be implemented
and fairly flexible to add or remove vehicles in the fleet; besides, since there are no direct interactions between
neighboring vehicles, the stability of the whole formation system can be easily analyzed based on the graph
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Leader 

Follower #1

Follower #2

Follower #3

Figure 2. A typical topology of leader-following structure.

Virtual Leader 

Follower #1

Follower #2

Follower #3

Figure 3. A typical topology of virtual leader structure.

theory, as presented in section 2.1. Because of those nice features, there is a great amount of literature on AUV
formation control adopting the leader-following structure [44–48].

Such an approach, however, suffers from a major defect that the performance of the overall formation system
depends highly on the behavior of the leaders and the quality of the communication. In other words, once
the lead agents or communication network fail to work as usual due to unpredictable faults, which is often
the case in underwater environments, the entire formation system may be disabled. To overcome this issue
and improve the robustness of the leader-following approach, a virtual leader based method is proposed, in
which there are no physical vehicles employed to lead the group and, therefore, the above-mentioned issue
can be appropriately addressed [49–52]. A typical virtual leader based formation structure can be referred to the
Figure 3. Another critical consideration regarding this type of structure is that it is always assumed that every
vehicle in the group is permitted to obtain the trajectory information of the virtual leaders, which is a strong
assumption and may not be fulfilled in many realistic applications.

3.2. Virtual structure approaches
Similar to the virtual leader approach, virtual structure coordination is another common method used to
coordinate the multi-agent formation, which was first reported in [53,54] to address the cooperative control of
multiple mobile robots. In this method, a set of virtual points are defined corresponding to each vehicle, which
is determined by the desired formation configuration as well as the trajectory to be tracked. Since each vehicle
is assigned its own reference point, the formation tracking problem is then converted into the tracking control
problem associated, the goal of which is to drive the vehicles to minimize the errors between their actual
positions and desired ones. A typical realization of such an approach is illustrated in Figure 4. Due to the fact
that such a method is also straightforward and simple to analyze and realize, there have been many results
reported to date based on this method to achieve the formation control requirements [54–59].
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AUV #1 Reference #1

AUV #2

AUV #3

Reference #2

Reference #3

Figure 4. A typical topology of virtual structure approach.

AUV #1

AUV #2

AUV #3

Target

Figure 5. A typical topology of behavior-based approach.

The main drawbacks of the virtual structure approach may lie in several aspects: (1) Like the virtual leader
approach, this method relies closely on the desired reference trajectories, which appears to be unrealistic in
many practical scenarios; (2) It is not easy to expand the AUV formation, since the desired virtual reference
points are designed in advance based on the prescribed formation pattern; (3) Due to the lack of information
exchanges between the neighboring vehicles, there is no cooperation occurred in the formation system, which
degrades the coordination performance.

3.3. Behavior-based approaches
Different from the above two methods, as shown in Figure 5, there exists an explicit mutual communication
in formation systems synthesized using the behavior-based coordination approach. Instead of directly pre-
scribing a priori reference trajectories, in behavior-based approach, each vehicle in the group makes its own
decisions based on the local information (e.g., its own states, surroundings, and neighbors’ states) and the goals
predefined. The goals usually include target reaching, collision or obstacle avoidance, distance maintaining,
etc. Particularly, the overall control actions of the vehicles are then generated by a weighted combination of
achieving these different goals. Due to the multi-objective and distributed features, behavior-based approach
has attracted extensive attention over the past few decades in the research areas of multi-agent cooperation
and coordination [60–64].

Although the behavior-based scheme is turned out to be able to achieve multiple objectives and is merely
dependent on the limited local information to calculate control activities, it is hard to analyze the stability
properties of the overall formation system based on such a method when more vehicles and behaviors are
involved. This restricts its practical applications greatly.
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Attractive Force #2

AUV #1

AUV #2

AUV #3

Attractive Force #2
Attractive Force #3

Obstacle

Repulsive Force #1

Repulsive Force #3

Repulsive Force #2

Figure 6. A typical topology of APF-based approach.

