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Abstract
The liver is known as a sexually dimorphic organ because it has both androgen and estrogen receptors and 
responds to sex hormones. Specifically, the unique ability of the liver to regenerate is under the control of sex 
hormones. In human patients, liver recovery after resection occurs more quickly in women than in men. 
Accumulating evidence shows that change in the amount of sex hormones occurs quickly after partial hepatectomy 
(PHx) and impacts the expression of genes associated with liver regeneration. Increased estrogen promotes liver 
regeneration by regulating liver cell proliferation and energy metabolism, whereas estrogen depletion delays liver 
restoration. Implantation of estrogen in male mice with PHx improves liver regeneration. In addition, a few studies 
report that androgen is involved in enhancing liver regeneration, but its role in this process is not fully elucidated. 
This review briefly describes the change of estrogen and androgen during liver regeneration after PHx and 
discusses their feasible relevance to liver regeneration based on the results reported so far. Therefore, this review 
helps to improve our understanding of the sex-related physiological difference in liver restoration and develop a 
sex-specific therapeutic approach for liver regeneration.

Keywords: Sex difference, liver regeneration, estrogen, androgen, hepatocyte

https://creativecommons.org/licenses/by/4.0/
https://mtodjournal.net/
https://orcid.org/0000-0002-5680-9613
https://orcid.org/0000-0003-2189-0658
https://dx.doi.org/10.20517/mtod.2023.04
http://crossmark.crossref.org/dialog/?doi=10.20517/mtod.2023.04&domain=pdf


Page 2 of Lee et al. Metab Target Organ Damage 2023;3:10 https://dx.doi.org/10.20517/mtod.2023.047

INTRODUCTION
Sex disparity is a fundamental factor contributing to the physical, behavioral, and physiological differences 
between men and women[1]. Many physiological aspects of sex differences are derived from not only genetic 
difference, but also from the action of distinct sex hormones in men and women[2]. Sex-based gene 
expression is regulated by sex hormones in various tissues, including bone, adipose tissue, heart, muscle, 
and liver[3-6]. In addition, sex hormones are associated with the regulation of oncogenesis in several cancers, 
such as esophageal, gastric, pancreatic, colorectal, and liver cancer[7-9]. In particular, the liver is a highly 
dimorphic organ that accounts for more than 72% of sexually differentiated genes[10,11]. Sex hormones 
regulate many physiological processes such as metabolism, immune response, and cell proliferation in the 
liver[6,12]. Thus, gender differences affect liver homeostasis as well as the progression of liver diseases such as 
non-alcoholic fatty liver disease (NAFLD), liver fibrosis, and hepatocellular carcinoma (HCC)[13-15]. 
Epidemiological studies have shown that men are more susceptible to chronic liver disease compared with 
women of reproductive age[16,17]. For example, NAFLD prevalence is higher in men than in women (41% vs. 
18%)[18]. HCC also predominantly affects men, with an incidence two to four times higher in men than 
women[19]. Liver transplantation affords the chance of a life-saving treatment for patients with chronic liver 
disease or liver cancer, based on the regenerative ability of the liver[20,21]. Sex-specific responses also occur in 
both the live liver donors and the transplant recipients during liver regeneration[22]. Following partial 
hepatectomy, women have faster liver regeneration and a higher survival rate than men[23-25]. In addition, the 
amount of estrogen in the serum increases, but androgen decreases after hepatectomy[26]. Given that 
estrogen promotes hepatocyte proliferation and impacts the survival rate in male mice, sex hormones could 
have a critical effect on liver regeneration[12,27]. In addition, a few studies have reported that androgen 
influences liver restoration after hepatic surgery[28,29]. Based on these findings, this review summarizes the 
hormonal changes and discusses the roles of sex hormones in physiological differences observed in the liver 
regeneration process.

Alteration of estrogen in serum level during liver regeneration
During liver regeneration, the levels of sex hormones change dramatically. It has been shown that estradiol 
level is elevated, whereas testosterone level is alleviated in serum of both humans and rodents after partial 
hepatectomy (PHx)[30]. Francavilla et al. reported that the serum level of estrogen in men who underwent 
40%-60% PHx increased significantly 24 and 48 hours after PHx, while the serum level of testosterone 
decreased 96 hours after PHx, compared with men without PHx[12]. In male mice with PHx, serum estrogen 
level was enhanced rapidly 3 hours and peaked 24 hours after PHx[31]. Elevated estrogen was reported to 
regulate the cell cycle regulatory protein cyclin D1, whose expression was upregulated during liver 
regeneration[32]. Mullany et al. presented that cyclin D1 upregulated enzymes involved in the conversion of 
androgens to androstenedione and downregulated the enzymes involved in the conversion of estradiol to 
estrone, resulting in E2 accumulation in the liver[32]. With increased concentration of hepatic estrogen, 
translocation of estrogen receptors (ERs) from the cytoplasm to the nucleus in the hepatocytes impacts the 
expression of genes involved in initiating the regenerative response. These results indicate that elevation of 
hepatic estrogen is associated with enhanced liver regeneration.

