
                                                                                            www.jcmtjournal.com

Review Open Access

Tulotta et al. J Cancer Metastasis Treat 2019;5:74
DOI: 10.20517/2394-4722.2019.022

Journal of Cancer 
Metastasis and Treatment

© The Author(s) 2019. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 

sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

CXCR4 signalling, metastasis and immunotherapy: 
zebrafish xenograft model as translational tool for 
anti-cancer discovery
Claudia Tulotta, B. Ewa Snaar-Jagalska

IBL Animal Sciences & Health, Institute of Biology Leiden, Leiden University, Leiden, CC 2333, the Netherlands.

Correspondence to: Dr. B. Ewa Snaar-Jagalska, IBL Animal Sciences & Health, Institute of Biology Leiden, Leiden University, 
Einsteinweg 55, Leiden, CC 2333, the Netherlands. E-mail: b.e.snaar-jagalska@biology.leidenuniv.nl

How to cite this article: Tulotta C, Snaar-Jagalska BE. CXCR4 signalling, metastasis and immunotherapy: zebrafish xenograft 
model as translational tool for anti-cancer discovery. J Cancer Metastasis Treat 2019;5:74. 
http://dx.doi.org/10.20517/2394-4722.2019.022

Received: 14 Aug 2019    First Decision: 20 Sep 2019    Revised: 18 Oct 2019    Accepted: 31 Oct 2019    Published: 8 Nov 2019

Science Editor: Pravin D. Potdar    Copy Editor: Cai-Hong Wang    Production Editor: Jing Yu

Abstract

Cell-to-cell communication guarantees homeostasis in a multi-cellular organism. Cancer-to-microenvironment 
communication sustains malignant growth and dissemination. Whereas the accumulation of mutations is at the 
origin of malignant cell transformation and neoplasia onset, the interaction between cancer and the surrounding 
stroma, specifically immune cells, influences the balance between tumour regression and tumour progression. To 
study how the interaction between cancer and stromal cells is disadvantageous or beneficial for tumour progression, 
the use of a transparent in vivo model bears important research potentials. Zebrafish has been increasingly used as 
animal model to study tumour biology. The use of transparent zebrafish embryos, with fluorescent endothelial and 
immune cells, allows the visualization of cell-to-cell interaction, among host cells themselves and between zebrafish 
stroma and implanted human cancer cells. Here, we summarise our findings on the role of CXCR4 signalling in 
tumour progression, considering its signature both on cell autonomous and host dependent mechanisms. Finally, 
we address the translational impact of targeting CXCR4 signalling in cancer and the tumour microenvironment for 
the treatment of metastatic cancer.
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THE TUMOUR MICROENVIRONMENT
Tumours are in constant interaction with the surrounding microenvironment. The tumour 
microenvironment consists of stromal cells such as cancer-associated fibroblasts (CAFs), endothelial 
cells, mesenchymal stem cells (MSCs), tumour-associated macrophages (TAMs) and neutrophils (TANs), 
adaptive immune cells and extracellular matrix (ECM)[1]. The interaction between cancer and stroma cells 
results in either tumour promoting or inhibiting effects and the tumour microenvironment differentially 
contributes to the efficacy of cancer therapies[2]. Tumour cells engage cells from the microenvironment, 
either educating resident stromal cells or inducing the recruitment of distal ones to further support 
malignant growth, motility and dissemination. Along with the angiogenic switch, where endothelial 
cells are educated by malignant cells to form new vasculature to provide oxygen and nutrients, the 
immunosuppressive switch phenomenon takes place: the polarization from pro-inf lammatory to anti-
inflammatory neutrophils and macrophages (N1 to N2 and M1 to M2), where the sub-type 2 associates 
with a tumour-promoting function, links to immunosuppression, characterized by reduced cytotoxic 
T cell and enhanced T regulatory (Treg) and myeloid-derived suppressor (MDSCs) cell infiltration[3]. 
Interestingly, the cooperation between different subsets of leukocytes and its role in cancer metastases has 
been recently reported[4]. The plasticity phenomenon in the microenvironment has been described also for 
fibroblasts, which respond to a neoplastic lesion in a similar fashion as to a never healing wound[3]. The 
interaction between tumour and the microenvironment is controlled by a plethora of signalling molecules, 
such as chemokines, and their complex networking in cancer requires further understanding to inhibit 
tumour development. 