3.4. Artificial potential field approaches
Artificial potential field (APF) approach is first invented by Khatib [65] in order to design an algorithm to gener-
ate an obstacle-free route for manipulator and mobile robot path planning. The main feature of the method is
that a series of artificial potential functions are defined intentionally with the purpose of reaching the target and
meanwhile avoiding obstacles. Analogous to the potential energy in physics, the APF functions defined can
generate corresponding potential forces as well. Typically, there are two types of APF functions involved: One
aims to generate attractive potential forces to bring the vehicles to the targets, and another attempts to yield the
repulsive potential forces to make the vehicles keep away from the obstacles, which is shown in Figure 6. As a
consequence, under both the attractive and repulsive forces, the prescribed objective can be attained. Inspired
by such a formulation of clear physical significance, APF approach is also introduced in various multi-agent
systems to help organize the cooperation and coordination [66–72].

Similar to the behavior-based approach, it is relatively easy for the APF approach to synthesize distributed
controllers that achievemultiple goals depending only on the local information. However, onemajor drawback
is that it has the chance to trap into points at which the resulting net force applied on vehicles is zero, which
is also known as the issue of ”local minima”. Likewise, the stability analysis of APF based multi-agent systems
is not easy as well, compared to the leader-follower structure and virtual structure approaches, when the scale
of the group grows larger.

3.5. Other approaches
By a comprehensive literature review, there are some other commonly used approaches to achieving the multi-
agent cooperation and coordination, while these kinds of schemes can be, in some sense, regarded as variants
of those already presented. For example, the so-called formation reference point (FRP) method is actually a
type of virtual leader method, in which a reference point is defined and parameterized with desired velocity
profile, and then the control objective of vehicles in the group is simply to maintain a specific distance and
bearing with respect to the reference point [73,74]. Like the conventional virtual leader method, there are no
explicit interactions took place between neighboring vehicles.

In the field of multi-agent coordination, there exist a fundamental problem, termed consensus problem, which
characterizes how the inter-agent cooperation can be emergent by merely using the local information (i.e.,
interacting with neighbors) [75]. Specifically speaking, it is possible that the state of the entire multi-agent
system can be ultimately in consensus; that is, each agent’s state converges to the same equilibrium point
under a proper local control law that is designed only based on the neighboring information. Moreover, such
a problem can be well formulated and tackled by the graph theory, as mentioned in section 2.1, including the
basic issues such as the existence of solutions, stability and robustness properties of multi-agent systems. For
this reason, a vital amount of related research results on networkedmulti-agent systems coordination based on
consensus approach are reported both in theoretical and practical dimensions [31,76–81]. Such a problem is then
extended to the case of formation control design, where a virtual leader is introduced to guide the vehicle group
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AUV #1

AUV #2

AUV #3

Virtual Leader

Figure 7. A typical topology of consensus-based approach.

to move along with a reference trajectory together, and meanwhile, the formation is formed by the exchange
of information between neighbors [82–84]. A typical communication topology of consensus-based formation
control is illustrated in Figure 7.

It should be noted that in stark contrast with the conventional virtual leader structure, there exists local infor-
mation flow in the consensus based approach, and more importantly, it is not necessary that all members in
the group have access to the information of reference trajectory [85–87]. It is, in effect, the sole condition that
the graph associated has a spanning tree [11]. Those mentioned features seemingly make the consensus based
method more practical and beneficial for real-word applications among various formation control methods.
While such amethod has attractedmuch attention in the studies of groups of unmanned ground vehicles [88–92],
unmanned aerial vehicles [93–98], and spacecraft [99–102], there is still a lack of sufficient research efforts to apply
consensus based approach to the multi-AUV formation where more practical challenges associated should be
addressed further, most of which will be discussed in what follows.

