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Abstract
This paper presents the use of two popular explainability tools called Local Interpretable Model-Agnostic Explana-
tions (LIME) and Shapley Additive exPlanations (SHAP) to explain the predictions made by a trained deep neural
network. The deep neural network used in this work is trained on the UCI Breast CancerWisconsin dataset. The neu-
ral network is used to classify themasses found in patients as benign or malignant based on 30 features that describe
the mass. LIME and SHAP are then used to explain the individual predictions made by the trained neural network
model. The explanations provide further insights into the relationship between the input features and the predictions.
SHAP methodology additionally provides a more holistic view of the effect of the inputs on the output predictions.
The results also present the commonalities between the insights gained using LIME and SHAP. Although this paper
focuses on the use of deep neural networks trained on UCI Breast CancerWisconsin dataset, themethodology can be
applied to other neural networks and architectures trained on other applications. The deep neural network trained in
this work provides a high level of accuracy. Analyzing themodel using LIME and SHAP adds themuch desired benefit
of providing explanations for the recommendations made by the trained model.
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1. INTRODUCTION
In recent years, we have witnessed growth in the usage and implementation ofmachine learning based decision
making and predictive analytics. Practically speaking, machine learning models are ubiquitous [1]. One of the
reasons for this growth is the contribution of machine learning to their users and decision makers. In recent
times, there has been a rise in the development of new computational infrastructures such as cloud storage
and parallel computation [2], which has contributed to faster training of the models. Many papers contribute
to the effort of developing machine learning models that excel in metrics such as accuracy, efficiency and
running time. The more complex models are usually more accurate [3,4]. However, the ability of humans
to understand it is negatively correlated to model complexity [5]. One of the challenges to eXplainable AI
(XAI) is its implementation in real-life applications. XAI has inherent challenges such as lack of expertise,
inherently biased choices, lack of resiliency for data changes, algorithms and problems interference challenges,
local context dependency of the explanations and lack of causality of explanations between input and output [6].
These challenges intensify for clinical and medical real-life use cases such as in the breast cancer use case we
consider in this work. In order to overcome these challenges, there is a need for a strong interaction between
the XAI system and the decision makers. In our case, the domain experts, radiologists and physicians need
to examine the XAI results and add their own perspectives based on their prior knowledge before making
final decisions. In addition, they can add their feedback in order to improve and fine-tune the XAI system.
Another way to increase the trustworthiness of the XAI can be synergy between different XAI approaches
and algorithms. In our case, we use Local Interpretable Model-Agnostic Explanations (LIME) and Shapley
Additive exPlanations (SHAP). Each of them has a different approach to extract the explanations of the model
predictions. When both XAI approaches provide the same or similar results, it is an indication that the user
can have higher confidence in the interpretability of the model.

To realize the immense economic and functional potential in AI applications that have stringent safety and
mission critical requirements in areas such as healthcare, transportation, aerospace, cybersecurity, and manu-
facturing, existing vulnerabilities need to be clearly identified and addressed. The end user of such applications
as well as the taxpaying public will need assurances that the fielded systems can be trusted to deliver as asked.
Moreover, recent developments evaluating the trustworthiness of high-performing “black-box” AI have clas-
sified them using the term “Brittle AI”, as a retrospective look at DARPA’s explainable AI program. These
developments coupled with a growing belief in the need for “Explainable AI” have led major policy makers in
the US and Europe to underscore the importance of ”Responsible AI”.

Recently, on June 28, 2022, a group of Cruise robotaxis abruptly stopped working on a street in San Francisco,
California, which caused traffic to stop for several hours until employees of the company arrived. Cruise, which
is backed by General Motors and Honda, has been testing its technology in San Francisco since February, but
only launched a commercial robotaxi service a week prior to this malfunction. The cars have no human driver
at all but operate under certain restrictions (good weather and a speed limit of 30mph). They only offer the taxi
service in a dedicated area of the city during after-hours between 10PM and 6AM [7]. While no one was hurt
in this instance, several questions are raised concerning the maturity of the autonomous system technology
and the need to ensure that these autonomous systems operate as intended. The outcome is that the public
is concerned and does not trust such systems. In order to handle such events in future, we can find several
approaches in literature. Some of the methods include observer fault estimation based on sensors [8], nature
optimal control systems [9] and predictive control models [10]. All the approaches add a layer to the system that
is supposed to detect any faulty behavior of the system. Themission in such cases is to translate the predictions
of the control systems into a way that its operators and decision makers will be able to understand. The system
has to provide a way to explain what happened and what action has to be taken by humans. This is one of the
deliverables that XAI is supposed to yield.