CXCL12-CXCR4 AXIS IN CANCER AND THE TUMOUR MICROENVIRONMENT
Chemokines are chemotactic cytokines that guide directional cell migration in development and disease 
and more than 50 chemokine ligands and 18 chemokine receptors have been described in Homo sapiens[5]. 
Chemokines are classified into four classes, depending on the presence and position of the conserved 
cysteine residues (CXC, CC, (X)C and CX3C) at the N-terminus, involved in the formation of disulphide 
bonds between the first and third or second and fourth cysteines[6]. The chemokines belonging to the CXC 
subgroup are further classified into angiogenic ELR+ and angiostatic ELR-, whether they are positive or 
negative for the Glu-Leu-Arg (ELR) motif at the N-terminus[7,8]. Chemokine ligands can bind multiple 
chemokine receptors, which possibly work in concert to control signalling activation and inhibition[8]. 

CXCR4 is a seven-transmembrane, chemokine, G-protein coupled receptor. The chemokine CXCL12 
binds both CXCR4 and CXCR7 receptors in order to guide a directional and collective migration of cell 
primordia, during the formation of sensory organs in zebrafish[9-11]. CXCL12 binding to CXCR4 induces 
the dissociation of the G protein αβγ trimer and activation of PI3K/AKT/mTOR, MAPK, PKA and PLC/
Ca2+ pathways. Moreover, MAPK cascade activation and CXCR4 internalization occur via β-Arrestin, 
independently from G-proteins [Figure 1A]. In addition, CXCR4 can form homodimers, activating the 
JAK/STAT pathway and Ca2+ release from intracellular storage into the cytoplasm [Figure 1B]. CXCR4 can 
also form heterodimers with CXCR7. Whereas CXCR4 is internalized and degraded after CXCL12 binding, 
CXCR7 is internalized and recycled to the plasma membrane. Via β-Arrestin, CXCR7 has either CXCL12 
scavenging functions or triggers MAPK signalling activation [Figure 1C]. CXCL12 signalling via CXCR4 
and CXCR7 controls cell chemotaxis and migration as well as cell proliferation and survival[12,13]. 

In cancer, malignant cells acquire higher CXCR4 levels, compared to normal tissues, and are found to 
preferentially metastasise in organs where CXCL12 is secreted, in line with the “seed and soil” theory[14]. 
Enhanced CXCR4 signalling has been identified in several malignancies such as gastrointestinal 
tumours[15], melanoma[16], basal cell carcinoma[17], head and neck squamous cell carcinoma[18], lung cancer[19], 
breast[20] and ovarian[21] tumours, renal cell carcinoma[22], prostate cancer[23], glioblastoma multiforme 
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(GBM)[24], Ewing sarcoma[25] and leukemia[26]. Elevated CXCR4 levels result in increased cell proliferation, 
dedifferentiation, migration and metastatic spreading of tumour cells, cancer stem cell (CSC) maintenance 
and it has been associated with the development of tumour resistance towards conventional therapies, 
leading to poor patient prognosis[27]. 