4. PRACTICAL ISSUES AND CHALLENGES IN AUV FORMATION CONTROL
This section discusses the major technical challenges and several practical issues encountered in the synthesis
of AUVs formation control systems in terms of motion control of AUVs, addressing the adverse underwater
conditions and communication constraints. A great variety of existing available results to tackle these difficul-
ties are reviewed comprehensively, and the features of each type of method are pointed out.

4.1. Nonlinear constrained dynamics of AUVs
As mentioned earlier, different from the general multi-agent systems [11] where a point-mass model is typically
used to describe the motion of agents, the governing equations of AUVs are much more complicated as ex-
plained in Remark2, including nonlinearity, underactuation and system constraints. As a result, such systems
may suffer from some extra design complexities in respect of motion control. To deal with the nonlinearity,
employing an approximated model is a likely choice by linearizing the nonlinear model at a specific operating
point, and then linear control theory can be used to design the motion controller for AUVs. Based on this idea,
the authors [103] proposed a nonlinear gain scheduling controller for heading control of AUVs in the horizontal
plane. In this study, a finite number of linear static feedback controllers were derived at distinct speed con-
ditions, after which the parameters of the controller were interpolated upon speed. The resulting scheduled
controller was designed using the D-methodology [104] to guarantee the stability of the overall closed-loop sys-
tem. To obtain an optimal control performance with respect to a quadratic-type objective, a linear-quadratic
regulator (LQR) algorithm was implemented [105], and an optimal state feedback gain was figured out to regu-
late the AUVs’ depth as well as stabilize the roll and pitch angles. In order to account for the approximating
errors and the time-varying environmental conditions, a robust H∞ based depth control was proposed [106], in
which the aim of the controller is to minimize the cost function under the maximum effects of the parametric
perturbations, and the resulting robust performance is verified by simulation.
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Another class of optimization-based control methods, termed model predictive control (MPC), is inherently
effective in handling internal uncertainties. Due to the preceding horizon formulation, an online optimization
mechanism is enabled in MPC using real-time state feedback against the potential modeling errors. Further-
more, owing to a shortened horizon employed in optimization, such amethod is also allowed to handle the state
and input constraints, which is a very beneficial and useful feature in designing practical controllers as nearly all
of the physical systems are subject to actuation saturation. By means of the MPC policy, the authors [107] stud-
ied three-dimension (3D) underwater tracking control of a fully-actuated AUV with the practical constraints
in both state and input, and the simulation results verified the satisfactory performance in the presence of var-
ious disturbances. In underwater conditions, the measurement noises may be another non-negligible factor
affecting the control performance. To this end, linear quadratic Gaussian (LQG) control, integrated with the
Kalman filtering (KF) technique, serves as an efficient optimal control strategy to ensure that the controlled
system operates at the optimum status in the sense of variance minimization [108]. Recently, a model predictive
tracking controller was combined with an extended state based Kalman filter for a constrained remotely oper-
ated underwater vehicle in order to achieve a high-precision tracking performance, while the system nominal
model is uncertain and subject to both sensor noises and external disturbances [109].

However, most of the aforementioned approaches are designed based on a linearized model at some specific
operating points, which necessitate assumptions that the AUVs move at a relatively low speed and the impacts
of disturbances, caused by the ocean waves and currents, are much limited such that the locally stable results
can be obtained. Such a hypothesis may be quite conservative and, in effect, not always hold in practical situa-
tions. In view of that, nonlinear control techniques have been the research focal point over past decades to help
develop high-performance motion controllers for AUVs with global stability guarantee. The researchers [110]