According to the National Institute of Standards and Technology (NIST) [11], determining that an AI system is
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trustworthy just because all system requirements have been addressed is not enough to guarantee widespread
adoption of AI. Moreover, according to NIST, “It is the user, the human affected by the AI, who ultimately
places their trust in the system,” and furthermore, “alongside research toward building trustworthy systems,
understanding user trust in AI will be necessary to minimize the risks of this new technology and realize its
benefits.

In June 2022, Kathleen Hicks, Deputy Secretary of Defense, released a report that clarifies the DoD perspective
concerning trust inAI systems as follows: “TheDepartment’s desired end state for Responsible AI (RAI) is trust.
Trust in DoD AI will allow the Department to modernize its warfighting capability across a range of combat
and non-combat applications, considering the needs of those internal and external to the DoD. Without trust,
warfighters and leaders will not employ Al effectively and the American people will not support the continued
use and adoption of such technology” [12]. This paradigm shift in policy will have a major impact on the
continued development and fielding of AI systems for DoD and for the safety critical systems in the civilian
arenas such as health, energy transportation etc.

In line with DoD’s perspectives on trust in AI, it is important that users of AI models be able to assess the
model, its decisions and predictions by their ability to understand it. In addition, for better understanding,
the users would like to get answers to questions such as what needs to be done to change the model or its
prediction. This is one of the motivations for the rapid growth in popularity of the paradigm called XAI. The
interaction between machine learning models and their users has become one of the crucial points in usage
and implementation of AI systems. Many emerging algorithms try to solve this human-machine interaction
by providing a meaningful explanation for the model.

There are ways to classify the XAI approaches by several criteria [13] such as: model dependency, sample partic-
ularity, explainability timing and the interaction between the explanation to the model itself. More specifically,
independence of the explainability of the model itself is called model agnostics. The explanation of the entire
model is called global explainability, while explaining a particular sample is called local explainability. The
position of the explainability process in model life cycle determines whether the explainability is pre-model,
in-model or post-model.

This paper uses two popular approaches for XAI: LIME [14,15] and SHAP [16]. Both are attribution-based ex-
planation models. Attribution-based explanation models find and quantify the most contributed features on
model predictions. In addition, both models are relatively easy to use, and their results can be plotted and
easily interpreted. LIME and SHAP in our case are used as Post-hoc models, locally interpretable and model
agnostic. Although both LIME and SHAP explain the predictions made by the trained model, they use dif-
ferent approaches. SHAP relies on Shapley values for finding the best contributing features [16], while LIME
explains the model decision in a local region around a particular sample [14]. Each approach has its own ben-
efits. Using both approaches supports the explainability level of our deep learning model. Using both LIME
and SHAP allows us to compare the insights gained using the two tools. Additionally, since the two tools
work independently of each other, the commonalities between the insights gained can be used to gain a better
understanding of the trained model as well as how the different features play a role in the diagnosis/prediction.

2. XAI FOR HEALTHCARE
The implementation of XAI for increasing trustworthiness can also be found in biomedical studies such as
drug-drug interactions prediction [17] as well as classification of protein complexes from sequence informa-
tion [18]. In our case, we use the XAI for the interpretability of breast cancer predictions. The combination of
the two has a fast-growing demand [2]. The benefits of implementing XAI in medical fields provide opportu-
nity for prevention and better treatment [2]. The XAI helps clinicians in the diagnostic process as well as their
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recommendations [2]. This in turn helps the patients to trust the model results and system recommendations.
This can also increase the probability that the patient will accept and follow the recommended medical treat-
ment. Moreover, XAI can decrease the probability of error in the diagnostic process since it helps clinicians to
focus on the relevant data and help them to better understand the model recommendations.