Estrogen improves hepatic regeneration
Accumulating evidence shows that estrogen orchestrates liver regeneration [Figure 1]. Umeda et al. 
reported that ovariectomized female mice had dramatically reduced level of estrogen, less hepatocyte 
proliferation, and lower recovery of liver mass than sha m-operated female mice did after PHx[33]. It was 
reported that estrogen elevated hepatic expression of the miR-17-92 cluster targeting p21 and pTEN, cell 
cycle inhibitors, and suppression of the miR-17-92 cluster hindered liver regeneration in female mice after 
PHx[34]. In PHx-given male rodents, estrogen treatment is shown to promote liver regeneration. Estradiol 
administration increased proliferating cell nuclear antigen (PCNA)-positive proliferating cells in 
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Figure 1. A schematic depicting of potential effect of estrogen and androgen on liver regeneration after partial hepatectomy.

hepatectomized male rats by upregulating ERα expression, a predominant subtype of ERs in hepatocytes[35]. 
Exogenous estradiol interacted with ERα and enhanced liver weight recovery and total DNA amounts in the 
liver, while ERα antagonist ICI182,700 blocked the regenerative effect of estrogen in PHx-receiving male 
mice[31]. Increased level of serum bilirubin caused by hepatocyte loss after PHx impeded liver 
regeneration[36]. However, estrogen bound to ERα directly induced the expression of bilirubin oxidase 
cytochrome P450 2A6, which reduced bilirubin levels by stimulating bilirubin oxidation in the liver[37]. The 
lowered amount of bilirubin attenuated toxicity to hepatocytes, contributing to their functional recovery. In 
addition, it was shown that increased estrogen after PHx upregulated ERα expression in CD11c+ liver 
dendritic cells, and recruited them into the liver. And these cells induced local immunosuppression by 
upregulating anti-inflammatory IL-10 and downregulating pro-inflammatory IFN-γ, contributing to the 
enhanced proliferation of hepatocytes[38].

Estrogen also promotes energy metabolism supporting the massive energy supply needed to compensate for 
liver loss in hepatectomized rodent models. Estrogen supplementation increased the activities of glycolytic 
enzymes and improved the recovery of liver mass in ovariectomized female mice[39]. Srisowanna et al. 
reported that transient steatosis appeared more rapidly in female rats than in male rats after PHx[40]. They 
also revealed that estrogen treatment enhanced lipid accumulation in the liver of ovariectomized female rats 
by upregulating CD36 and sterol regulatory element-binding transcription factor 1 (SREBP1), which are 
involved in fatty acids (FAs) synthesis and FAs import into the liver, and downregulating PPARα, a key 
regulator for FAs oxidation, and induced the liver regeneration. However, many other studies have reported 
that estrogen alleviates de novo lipogenesis and lipid uptake and elevates β-oxidation, thereby preventing 
the progression of fatty liver disease[41,42]. Estrogen seems to have different effects on lipid metabolism in the 
liver depending on pathophysiological conditions. Hence, further detailed studies are needed to unveil the 
role of estrogen in hepatic lipid metabolism during liver regeneration.
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ERβ is recently shown to be involved in modulating liver restoration, although its level is lower in 
hepatocytes compared with ERα[31,43]. Kao et al. described that delayed liver regeneration was common in 
both Erα-knockout (KO) and Erβ-KO mice, but the effect of the knockout on liver regeneration is mediated 
by distinct events during regenerative processes[44]. Bioinformatic analyses reported that the interaction of 
ERα with chromodomain helicase DNA-binding protein-1 facilitates cell growth and proliferation by 
upregulating cell cycle regulators such as cystatin 11 and crystallin gamma C, whereas ERβ stimulates 
hepatic differentiation by interaction with ubiquitin-protein ligase E3A, which is known to enhance 
differentiation of hepatic progenitor cells into hepatocytes. However, ERβ is not a predominant isotype 
expressed by hepatocytes, and in fact, many studies have demonstrated that ERβ is not expressed in 
hepatocytes. Therefore, before elucidating the role of ERβ in liver regeneration, it is necessary to first 
accurately identify its expression in hepatocytes.