proposed a nonlinear tracking controller for a remotely controlled AUV based on the feedback linearization
technique, under which the resulting system becomes a decoupled linear system, and furthermore, an optimal
error correcting term is added in the feedback loop, based on LQR approach, to compensate the uncertainty.
To derive adaptive formation tracking controllers for a group of underactuated AUVs in a horizontal plane, the
backstepping design procedure and neural network technique are used [46]. The resulting nonlinear formation
controllers developed for each AUV are based on a virtual leader structure without knowledge of the leader’s
velocity and dynamics, and the overall AUVs formation is proved to be uniformly ultimately bounded stable
using the Lyapunov stability theory. Due to the obvious benefits of MPC approach in handling systems con-
straints, a nonlinear MPC controller was presented for the tracking control of an AUV in 2-dimension (2D)
case [111,112], where an auxiliary nonlinear control law is proposed using the backstepping-based Lyapunov syn-
thesis, and as a result, the linearization procedure can be avoided for standard MPC design, which improves
the region of attraction of resulting system greatly. Furthermore, the resulting Lyapunov-based MPC is guar-
anteed with properties of iterative feasibility and stability. Following the same ideas, the authors [113] developed
a leader-follower based receding horizon kinematic controller for formation control of a constrained under-
actuated AUV. Taking into consideration the uncertainties in modeling, the authors combined the extended
state observer (ESO) with nonlinear MPC to deal with the formation tracking of AUVs [114].

Another class of important methods to address complex systems is intelligent control, including fuzzy logic
control, neural network control, and data-driven control (sometimes in the literature also called machine
learning-based control), etc. For instance, the authors [115]developed a nonlinear fuzzy logic based proportional-
integral-derivative (PID) controller to regulate an AUV’s heading and depth, and in particular, Mamdani fuzzy
rules are used to tune the control gains of PID adaptively to address the nonlinearity and uncertainties in AUV
modeling. As well, to address a similar issue, 3D path following of an underactuated AUV is investigated using
fuzzy logic based backstepping controller [116]. It is worth noting that AUVs path following problem is slightly
different from the tracking problem, while they are both expected to follow a desired route. The former does
not impose a strict temporal constraint on the reference trajectory. Thus, an extra degree of freedom in the
speed of the trajectory can be exploited to design controllers, which could be practical in some applications [6].
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To handle the nonlinear and unknown dynamics of AUVs, a data-driven model-free predictive approach [117]

was proposed for the accurate trajectory tracking control, in which the authors suppose that both parameters
and order of the plant are unavailable to control design. To address a similar problem, an adaptive line of sight
(LOS) guided reinforcement learning approach based on the long short-termmemory (LSTM) neural network
model was devised [118]. Considering the unknown nonlinearity in AUV dynamic model, underactuation and
input limitation, the author [119] designed a neural network based robust formation controller using virtual
structure for a group of underactuated AUVs with actuation saturation, and furthermore, rigorous stability
analysis was provided.

4.2. Adverse underwater environments
In addition to the nonlinear, uncertain and underactuated characteristics of the AUVs dynamics as discussed
above, the complicated underwater conditions (e.g., marine disturbances, hydrodynamic effects, unpredictable
static or dynamic obstacles) may also pose a great difficulty in AUVs formation design. In the preceding
discussions, we have already mentioned numerous methods to address the uncertainties in AUV dynamic
model, most of which adopt an adaptive idea, e.g., adaptive control methods, data-driven methods, neural
network-based methods, etc., to estimate parameters (either control gains or model-related parameters) in a
real-time manner based on the measured data. This class of methods, although superior, is basically suitable
for the case when the structure of the uncertainties is known, but the associated parameters are required to be
estimated. On the other hand, due to the integration with online parameter estimation, most existing adaptive
approaches result in a nonlinear time-varying system whose robustness properties regarding the modeling
errors are hard to be guaranteed. Nonetheless, as for the marine disturbances induced by the ocean waves,
currents and winds, as well as the effects from the hydrodynamics, their interaction patterns with the AUVs
are complicated and quite difficult to understand. In view of that, nonlinear robust control techniques, e.g.,
sliding mode control (SMC), have received much attention in various mechatronic control systems, for which
a static switching-like feedback control law is used and the corresponding control gains are calculated to ensure
that all types of disturbances, so long as within a given bound, can be handled [120–122].