XAI is an evolving field. As mentioned before, at this current stage, even state-of-the-art XAI algorithms
have disadvantages. In literature, we can find approaches that aim to improve some aspects. One of the main
challenges of using XAI in healthcare environments is the need to remain neutral regarding preferences. We
can find a bona fide approach called scientific explanation in AI (sXAI) that can be used in the field ofmedicine
and healthcare [19]. An additional approach based on integrated Electronic Medical Records (EMR) medical
systems is described in [20]. The approach focuses on explainability and interoperability from the human aspect.
Ensemble of machine learning (ML) can also increase the level of interpretability, as can be seen in [21]. In [21],
the author use ensemble ofML for logic driving of anthropometricmeasurements influencing bodymass index
(BMI). Additional evidence for the implementations of several XAI models is mentioned in [22]. The paper
shows how integratingXAImodels helps to increase the persuasive and coherence levels in the decisionmaking
of clinicians and medical professionals teams. The usage of XAI has shown an improvement in transparency
and reliability in the field of neuroscience field [23].

In this paper, we apply some XAI concepts to a use case applicable to themedical field. Our work focus on XAI
implementation for breast cancer diagnostics. Our research uses the commonly researched UCI breast cancer
dataset. We focus on breast cancer since it is the most common type of cancer amongst women [24]. The usage
of XAI for diagnostics and prediction of breast cancer can impact and help a large number of patients. The
UCI breast cancer dataset includes 569 data points [25]. Each data point consists of 32 attributes that include
the ID number, the diagnosis, and 30 features used as predictors in this work. The 30 predictors include the
mean, standard deviation and the mean of 3 largest values of 10 features: (1) radius (mean of distances from
center to points on the perimeter); (2) texture (standard deviation of gray-scale values); (3) perimeter; (4) area;
(5) smoothness; (6) compactness; (7) concavity; (8) concave points; (9) symmetry; and (10) fractal dimension.

3. METHODOLOGY
3.1. LIME
LIME is one of the methodologies that is used to explain the predictions made by machine learning classifier
models [26]. It can explain individual predictions made by text classifiers as well as classifiers that are modeled
on tabular data.

In this work, we are focusing on using LIME to explain decisions made by a neural network classifier that
works on tabular dataset. The process of LIME to explain individual predictions are as follows:

1. For each instance that needs to be explained, LIME perturbs the observation 𝑛 times.
2. For tabular data, the statistics for each variable in the data are evaluated.
3. The permutations are then sampled from the variable distributions within the neighborhood of the original

data point for which an explanation is being sought.
4. In our case, the original model is a neural network. The trained neural network model is used to predict

the outcome of all permuted observations.
5. Calculate the distance from the perturbed points to the original observation and then convert it to a simi-

larity score.
6. Select 𝑚 features best describing the original model outcome for the perturbed data.
7. Fit a simple model (linear model) on the perturbed data, explaining the original model outcome with the

𝑚 features from the permuted data weighted by its similarity to the original observation.
8. Extract the feature weights from the simple model and use these as explanations.
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Figure 1. Schematic of the DNN used for classification into benign andmalignant. The network uses 30 features and has three hidden layers
(HL).

3.2. SHAP
SHAP is another methodology used for obtaining explanations for individual predictions. Additionally, SHAP
can provide additional insights into predictions made across a set of data points. SHAP is based on Shapely
values, a concept that is derived from game theory [16]. This is a game theoretic approach to explain any pre-
dictions made by a machine learning model. Game theory deals with how different players affect the overall
outcome of a game. For the explainability of a machine learning model, SHAP considers the outcome from
the trained model as the game and the input features that are used by the model as the players. Shapley values
are a way of representing the contribution of each player (feature) to the game (prediction).

Shapley values are based on the concept that each possible combination of features has an effect on the overall
prediction made by the model. The SHAP process for explaining predictions is as follows [27]:

1. For a set of 𝑝 features, there are 2𝑝 possible combination of features. For example, a dataset that consists of
three input features (𝑥1, 𝑥2, 𝑥3) will have the eight possible combinations: (a) no features, (b) 𝑥1 (c) 𝑥2, (d)
𝑥3, (e) (𝑥1, 𝑥2), (f) (𝑥2, 𝑥3), (g) (𝑥1, 𝑥3), (h) (𝑥1, 𝑥2, 𝑥3).

