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Abstract
Lithium-ion batteries are extensively utilized due to their diverse applications, but their potential risk of thermal run-
away leading to fire or even explosion remains a significant challenge to their sustainable development. The simula-
tion of battery thermal runaway is complex, as it involves multiple reaction mechanisms. This study focuses on the
interfacial interactions between reducing gases and cathode materials and explores the factors that influence these
interactions during gas crosstalk within the battery. Thermogravimetric analysis coupled with differential scanning
calorimetry was used to simulate the thermal attack of argon and hydrogen (H2/Ar) mixtures on battery cathode
materials to evaluate the chemical impact on the thermal runaway process. Four key material and environmental
parameters, (1) cathode atomic composition; (2) hydrogen gas concentration; (3) gas flow rate; and (4) heating rate,
were controlled and paired with thermal analysis curves to compile a database of 55 possible cases. Using seven
input variables, this database was trained by an artificial neural network model to predict 11 critical degradation tem-
peratures and rates for assessing material stability and safety. With an overall prediction accuracy above 0.73 (test
set), we adopted an analytic hierarchy process to establish a novel scoring mechanism for cathode thermal stability.
This work provides valuable insights into battery thermal runawaymechanisms and practical guidance for optimizing
battery cathode chemistry.
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INTRODUCTION
Climate change and the global energy transition drive the emerging “green and carbon-neutral” technology
development towards a sustainable future. Since the early 1990s, rechargeable batteries have become integral
to numerous sectors, driven by technological advancements and growing consumer demand. Among these,
lithium-ion batteries (LIBs) stand out due to their high energy density, extended lifespan, eco-friendliness,
and renewability. These attributes position LIBs as one of the most promising solutions for energy storage
today and are widely used in people’s lives [1–3]. As shown in Figure 1, a typical LIB is made of cathode, anode,
electrolyte, separator, binders, and current collectors. Li-ions flow repeatedly between the anode and cathode
under charging and discharging. This way, chemical energy is stored in and released from the battery, while
creating an electric current.

However, once exposed to external thermal, electrical, or mechanical impacts, battery internal materials will
experience considerable structural alterations [4,5]. These changes trigger a series of complex chemical reactions
inside the battery, which are accompanied by the release of large amounts of heat [6]. This excessive heat can
lead to thermal runaway, potentially causing large-scale fires or even explosions [7–9]. The thermal runaway
process of LIBs begins with the decomposition and regeneration of the solid electrolyte interphase (SEI), and
then goes through multiple physicochemical stages, such as the reaction between the electrolyte solvent and
the lithium intercalated graphite (LiC6) to generate hydrogen, the shrinkage and collapse of the separator, the
decomposition of the cathode material, and the burning of electrolyte [10,11].

The LIB cathode material not only defines the electrochemical performance of the battery by its material com-
position, but its thermal stability also affects thermal safety and performance of the battery. Ternary nickel
cobalt manganese (NCM) cathode materials primarily comprise transition metal (TM) oxides, which con-
tribute to their superior energy density and widespread applications. However, these materials also carry
a heightened risk of thermal runaway when exposed to elevated temperatures. NCMs undergo significant
phase transitions, beginning with the original layered phase characterized by a 𝑅3̄𝑚 space group. As temper-
atures rise, the structure transitions to the spinel phase with a 𝐹𝑑3̄𝑚 space group and ultimately transforms
into the rock-salt phase with a 𝐹𝑚3̄𝑚 space group [12]. During these phase transitions, oxygen is released due
to the dominance of partially charged oxygen species within the NCM lattice [13]. When the temperature rises
sufficiently, some of this oxygen escapes from the lattice and transforms into physically adsorbed molecular
oxygen [14]. Ultimately, these phase transitions and the associated oxygen release contribute to the thermal
instability of the battery.

This oxygen release, along with the hydrogen generated from LiH decomposition at the anode solid-electrolyte
interphase above 200 ◦C, is generally considered to be gas crosstalk [15–17]. Some studies suggested that stabi-
lizing the cathode crystals or capturing the released oxygen could slightly delay the onset of thermal runaway,
but these methods are insufficient to prevent it entirely [18,19]. By combining thermal and gas analysis, the
interfacial interaction between reducing gases and cathode materials can be revealed [20]. A reductive attack
begins below 80 ◦C, disrupting the chemical interactions between the cathode, anode, and electrolyte. Low
bond dissociation energy gases from the anode-electrolyte interface drive this attack, leading to phase transi-
tions, oxygen release, and heat generation in the cathode. This accelerates thermal failure and triggers thermal
runaway [21]. Based on this result, the safety characteristics of the thermal runaway process in LIBs can be
indirectly assessed by evaluating the impact of reductive gases on the thermal stability of the cathode mate-
rial. A simultaneous thermogravimetric analysis-differential scanning calorimetry (TGA-DSC) can quantify
the rates of decomposition and heat release 𝑣𝑠. temperature. This helps determine critical degradation tem-
peratures and rates along with reaction heat in different thermal-runaway stages, so the thermal stability and
reaction process of cathode materials under reductive gases can be evaluated. However, the data generated
from TGA-DSC can be complex, making it challenging to identify meaningful patterns and relationships.
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Figure 1. Panoramic view of LIB structure, applications, and failure-induced thermal runaway, fire and explosion.