Based on this paradigm, there is a variety of literature employing SMC schemes to study the robust tracking
control problem of AUVs subject to both unknown disturbances and modeling uncertainties [123–126]. In par-
ticular, considering the potential time delays between surface ships and vehicles, which happens quite often
in practical situations, the authors proposed a discrete-time quasi-SMC method for AUVs depth control to
guarantee the stability and robustness even in the presence of large sampling intervals, and concurrently, the
chattering was addressed using the so-called equivalent control region [127]. Besides the robustness, in order
to meet a fast converging requirement near the equilibrium point, terminal sliding mode control (TSMC)
techniques are used by researchers to achieve the finite time control [128–130]. Due to the possibility of sin-
gularity appearing in TSMC schemes, some non-singular TSMC approaches were investigated to avoid this
issue [131–133]. While SMC based controllers exhibit a stunning robust performance in handling unknown en-
vironmental disturbances as well as inherent modeling uncertainties, a major drawback is that the chattering
issue occurring in control activities should be carefully addressed, as it may inevitably deteriorate the perfor-
mance in practical cases. Towards this end, higher-order SMC techniques were proposed to attenuate the
high-frequency chattering to make SMC schemes more practical, and such methods were also applied to the
control problems of AUVs tracking and formation [134–138]. To completely eliminate the chattering while ob-
taining good robustness, the authors developed a distributed neuro-dynamics-based sliding mode controller
for the consensus formation tracking control of a group of AUVs [139]. In addition to the static robust control
schemes that are considered more conservative, there are numerous disturbance observer-based controllers
used for AUVs motion and formation control, which behave more actively in addressing the disturbances and
hydrodynamic coefficients [140–145]. As well, observer-based schemes can also be used as an effective tool to
tackle the output feedback control where the velocity sensing is unavailable, which is fairly beneficial in terms of
reducing cost and meanwhile improving the performance of AUVs formation [146–149]. Furthermore, observer
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or estimator based techniques are also of critical importance and act as useful tools in designing systems of
diagnosis and accommodation for sensor errors and faults. It is well known that failure to detect and isolate
the errors and faults may lead to inaccurate control performance and even loss of the AUVs. To overcome it,
the authors [150,151] employed certain observers and filters on the basis of vehicles’ models to identify the errors
in sensors and provide an estimate correspondingly, and thus a high-quality motion control objective can still
be maintained.

Except for the handling of unknown disturbances and hydrodynamic uncertainties, avoiding obstacles and
inter-vehicle collisions is another realistic aspect in synthesis of formation systems due to the poor knowledge
of the obstacle distribution. To prevent unmanned aerial vehicles (UAVs) formation from any collisions, a col-
lision avoidance mechanism was incorporated into the UAVs formation control strategy. In this approach, an
additional velocity term is involved based on the mechanical impedance principle to avoid potential collisions,
once the obstacles detected are within a certain range [152]. A new dual-mode strategy is designed to achieve
cooperative UAV formation flying. In an obstacle-free environment, safe mode is activated to achieve global
optimization. When faced with obstacles, danger mode enables a modified Grossberg neural network to plan
an obstacle-free route, and amodel predictive controller is also developed to achieve the route planned [153]. An
obstacle avoidance strategy was proposed for UAV formation control design based on the artificial potential
field (APF). An attractive potential field is designed for a leader to track the moving target, and the rest of the
AUVs aims to follow the leader using the attractive potential force, while repulsive potential forces are also de-
fined for UAVs to avoid obstacles [154]. Employing the same idea of APF, the authors proposed an obstacle-free
formation controller for multi-agent systems based on virtual structure. To achieve the path planned by APF,
a backstepping controller was developed based on the neural network and finite-time control technique [155].
Besides the APF-based obstacle avoiding strategies, as aforementioned, MPC-type controllers are capable of
handling constraints effectively, which can be utilized to design collision-free formation controllers. This can
be achieved by either extending the objective function or adding extra avoidance constraints into the receding
horizon optimization procedure [156–159]. Other available approaches, such as ant colony algorithms [160,161],
particle swarm optimization [162], machine learning-based algorithms [163], etc., were also reported to optimize
an obstacle-free path, yet such intelligent optimization-based algorithms quite often necessitate a great com-
putational effort and take a relatively long time, which greatly restricts their applications in AUVs formation
where computation resources are limited and rapid response is needed to handle the variable surroundings.