2. Models are trained for each of the 2𝑝 combinations. Note that the model that uses no features just outputs
the mean of all output values in the training data. This is considered as the baseline prediction (𝑦𝜙).

3. For the data point whose output needs to be explained, the remaining 2𝑝 − 1 models are evaluated.
4. Marginal contribution of each of the models. Marginal contribution of model-j is calculated using the

difference between the predictions made by model-j and the baseline prediction.

𝑀𝐶 𝑗 = �̃� 𝑗 − 𝑦𝜙 (1)

5. To obtain the overall effect of a feature on the prediction, the weighted mean of the marginal contributions
of every model containing that feature is evaluated. This is called the Shapley value of the feature for the
particular data point.

3.3. Deep neural network
We use a deep neural network (DNN) to diagnose a patient into two classes: benign or malignant. The ar-
chitecture of the DNN is shown in Figure 1. It uses the 30 features mentioned before to make predictions.
The development and training of the DNN was done in PyTorch [28]. Rectified linear units (ReLU) are used as
the activation functions in the hidden layers, and softmax activation is used at the output layer to output the
probabilities to the two output classes.
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Figure 2. Histograms for three of the important features: radius (worst), texture (worst) and concave points (worst)

4. RESULTS & DISCUSSION
The UCI Breast Cancer Wisconsin dataset used an 80%-20% split. This means 80% of the data were randomly
chosen for training and the remaining 20% was used for testing. To highlight the data distribution, histograms
are shown for three of the important input features in Figure 2.

Since this is a classification problem, cross entropy was used as the loss function. Adam optimizer was used
with a learning rate of 0.001 for training the DNN. A batch size of 32 was used whenmodifying the parameters
during the optimization. The DNN was trained on 100 epochs and the trained DNN provided an accuracy of
97% on the test data. This is on the higher end of performance among models trained on this dataset, with
the best accuracy noted for this dataset to be 98.6% [29]. It is to be noted that this work is not focused on the
performance of DNN in terms of accuracy, but instead on explaining the decisions or predictions made by
the trained DNN. The trained DNN is further analyzed using LIME and SHAP to understand and explain its
predictions.
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Figure 3. LIME output for a data point that is classified as malignant.

Figure 4. LIME output for a data point which is classified as benign.

4.1. Results with LIME
LIME is used to explain the predictionsmade by the DNN on the patients (data points) identified in the test set.
The outputs from LIME are shown for two data points from the test set in Figures 3 and 4. The first number
above each horizontal bar refers to the index of the input variable. The length of each bar is proportional to
the contribution factor of that input variable mentioned next to it. For the data point in Figure 3, inputs 21,
27 and 24 are the three most contributing variables that drive the prediction to malignant with contribution
factors of 0.28, 0.22 and 0.18, respectively. There are some variables such as inputs 29, 11, 15, etc. that try to
drive the prediction to benign. However, the contributions of these inputs are lower for this particular data
point.

For the data point in Figure 4, most of the major input contributions seem to drive the prediction correctly to
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Figure 5. SHAP summary plot on the test data for the benign output class

benign. In this case, inputs 20, 6 and 22 (radius (worst), concavity (mean) and perimeter (worst), respectively)
are the most important inputs, each with a contribution factor of 0.1. For these two cases, it is understood
that lower values for most of the features indicate benign masses while higher values indicate malignancy.
This is consistent with expert understanding of malignant masses [30]. The LIME outputs thus help us gain an
understanding of the variables and their values that affect the predictions made by the trained DNN.

4.2. Results with SHAP
SHAP was also used to analyze the predictions made by the trained DNN on the data points from the test
set. The Shapley values of each input feature can be evaluated for each data point. The mean of the absolute
shapley values of each feature across the data can be used to evaluate the importance of the features. Figure 5
shows the summary plot of shapley values across the test data. The shapley values are plotted for the benign
output class. Hence, higher shapley values imply higher chances of a benign prediction. The color of the
points represents the feature values, with lower values shown by blue and higher values shown by red points.
Overlapping points are jittered vertically. The input features are ordered in descending order of importance
which is measured using the mean of the absolute shapley values across the data for feature. This can also be
noticed from the fact that moving down, the distribution of shapley decreases.