CXCR4 is expressed by both cancer cells and surrounding stromal cells [Figure 2]. The recruitment of 
stromal cells expressing CXCR4 can be guided by the secretion of CXCL12 by cancer cells themselves 
or other stromal cells, such as MSCs and CAFs[28]. Moreover, CXCL12 secreted by CAFs displays effects 
on tumour cells, enhancing invasive potential[29] and functioning as a protective shield against T cells, 
boosting immune escaping mechanisms[30]. In this context, pharmacological inhibition of CXCR4, 
resulted in redistribution of CD3+ T cells within the “cancer cell nest”, as defined by the authors, causing 
reduced cancer cell growth and improved response to check-point inhibitors[31]. CXCR4 is involved 
in leukocyte trafficking, hematopoietic stem progenitor cells homing and neutrophil retention in the 
bone marrow during homeostasis, inf lammation, infection and cancer[12,32-35]. Infiltration of CXCR4hi 
neutrophils associates with faster tumour growth and angiogenesis in IFNβ deficient mice, injected with 
melanoma and fibrosarcoma[36]. CXCR4hi macrophages have been identified in CXCL12-enriched tumour 
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Figure 1. CXCL12-induced signalling via CXCR4 and CXCR7. (A) CXCL12 binds to CXCR4, inducing Gα and Gβγ dissociation and 
activation of PI3K, MAPK, AC, and PLC signalling pathways. CXCL12 binding to CXCR4 activates β-Arrestin, leading to MAPK signalling 
pathway activation or receptor internalization. (B) CXCR4 can form homo- and hetero-dimers with CXCR7. (C) CXCL12 binding to CXCR7 
induces, via β-Arrestin, MAPK signalling activation, or CXCL12 scavenging, through receptor internalisation and recycling to the plasma 
membrane. CXCL12-mediated signalling plays a role in cell chemotaxis, migration, proliferation and survival. PI3K: phosphatidylinositide 
3-kinase; MAPK: mitogen-activated protein kinases; AC: adenyly cyclase; PLC: phospholipase C



areas after chemotherapies and are suggested to display pro-angiogenic functions that drive tumour-
relapse[37]. Moreover, CXCL12 expressing glioblastoma cells induce VEGF production and angiogenesis in 
microvessel enriched areas with high CXCR4 levels[38]. In addition, CXCR4-expressing peripheral blood 
monocytes respond to CXCL12-secreting multiple myeloma (MM) tumour cells and acquire M2 associated 
properties[39]. Finally, the inhibition of CXCR4 signalling by oncolytic virotherapy limits the infiltration of 
Treg, decreasing immunosuppression[40]. 

Considering the major and intricate role of this chemokine receptor in cancer, its targeting represents an 
important pharmacological approach that is currently under development, through the use of CXCR4 
antagonists, antibodies and CXCL12 binding agents. Importantly, the role of the stromal CXCR4 signalling 
needs to be considered in drug treatments that target CXCR4 to inhibit cancer spreading. 

In 2018, the Nobel prize in Physiology and Medicine was awarded to J.P. Allison and T. Honjo for the 
development of immune-checkpoint blockade[41]. This revolutionary discovery clearly underlines the well-
known pivotal role of the immune system in cancer. Inhibition of CXCR4 signalling has been found to 
improve the efficacy of immunotherapies in metastatic breast cancer, by alleviation of desmoplasia and 
increased T cell infiltration in preclinical in vivo models[42].

Limiting cancer spreading by targeting CXCR4 signalling in the tumour microenvironment is a promising 
approach that requires further investigations to become an alternative therapeutic form of intervention.