4.3. Communication constraints
Different from themultiple land robots, surface vehicles and unmanned aerial vehicles, the signals of the global
position system (GPS) or base stations cannot be received by AUVs in underwater conditions, and therefore
the localization and communication in AUVs fleet may become an unavoidable issue. It has been turned out
that the traditional acoustic technologies still serve as the most efficient way to provide the wireless connect-
ing services [27], in which case the communication capability, thereby, has major impact on the performance
of AUVs formation. The effects of the communication constraints mainly result from the following several
aspects.

• Propagation delay: The speed of acoustic waves is nearly 1.5 kilometers per second, which is far slower than
the speed of electromagnetic waves in air, and thus the effects of propagation delays cannot be neglected.
Moreover, since the speed of the acoustic propagation relies highly on environmental factors (e.g., pressure,
temperature, salinity, disturbances), the calculation for propagation delays may be rather complicated and
often time-varying.

• Path loss: As the acoustic waves propagate, their energy spreads and attenuates in themedium. This process
is called path loss, especially the higher the frequency, the easier the path loss. More path loss means a
shorter communication range.

• Limited bandwidth: For a specific transition channel, its bandwidth is always limited and related to the
range of communication. Therefore, it is necessary to allocate the interactive data reasonably (e.g., sensor
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data, control data, localization data) in order to achieve an effective formation control.
• Multipath: During propagation, the acoustic signals could be reflected possibly by the sea surface, seabed
and obstacles, which causes the multipath. Signals in multipath will result in distortion, consequently re-
ducing the measurement or transmission accuracy.

• Doppler effect: Since the AUVs formation is always in motion, the frequency of the wave being transmitted
by a moving base may be varied on its receiving side, which is called the Doppler effect.

There are a number of research efforts made to overcome the above communication constraints so that a
better formation performance can be achieved. By assuming that the delays of propagation are bounded and
the bounds on delays are less than the sampling period of AUVs, it was shown [164] that the leader-following
based formation system can tolerate the delays and still achieve the formation stabilization, although it takes a
longer time to stabilize than the case without delays. To provide a lower bound on control performance of an
inspection ROVwith sensor time delays, the authors employed an input-output controllability analysis to show
that at which amount of delays the ROV system can tolerate irrespective of the forms of designed controllers,
while the results are obtained based on an approximated linear model of the ROV [165]. As well, the researchers
demonstrated by experiments that there exists a dominant time delay in the underwater acoustic positioning
system powered by the short baseline (SBL) with four transducers, and that the traditional Smith predictor
failed to estimate due to the time-varying properties. To handle it, an online identification was proposed in
their work to estimate the variation of the delay, thus minimizing its impacts as much as possible [166]. To be
able to account for the package dropouts, the authors [167] treated it as an extra delay out of the total delays and a
compensating law was designed in the H∞ controller to ensure a robust formation performance against delays.
To characterize the delays more precisely, researchers [168] represent the delays as a differentiable function and
suppose that its time derivative is less than one, under which a leader-following controller is designed to reach
the formation requirements. To overcome the bandwidth limitation, an observer-based formation controller is
quite often used to reduce the amount of information exchange, and furthermore, a fault function is introduced
to describe the effect of the multipath in communication [169]. Nonetheless, as indicated [27], due to the fact that
the informationwill be compressed before transmission, reducing control or sensor data do not contribute a lot
to the relaxation of the bandwidth limitation. The authors provided a leader-following algorithm to optimize
the formation configuration in terms of coverage efficacy and communication power consumption utilizing a
calculation model for the path loss [170]. To reduce the Doppler effect, a Doppler effect compensation system is
designed using an efficient multi-rate sampling technique [171]. Similarly, using diffident resampling strategies,
reduction of the Doppler effect for the moving platform can be achieved [172,173]. Due to the unpredictable
ambient disturbances and long communication distance, it is possible for the AUVs fleet to encounter a period
of communication disconnection, in which case dynamic network topologies can be used to describe it. To
achieve a dynamic topology, the authors predefine a set of topologies and put a random mechanism on it,
and the objective is to design a formation controller such that the formation system can be stabilized under a
jumped network topology [174,175]. Instead of random switching, a distance-based dynamic topology is defined
among the group [176], in whichmerely the vehicles within the communication range can create the connection.