From Figure 5, we can infer that lower values of certain features such as radius (worst), concave points (worst),
texture (worst), etc. indicate a benign prediction. On the other hand, higher values for the same features
indicate a malignant prediction. This is in line with expert’s understanding of malignancy of breast masses as
described in the UCI breast cancerWisconsin database [30]. In fact, the features in this dataset are defined such
that higher values indicate malignancy. Additionally, the SHAP summary plot also correctly identifies that the
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Figure 6. SHAP dependency plot for texture (mean). SHAP: Shapley Additive exPlanations.

worst values of the different variables are more important for differentiating between benign and malignant
masses.

SHAP dependency plots can provide additional insights about the dependency between features and their
effect on the shapley values. For example, Figure 6 shows the SHAP dependency plot for the input feature
texture (mean). This feature has the highest dependency on another input feature texture (worst) and hence is
also shown in the plot. It can be noticed that shapley values for texture mean linearly decreases with increasing
texture (mean). Additionally, based on the colored points, it can be seen that higher texture (mean) also has
higher texture (worst).

As another example, Figure 7 shows the SHAP dependency plot for the feature concave points (mean). The
feature with the highest dependency on this feature is symmetry (std). Again, it can be seen that the shapley
values for concave points (mean) linearly decrease with increasing values for the feature concave points (mean).
However, symmetry (std) does not necessarily have a linear relationship with the chosen feature, as can be seen
from the distribution in the colors of the different points on the plot. We can see points with low and high
values of symmetry (std) for lower values of concave points (mean).

Certain commonalities can be found between the SHAP summary plot in Figure 5 and the LIME plots for
individual data points from Figures 3 and 4. For example, Figure 3 shows that higher values of texture (worst),
smoothness (worst) and concave points (worst) (inputs 21, 24 and 27, respectively) drive that data point to
malignant prediction. The same can be noticed from the SHAP summary plot. Similarly, from Figure 4, lower
values of radius (worst), concavity (mean) and perimeter (worst) (inputs 20, 6 and 22, respectively) drive that
data point towards benign prediction. The same trend can be seen from the SHAP summary plot in Figure 5.

The above analysis suggests that explainability tools such as LIME and SHAP can be invaluable tools in an-
alyzing trained models and understanding their predictions. These tools can help us obtain trends in the
predictions from the trained models to explain the decisions made by the model. LIME and SHAP could be
used for multi-class classification (with more than two classes) [31], regression [32] and other types of applica-
tions such as image processing using CNNs [33], etc. Since both tools have to run the trained model several
times to produce explanations, it may not be useful for real-time explanations. The computational complexity
of methods would depend on the computational time needed to make inferences. For example, larger neural
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Figure 7. SHAP dependency plot for concave points (mean). SHAP: Shapley Additive exPlanations.

networks could be more complicated to use as inputs to LIME and SHAP. However, they can still be a valuable
tool for obtaining explanations for applications that do not require real-time explanations or those that only
require explanations during certain instances.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we presented the use of two explainability tools, namely LIME and SHAP, to explain the decisions
made by a trainedDNNmodel. We used the popular Breast CancerWisconsin dataset from theUCI repository
as the use case for our work. We presented the trends obtained using LIME and SHAP on the predictionsmade
by the trained models. The LIME outputs were shown for individual data points from the test data. On the
other hand, SHAP was used to present a summary plot that showed a holistic view of the effect of the different
features on themodel predictions across the entire test dataset. Additionally, the paper also presented common
trends between the analysis results from both LIME and SHAP.

For future work, we plan to use these tools for other datasets, especially those with more than two output
classes. It will be interesting to see how the results from LIME and SHAP analysis can help gain insights into
datasets with a larger number of classes. The results from this paper are very encouraging to the research
efforts on advancing explainability to deep learning based machine learning models. We also plan to make use
of the abstract features derived within the DNN as possible input to LIME and SHAP. This may also help to
understand the relevance of abstract features and may be useful for other aspects of machine learning, such as
transfer learning.

5.1. Note
The Python code is available at this GitHub repository: https://github.com/sathyaa3p/xaiBreastCancer
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