The latest machine learning methods [22] show excellent performance at capturing nonlinear relationships and
handling high-dimensional data, so they can make effective predictions even with incomplete information.
Their powerful modeling capabilities have made machine learning a valuable tool across various fields, includ-
ing battery material analysis and safety evaluation [23]. Using data from battery current, voltage, electrochem-
ical impedance spectra, and temperature, researchers predicted parameters such as states of charge (SOCs)
and battery health in the battery management system (BMS) [24]. Moreover, Artificial Neural Network (ANN)
delivers highly precise predictions when applied to complex material behaviors and dynamic reactions [25–27].
The machine learning model provides valuable insights into the influence of factors such as anode and cath-
ode structures, elemental doping, and electrolyte selection on battery performance. This understanding can
guide researchers in optimizing material design [28]. Similarly, in the context of TGA, several parameters, such
as temperature, heating rate, and heat flow, play crucial roles. The multilayer network structure effectively
identifies complex nonlinear features and reveals intricate interactions between the variables. This capability
demonstrates significant advantages in TGA data prediction [29].

Many studies have analyzed the thermophysical parameters and heat changes of overall reactions involving
cathode materials, anode materials, and electrolytes [30,31]. However, a critical gap remains in linking specific
reaction mechanisms to battery thermal failure or runaway, particularly regarding the effects of reducing gases
on cathode materials. This study addresses this gap by examining the impact of reducing gases on ternary
NCM cathode materials using TGA-DSC to investigate the reaction process and extract key thermal stability
parameters. The resulting dataset was used to train an artificial neural network (ANN)model, enabling the pre-
diction and evaluation of cathode thermal stability under varying material characteristics and environmental
conditions.

Additionally, a hierarchical analysis method was applied to systematically weigh these key parameters, creating
a comprehensive approach for assessing thermal stability. The findings of this research offer valuable insights
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Table 1. Cathode type and composition

Cathode sample (acronym)
Mass fraction (wt.%)
Li Ni Co Mn

LiNi0.8Co0.1Mn0.1O2 (NCM 811) 7.39 47.28 5.91 5.91

LiNi0.6Co0.2Mn0.2O2 (NCM 622) 19.75 60.29 19.76 7.32

LiNi0.5Co0.2Mn0.3O2 (NCM 523) 7.6 29.48 11.78 17.69

LiNi0.33Co0.33Mn0.33O2 (NCM 111) 7.63 20 20 18

LiNi0.95Al0.05O2 (NCA) 7.0 53.1 5.94 0.912

LiCoO2 (LCO) 7.4 - 59.7 -

LiMn2O4 (LMO) 4.21 - - 58.86

for optimizing cathode material design to enhance safety, developing effective thermal management strategies
for battery systems, and informing material selection in commercial battery manufacturing. By deepening the
understanding of cathode stability and providing predictive tools for novel materials, this study addresses criti-
cal safety challenges in LIB technology, supporting the development of safer andmore reliable next-generation
energy storage solutions.

EXPERIMENTS AND METHODOLOGIES
Preparation of material
A range of cathode materials purchased from Cardo without further treatment were used to compare the per-
formance of various elemental compositions after being attacked by reducing gases. The compositions of these
cathodes are shown in Table 1. CR2032-type coin cells were assembled in an argon-filled glove box to inves-
tigate the thermal stability of cathode materials in LIBs with different SOCs under a hydrogen atmosphere.
For the fabrication of electrodes, a viscous slurry containing purchased NCM cathode materials, Super P, and
polyvinylidene fluoride (PVDF) in a mass ratio of 70:20:10 was prepared. The slurry was cast onto an alu-
minum foil and dried overnight at 100 ◦C under vacuum. For CR2032 cells, lithium foil served as both the
reference and counter electrodes, while the electrolyte used was a 1.0 M solution of LiPF6 in a 1:1 (v/v) mix-
ture of ethyl carbonate and diethyl carbonate (EC/DEC). Celgard 2325 25 μm trilayer microporous membrane
[polypropylene/polyethylene/polypropylene (PP/PE/PP)] was used as the separator.