Figure 2. CXCR4 drives the interaction between cancer and stromal cells. The CXCR4-CXCL12 axis signals in a bi-directional fashion. 
CXCR4 is expressed by both tumour cells and cells that form the surrounding stroma [fibroblast, T cells, T reg cells, myeloid derived 
suppressors cells (MDSCs), macrophages and neutrophils], embedded in the extracellular matrix (ECM). The CXCR4 cognate ligand 
CXCL12 is secreted by both cancer cells and cells in the microenvironment
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ZEBRAFISH XENOGRAFT AS A MODEL TO STUDY CANCER
Research performed in pre-clinical in vivo models is constantly under development to provide further 
insights into the communication between tumour and the surrounding microenvironment. Zebrafish 
(Danio rerio) is a tropical freshwater teleost, increasingly used to study a range of disease processes[43] as 
well as being an excellent tool for the study of development. Several important advances in understanding 
of cancer and inflammation have arisen from studies in zebrafish[44-46]. The rapid and external development 
of transparent embryos[47], availability of reporter lines with traceable fluorescent cells[48-50], ease of genetic 
manipulation[51,52] and pharmacological approaches[53] make the zebrafish an excellent in vivo model to 
visualise single cell interactions in real time and to uncover the signalling mechanisms involved, on a 
whole organism level. Zebrafish is increasingly used as a model organism to study cancer[54]. There is 
high conservation of oncogenes and tumour-suppressor genes between zebrafish and human therefore 
data collected in zebrafish are relevant for humans[55]. The histology of zebrafish tumours has been shown 
to be highly similar to tumours found in human cancers[56]. Moreover, zebrafish is a valuable tool to 
study drug discovery in the context of cancer research[57,58]. Zebrafish larvae can absorb small molecular 
weight compounds from water, which is advantageous when screening for anti-cancer compounds[59]. The 
experimental costs are low and procedure are simple and fast. This accounts for the experimental increase 
in the use of zebrafish in drug discovery during the last two decades in a time- and cost- effective manner. 
For melanoma, a presently on-going phaseI/II clinical trial of Leflunomide combined with vemurafenib is 
the first to arise from initial screen in zebrafish. To study human cancer metastasis, our group generated 
a xenotransplantation model of experimental micrometastasis[60,61]. Human tumour cells engrafted into 
the blood circulation of 2-day-old zebrafish embryos induce angiogenesis and form micrometastasis 
sustained by neutrophils and macrophages, nearby hematopoietic sites[60]. In particular, tumour-induced 
angiogenesis, metastasis formation and relative chemical approaches to inhibit these processes have been 
studied using zebrafish as a xenotransplantation model, complementing current knowledge developed 
through the use of in vitro and other in vivo models[62]. Upon localised or haematogenous engraftment 
of cancer cells, zebrafish xenografts allow qualitative and quantitative assessment of tumour burden and 
tumour-microenvironment interaction, representing a powerful pre-clinical model to unravel cancer 
mechanisms and to develop new therapeutic strategies[61]. In particular, alongside murine models, the 
use of PDXs in zebrafish has the potential to be used in personalised medicine[63-66], with the advantage 
of requiring less tumour material and shorter times for the monitoring of tumour development[57]. 
Several studies have shown that the combined use of zebrafish and murine models paves the way 
towards important insights to elucidate the biology of metastatic cancers and the development of new 
treatments[67-71]. Therefore, the zebrafish xenograft model bears the potential to elucidate crucial kinetics 
and key mechanisms that regulate tumour-microenvironment interaction and ultimately support tumour 
spreading. 