5. SUMMARY AND FUTURE WORK
We first provided several most commonly used coordinating structures and approaches to solve the AUVs for-
mation control problem, that is, leader-following structure, virtual structure, behave-based approach, artificial
potential field approach, and other approaches. It is noted that all of these mentioned approaches adopt a de-
centralized control architecture, i.e., each vehicle makes its own decisions based on the information received.
In leader-following structure, there are one or several agents defined as leaders in advance to guide the whole
formation system to meet the control requirements. Due to the advantages (e.g., easy implementation and
analysis, and good flexibility), such a method has attracted much attention in most of the AUVs formation
syntheses. A major deficiency is that the entire formation performance relies strongly on the leaders’ behavior,
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thus often resulting in poor robustness. Although a virtual leader takes the place of the physical leaders, it still
needs an assumption that each vehicle in the group is able to access the information of the leaders, which is
obviously not realistic in real applications. Similarly, virtual structure approach seeks to convert the coupled
coordination problem into the single vehicle tracking problem. In such a way, the analysis of the behavior
of the overall formation system becomes trivial, since the stability and robustness of the overall system are
simply ensured by the properties of single tracking systems. While straightforward and simple to realize, for-
mation scaling is not that flexible compared to the leader-following approach, as the virtual reference points
are predefined in accordance with the specified formation shape and cannot be changed during the formation
process. In behavior-based approach, an apparent difference from above-mentioned methods is that mutual
communication between neighbors is introduced, whereby it is possible for the agents to fulfill the formation
demands using only the local information rather than the leaders’ information, which seems to be more ben-
eficial. Another benefit is that multi-goal can be achieved in this framework, e.g., formation keeping, target
seeking, obstacle avoidance, etc. However, the major restriction of this method is that it is hard to analyze the
behavior of the overall formation systems, especially in the case that the number of agents becomes large and
the goals of the agents are complex, and thus cannot claim any theoretical guarantees to support its practical
applications. Likewise, artificial potential field approach can be used to achieve the multi-objectives by means
of the local interactions based on the so-called artificial potential field function. The analysis of the evolution
of resulting systems is not easy as well due to the fact that the introduced potential functions are most likely
to be nonlinear. Recently, the consensus-based approach has received enough attention, since it is able to pro-
vide a good trade-off between theoretical analysis and coordination performance. While the studies regarding
consensus in the context of general muli-agent systems are extensive, because of the difficulties and special
characteristics of the AUVs formation systems as mentioned above in Section 4, the research work adopting a
consensus-based formation design is very limited.

Next, we categorized the several technical challenges and practical considerations in AUVs formation, that
is, nonlinear uncertain dynamics of AUVs, complex underwater conditions, unknown disturbances and faults,
and communication constraints. It is quite necessary to address them suitably and efficiently in order to obtain
a better formation performance. Based on that, we reviewed in-depth the recent advances and developments
in handling these pressing challenges. While, as observed above, there are an increasing number of research
results being made to partly tackle some of these issues, due to the interdisciplinary nature of AUVs formation
control systems, it is still far from mature and needs further research efforts. Based on the brief literature
survey, some promising research directions are pointed out as follows.