Estrogen and androgen, representative sex hormones, have been reported to influence liver regeneration. 
Estrogen promotes hepatocyte proliferation by upregulating miR-17-92 clusters and PCNA through binding 
with estrogen receptor (ER) α. Estrogen-binding to ERα enhances accumulation of transient fat to provide 
the energy required for liver regeneration. Estrogen elevates fatty acids (FAs) genesis and FA uptake by 
increasing expression of differentiation cluster 36 (CD36) and sterol regulatory element-binding 
transcription factor 1 (SREBP1), whereas alleviating FA oxidation by decreasing expression of peroxisome 
growth factor-activated receptor α (PPARα). In addition, estrogen upregulates cytochrome P450 2A6 
(CYP2A6), which lowers bilirubin levels, improving liver function that helps in liver restoration. 
Furthermore, estrogen stimulates the differentiation of hepatic progenitor cells into hepatocytes in 
interaction with another receptor, ERβ, and contributes to hepatocyte repopulation. Androgen seems to 
influence liver regeneration. Androgen upregulates histone deacetylase (HDAC) and insulin-like growth 
factor I receptor (IGF1R) and improves hepatocyte proliferation.

Androgen is potentially involved in liver restoration
Although many studies have reported that estrogen promotes liver regeneration, a few reports have shown 
that liver recovery is faster in male than in female mice, suggesting a role of androgen in liver regeneration 
[Figure 1]. It was found that male mice with PHx had higher levels of hepatic HDAC1, which inhibited B-
myc, a suppressor of cell proliferation, and increased hepatocyte proliferation and liver regeneration 
compared with female mice receiving PHx[28]. Desbois-Mouthon et al. demonstrated that androgens 
regulated the expression of several genes in the liver, such as histone deacetylase (HDAC) and insulin-like 
growth factor I receptor (IGF1R)[29]. After PHx, male mice contained more Ki67-positive hepatocytes than 
female mice did, and liver-specific deletion of IGF1R impaired liver regeneration in male mice by 
inactivating IRS-1/ERK signaling, indicating that IGF1R promoted hepatocyte proliferation in male mice, 
but not in female mice. These two studies suggest that androgen stimulates liver regeneration. However, 
there is not much research on this topic, and the role of androgens in liver regeneration is still unclear. 
Therefore, more in-depth investigation is required to prove its function in liver regeneration.

CONCLUSION
A growing body of evidence has emphasized sex-specific pathophysiology in the liver[11]. During liver 
regeneration, rapid changes in sex hormones, in this case, estrogen and androgen, are accompanied by 
alterations in the expression of various genes relating to liver regeneration[31,32]. Female mice have faster liver 
restoration than male mice, and ovariectomy interrupts hepatocyte proliferation and liver recovery post 
PHx[33]. Administration of exogenous estrogen facilitates liver regeneration in male mice after PHx[31,35]. 
These findings support that estrogen has therapeutic potential to promote liver regeneration by impacting 
hepatocyte proliferation after hepatic surgery. However, supplementation of 17α-ethynyl estradiol (EE), a 
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synthetic estrogen widely used as an oral contraceptive, inhibited DNA synthesis in the livers of 
hepatectomized rats and delayed liver regeneration[45]. Long-term treatment for 60 days with EE blocked S 
phase entry of hepatocytes by downregulating cell cycle promoters, such as PCNA, cyclin A, E, and cdk2, 
and upregulating cell cycle inhibitors p53 and p21[46]. Furthermore, short-term treatment of EE for 5 days 
impaired bile acid biosynthesis and secretion via interacting with ERα, and disrupted the process of liver 
regeneration[47]. In addition, G protein-coupled estrogen receptor (GPER), which is a variant of ER and 
mediates non-genomic estrogen-related signaling, has been shown to increase hepatocyte proliferation and 
size of the liver in zebrafishes[48]. However, it also promoted the formation and progression of HCC in 
zebrafishes treated with 9,10-dimethyl-1,2-benzanthracene. Thus, estrogen is a double-edged sword in liver 
regeneration, although the positive aspects of estrogen in liver regeneration have been more highlighted. It 
is necessary to obtain sufficient evidence to define the potential role of estrogen in liver regeneration to use 
estrogen as a therapeutic agent for liver regeneration. The data on the effect of androgen on liver 
regeneration are limited. Furthermore, while in the past many studies have been conducted on sex-specific 
differences in liver regeneration, this topic has not been actively explored recently. Therefore, further in-
depth studies on the sex-specific physiological differences in liver regeneration are needed and the findings 
obtained from these studies will help to develop and apply sex-specific clinical therapy.
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