The charge and discharge tests were performed using a Neware battery measurement system in a voltage range
of 2.75-4.2 V (𝑣𝑠. Li+/Li) at 0.1 C. For the cell at the charge state of 100% (SOC-100), it was charged with a
constant current of 0.1 C from the open circuit potential (OCP) to the cut-off voltage of 4.2 V and then with a
constant voltage until the charging current decreased to 0.02 C. The practical specific capacity was controlled
to obtain the cells with other SOCs. The charge and discharge curves of NCM811 were shown as examples
in Supplementary Figure 1. In the preparation of the samples for characterization, the electrode materials
were disassembled from cells, washed three times using Dimethoxyethane (DME) and N-Methylpyrrolidone
(NMP), and then dried at 60 ◦C for 12 h under vacuum.

Thermal analysis setup
Simultaneous thermal analysis (TGA-DSC)was conducted using a PerkinElmer STA6000 under three different
hydrogen gas contents of a hydrogen and argon mixture: 5%, 3%, and 1% H2. The gas flow rates were set at
50, 100, and 150 mL/min. Before the test, all materials and crucibles were dried in an oven at 80 ◦C for 12 h
to ensure that the experiment would not be affected by moisture. In this study, non-isothermal heating was
applied, where 5-7 mg of sample was heated from room temperature to 800 ◦C at three rates of 10, 30, and
60 ◦C/min. Each test was repeated at least twice to ensure good experimental reproducibility, with a relative
error of ±2% under the same conditions. Each ternary material has the same experimental setup and all the
experimental scenarios are shown in Table 2.
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Table 2. TGA experimental scenarios

Number SOC (%) H2 vol. fraction (%) Heating rate (K/min) Gas flow rate (mL/min)

1 0 5 10 100
2 0 3 10 100
3 0 1 10 100
4 0 5 10 50
5 0 5 10 150
6 0 5 30 100
7 0 5 60 100
8 50 5 10 100
9 50 1 10 100
10 100 5 10 100
11 100 1 10 100

Figure 2. (A) Training flow of the TG data prediction model and (B) architecture of the developed ANN model.

Table 3. The AHP model for cathode thermal risk under hydrogen attack

Target Category Parameter Weight Specifications

Cathode thermal risk under hydrogen attack (R)

Critical degradation temperature (T)

T1 0.2873 Onset temperature of decomposition reaction 𝑇𝑜1

T2 0.1427 Onset temperature of reduction reaction 𝑇𝑜2

T3 0.0894 Onset temperature of structural collapse 𝑇𝑜3

T4 0.0503 Temperature at peak decomposition rate 𝑇𝑚1

T5 0.0319 Temperature at peak reduction reaction rate 𝑇𝑚2

T6 0.0216 End temperature of reaction 𝑇𝑒

Reaction mass loss (M)
M1 0.0225 Peak decomposition rate 𝑀𝐿𝑅1

M2 0.074 Peak reduction rate 𝑀𝐿𝑅2

M3 0.0408 Mass remaining 𝑚𝑟

Heat release of reaction (H)
H1 0.2053 Heat Release during decomposition 𝐻1

H2 0.0342 Heat absorption during reduction 𝐻2

Machine learning methods
The ANN model, a commonly used machine learning method for supervised learning tasks, consists of an
input layer, hidden layers, and an output layer. In this study, static timing analysis (STA) data is analyzed using
the back-propagation (BP) algorithm within an ANN framework, as shown in Figure 2A. The BP algorithm,
which iteratively minimizes the error between predicted and actual outputs by adjusting the network’s weights,
ensures an effective learning process and reliable prediction results. Key information was extracted from the
TGA data to establish a database. The input layer consists of seven input variables, namely content of Li, Co,
Ni, and Mn; H2 content; gas flow rate and heating rate. Meanwhile, 11 output variables are linked: 𝑇𝑜1, 𝑇𝑚1,
𝑇𝑜2, 𝑇𝑚2, 𝑇𝑜3, 𝑇𝑒 , 𝑀𝐿𝑅1, 𝑀𝐿𝑅2, 𝐻1, 𝐻2 and 𝑚𝑟 , which are explained in Table 3 and Figure 2B.
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For each neuron depicted in Figure 2B, the output is determined by

𝑂𝑢𝑡 𝑗 = ℎ
(∑𝑁

𝑖=1𝑊 𝑗𝑖𝑋𝑖 + 𝐵 𝑗
)

(1)

where 𝑋𝑖 represents the input from the neuron in the previous layer,𝑊 𝑗𝑖 denotes the weight associated with 𝑋𝑖 ,
𝐵 𝑗 is the bias, and ℎ signifies the activation function. The activation functions selected for this study included
the rectified linear unit (ReLU), the hyperbolic tangent (tanh), and logistic functions, which introduce non-
linearity into the model, enhancing its ability to capture intricate patterns. The sigmoid function was utilized
as the activation function between each layer.