CELL-AUTONOMOUS CXCR4 SIGNALLING: THE CXCR4 ANTAGONIST IT1T IMPAIRS EARLY 

HUMAN METASTATIC EVENTS, IN A ZEBRAFISH XENOGRAFT MODEL WHERE THE 

INTERSPECIES CROSS-TALK TAKES PLACE
Chemokines direct tumour and stromal cell bidirectional migration[72]. CXCR4 plays a physiological 
role in hematopoiesis[73,74], leukocyte trafficking[75-77], cell migration and embryo development[78], as well 
as a pathological function in HIV pathogenesis[79], WHIM syndrome[80] and cancer[81,82]. In addition to 
its cognate ligand CXCL12, CXCR4 can bind ubiquitin[83], macrophage migration inhibitory factor[84-86] 
and CXCL14[87]. The CXCR4-CXCL12 signalling axis is known to play a critical function in cancer cell 
spreading, when tumour cells expressing high levels of CXCR4 communicate with CXCL12-secreting 
stromal cells of distant organs that function as metastatic and secondary growth “soils”[88]. 
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We have previously shown that the impairment of the cell autonomous CXCR4 signalling blocks triple-
negative breast cancer (TNBC) early metastatic events in the zebrafish xenograft model [Figure 3A and B]. 
In our model, human triple-negative breast cancer cells, derived from bone metastases developed in a 
mouse model, were implanted directly into the blood circulation of zebrafish embryos. Using this model, 
the formation of the primary tumour and the initial steps of metastasis (local invasion and intravasation 
into the blood circulation) were by-passed. Tumour cells, inoculated into the blood circulation, were 
found to form early metastases, by adhering to the endothelial wall, forming aggregates and invading the 
local tail fin tissue. Experimental metastases occurred in proximity of the caudal hematopoietic tissue, 
an intermediate site of hematopoiesis and a functional analogue of the fetal liver during mammalian 
development. This observation was in line with breast cancer metastasis formation in the bone[89,90]. In 
addition, others have also shown that tumour-derived CXCR4 signalling, in concert with the transcription 
factor Pit-1, drives tumour growth, in a zebrafish model[91,92]. Moreover, we demonstrated that the CXCR4 
signalling functions across human and zebrafish systems, because CXCR4-expressing human cells respond 
to zebrafish Cxcl12 ligands and Cxcr4-expressing zebrafish cells migrate towards human CXCL12, showing 
that the zebrafish xenograft model is a valid approach to study human tumours. Taking advantage of the 
same in vivo model, where the interspecies crosstalk is validated, we propose a recently described CXCR4 
antagonist, IT1t, as a possible therapeutic to inhibit early metastasis of TNBC[93]. In particular, breast 

Figure 3. Role of cell-autonomous and host-dependent CXCR4 signalling in experimental metastasis formation in the zebrafish xenograft 
model. A: inoculation of human tumour cells into the blood circulation of zebrafish embryos results in experimental metastasis formation, 
characterized by tumour cell aggregates in the blood vessels, and extravasation and invasion in the surrounding tissue, in the region of 
the caudal hematopoietic tissue (CHT). During early metastatic events, endothelium alteration takes place and neutrophils localize in the 
surrounding of the tumour. The CHT is a vascular plexus in the tail fin between the DA and the CV and is a hematopoietic site; B: upon 
disruption of the tumour cell-autonomous CXCR4 signalling, cancer cells are unable to initiate early metastatic events, while surrounded 
by immune cells; C: the same inhibition of experimental metastasis formation occurs upon disruption of the host-dependent CXCR4 
(Cxcr4b) signalling. Neutrophils are preferentially retained in the CHT and their recruitment at the metastatic site is impaired upon Cxcr4 
signalling inhibition
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cancer cells pre-treated in vitro with the CXCR4 antagonist IT1t displayed reduced metastatic potential in 
zebrafish. Impaired tumour burden in vivo was also observed upon genetic inhibition of tumour-derived 
CXCR4 or microenvironment-dependent Cxcl12. In conclusion, we showed that the xenograft approach 
in zebrafish is a valuable model to study human tumours as the CXCR4 signalling functions in human 
cells upon zebrafish CXCL12 stimulation and vice versa CXCR4-expressing zebrafish cells respond to the 
human cognate chemokine.

HOST-DEPENDENT CXCR4 SIGNALLING: CXCR4 CONTROLS THE TUMOUR METASTATIC 

NICHE PREPARATION, BY REGULATING INTRINSIC NEUTROPHIL FUNCTION AND RESPONSE 

TO CANCER CELLS
Immune cells are programmed to recognise and eliminate transformed cells. However, cancer cells have 
evolved mechanisms that reprogram the immune defence and make the foe-to-friend switch an important 
support for survival and progression. The combination of chemotherapy and immunotherapy is a current 
strategy in the clinic[94]. Galluzzi et al.[95] have recently reviewed anti-cancer therapies that re-activate 
the immune system, such as tumour-targeting antibodies, adoptive cell transfer and oncolytic viruses 
(all classified as passive immunotherapy), dendritic cell-based immunotherapies, anti-cancer vaccines, 
immune-stimulatory cytokines, immunomodulatory antibodies, inhibitors of immunosuppressive 
metabolism, pattern recognition receptor agonist, and immunogenic cell death inducers (all classified as 
active immunotherapy). Antibodies against CXCR4 are included in immunotherapeutic agents that skew 
the balance between M2/M1 TAMs toward the pro-inflammatory and anti-tumour M1 phenotype[95]. 