• Due to the fact that the dynamics of AUVs are inherently nonlinear and uncertain subject to the underac-
tuation and numerous constraints, high-quality motion control continues to be challenging. While there
are some good frameworks that have been proven to be able to address these issues concurrently by com-
bining the nonlinear control techniques (e.g., feedback linearization and backstepping design procedure)
with MPC strategy [111–113], the performance of the resulting systems is dependent of the proposed auxil-
iary controllers, which may somehow tighten the region of attraction, and meanwhile such methods are
usually computationally demanding. Thus, it is interesting to explore efficient nonlinear MPC schemes
or other optimization-based approaches that are free from the auxiliary control laws simultaneously with
fewer computation demands.

• Most of the existing solutions proposed are based on either the kinematic model or a reduced 2D dynamic
model in the horizontal or vertical plane, which lack practicality, and therefore it is necessary to propose
methods suitable for the general 3D case with more dynamic maneuvering tasks. Besides the stability, the
systems’ robustness properties against disturbances, noise and faults should be further established in order
to synthesizemore practical and robust controllers, but it seems thatmany existing results ignore the analysis
on this aspect.

• In order to simplify the stability and robustness analysis, a good many available results are obtained based
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on the leader-following structure. As aforementioned, such a method, although easy to implement, is not
realistic and short of cooperation as it is assumed that the leaders’ information needs to be received. In view
of that, the consensus-based formation tracking control deserves further investigation.

• It is observed that many advanced formation control protocols developed assume perfect communication.
As indicated above, addressing communication constraints (e.g., time-varying delays) is one of the most im-
portant points, as it is ubiquitous to encounter bad communication channels due to underwater conditions.
Therefore, we believe that incorporating delay estimation and compensation techniques into formation
control or designing delay-tolerant formation systems is of great significance in practice.

• While there are some primary proposals that provide several delay compensating strategies [165–168], most
of themmay be lack practicality due to the employment of an unrealistic delay model. Thus, more practical
delay models are required, and then can be used to compensate for the impacts of the propagation delays.
As suggested [27], most of the communication constraints can be ultimately grouped into the effects of delays,
while the delays usually can be much more complicated. Thus, developing an effective estimation strategy
for delays contributes to better formation control performance.

• In addition to the delays, due to the unpredictable underwater situations, it is possible to encounter a com-
munication disconnection with neighboring agents, in which case the traditional fixed topology-based for-
mation coordination strategy may fail to work. For this reason, developments of variable topology-based
formation control protocols are of more practicality and robustness. While there exist some potential tech-
niques suitable for handling this issue, as reported in Tomera’s work [177]where hybrid switching control
theory was used to attempt to construct safety controller for a training ship operating in many modes, we
believe more research efforts are still needed and relevant on this topic to derive a realistic switching mech-
anism for formation applications with consideration of characteristics of AUVs and communication.

In summary, because of the interdisciplinary feature of the AUVs formation applications, including the fields
of mechanical, electrical, control and communication, many challenges and practical issues, as mentioned
above, have not been well resolved and studied. In order to synthesize a practical and robust formation control
system, we believe that it is imperative to take into consideration a suitable formation coordination structure,
a realistic dynamic model of AUVs, disturbances, fault-tolerance and communication constraints.

6. CONCLUSION
This paper reviews the current advances and developments in the area of AUVs formation control systems,
especially from the control point of view. We start with presenting the preliminaries on graph theory and
AUVs mathematical models, both of which are essential to the analysis and synthesis of AUVs formation
systems. Based on that, the formation control problem is stated. Then, several commonly used formation
control protocols are listed, and the pros and cons of each method are summarized. After that, the technical
challenges and practical issues confronted in AUVs formation control design are identified, and the existing
available results to overcome these challenges are comprehensively surveyed, whereby we believe that the field
is still at the early stage due to an apparent gap between theoretical progress and real-world applications. Finally,
we summarize the paper and point out some prospective research directions worth further investigation.
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