We have recently shown the role of the host dependent CXCR4 signalling in supporting early metastatic 
events in the zebrafish xenograft model. Previous work from our group has shown that neutrophils are 
involved in the metastatic niche preparation by conditioning the ECM during their apparent random walk 
in the transmigration from the CHT (caudal hematopoietic tissue, transient hematopoietic site) to the tail 
tissue of zebrafish embryos[60]. Because CXCR4 is known to regulate the retention of hematopoietic stem 
progenitor cells (HSPCs) and differentiated leukocytes in the bone marrow in mammals[96], and is highly 
expressed in zebrafish myeloid cells[97], we hypothesised that CXCR4 signalling plays a role in controlling 
intrinsic neutrophil motility in physiological conditions. We found that neutrophils display altered motility 
and their number fluctuates during embryo development, leading to the conclusion that CXCR4 regulates 
neutrophil development in zebrafish. Moreover, a link between CXCR4 signalling and neutrophil response 
during inf lammation has been recently described[98]. In our model, the neutrophilic response towards 
cancer cells was also altered in zebrafish mutants with a non-functional Cxcr4 (Cxcr4b). We identified 
a population of neutrophils that was mainly retained in the CHT and a population of neutrophils that 
even if moving in the tissue, displayed the inability to infiltrate tumour cell aggregates in the tail fin of 
Cxcr4b-null mutants. In the surrounding of cancer cells, cxcr4b-expressing neutrophils reduced their 
speed in motility, while Cxcr4b-null neutrophils maintained similar speeds as in neutrophils that had not 
been challenged by cancer cells. Therefore, we propose that Cxcr4 controls neutrophil development and 
response to tumour cells, initiating early metastatic events [Figure 3A and C]. RNA sequencing performed 
on sorted neutrophils from wild-type or cxcr4b-/- zebrafish larvae supported our conclusion that motility 
and adhesion are altered when neutrophils lack a functional Cxcr4 signalling[99]. In conclusion, we propose 
that these alterations are responsible for the impaired tumour niche preparation and inhibition of early 
micrometastasis formation in different types of cancer.

CONCLUSION
Cancer is a complex, multi-step disease and the second leading cause of death worldwide [1 in 6 deaths is 
due to cancer, 9.6 million cancer-related deaths in 2018 (www.who.int, October 2019)]. Patients diagnosed 
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with primary tumours are treated, when possible, with surgery. However, metastasis can occur years 
after surgical intervention[100]. Metastatic cancer associates with poor patient prognosis and represent a 
major challenge for clinical research. Chemotherapy is often the pharmacological choice to treat cancer, 
although side effects alter normal cell physiology and affect patient life quality. Moreover, cancer relapse 
and therapy resistance associate with poor prognosis. Progress in biomedical research has shown that 
targeting cancer cells is not the only therapeutic option. The interaction between tumour and surrounding 
stroma supports cancer survival and spreading, representing therefore a possible new treatment 
strategy[101]. Here, we describe the use of the zebrafish xenograft model to study early stages of experimental 
micrometastasis formation, engrafting f luorescent tumour cells in transparent zebrafish embryos with 
fluorescent endothelial and immune cells. We propose that targeting CXCR4 signalling on cancer cells or 
in the tumour microenvironment is a valid approach to inhibit metastatic cancer and suggest that anti-
CXCR4 therapy might have double treatment benefits. In addition, therapeutic modulation of the immune 
system might result in the reinforcement of the immune defence against cancer. However, we suggest that 
treatments designed to target malignant cells might affect tumour microenvironment intrinsic functions. 
Specifically, the intrinsic physiological role of myeloid cells can be affected by cancer treatment, resulting 
in an inability to mount a functional anti-cancer response or, on the other hand, in the ability to mount a 
tumour-supportive response. 
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