In this study, an ANN model with five hidden layers was developed using the Scikit-Learn library in Python
to predict the thermal properties of cathode materials. Firstly, the whole dataset is normalized to improve the
convergence speed of the ANN during training. Then the dataset is divided into 70% for training and 30%
for testing in order to evaluate the model’s prediction accuracy and robustness. Because of the limited dataset
size, the leave-one-out cross-validation (LOOCV) technique is utilized for bothmodel selection and parameter
optimization. In this technique, each observation in the training set is used once as a validation sample while
the remaining samples are used for training. This procedure is repeated for each observation, and the average
performance metric is computed. The final model will select the best-performing hyperparameters based on
the evaluation performance metrics.

Performance evaluation
The performance of the developed ANN model is evaluated by comparing the predicted values to the actual
experimental data. This comparison is quantified using several well-known evaluation metrics.

One commonly used metric is the mean squared error (MSE), which is defined as

𝑀𝑆𝐸 =
1
𝑁

∑𝑁
𝑖=1

(
𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡𝑢

)2 (2)

Another important metric is the coefficient of determination (𝑅2), which is defined as

𝑅2 = 1 −
∑𝑁
𝐼=1

(
𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡𝑢

)2∑𝑁
𝐼=1

(
𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑚𝑒𝑎𝑛

)2 (3)

where 𝑌𝑝𝑟𝑒𝑑 represents the predicted value, while 𝑌𝑎𝑐𝑡𝑢 stands for the actual value. N denotes the number of
datasets.

TheMSEmeasures the average of the squared errors between predicted and actual values, providing an indica-
tion of the model’s prediction accuracy. The 𝑅2 metric measures how well the independent variables explain
the variability in the dependent variable. A higher 𝑅2 value suggests that the model captures more of the
variance in the data, reflecting a better fit.

AHP quantitative scoring method
The hierarchical analysis method is employed to establish a risk assessment framework for the hydrogen attack
reaction. During the reaction process of hydrogen attack on the cathode, key parameters are classified into
secondary indicators, which are further grouped into three primary evaluation indicators: critical degradation
temperature of cathode reaction (T), reaction mass loss (M), and heat release of reaction (H). T was divided
into six sub-factors (T1-T6), M into three sub-factors (M1-M3), and H into two sub-factors (H1, H2). These
primary indicators collectively assess the risk of thermal runaway in the cathode under H2 exposure. The
weight of each index in the evaluation system signifies the significance of each factor. By assigning scores to

http://dx.doi.org/10.20517/energymater.2024.200


Zhou et al. Energy Mater. 2025, 5, 500077 I http://dx.doi.org/10.20517/energymater.2024.200 Page 7 of 22

different factor layers, a judgment matrix is formed to determine their relative weights. The importance scale
between the two factors is provided in Supplementary Table 1. Based on the process of hydrogen attack on the
cathode, the factors are ranked as follows: T > H > M. The relative importance obtained from comparisons
between each group is processed accordingly; the judgment matrix R is as follows:

𝑅 =


𝑎11 · · · 𝑎𝑖𝑛
...

. . .
...

𝑎𝑛1 · · · 𝑎𝑛𝑛

 (4)

Here, 𝑎𝑖 𝑗 represents the importance ratio of factor 𝑖 to factor 𝑗 , and 𝑛 denotes the number of index factors at
each level. 𝑅 is a reciprocal matrix where 𝑎𝑖 𝑗 and 𝑎 𝑗𝑖 are reciprocals.

The normalization of 𝑅’ s columns is given below:

𝑎𝑖 𝑗 =
𝑎 𝑗 𝑗∑𝑛
𝑘=1 𝑎𝑘 𝑗

(𝑖, 𝑗 = 1, 2, 3, · · · , 𝑛) (5)

Calculate the sum of the elements in each row:

𝑤𝑖 𝑗 =
𝑛∑𝑛

𝑖=1 𝑎𝑖 𝑗 (𝑖, 𝑗 = 1, 2, 3, · · · , 𝑛) (6)

Re-normalize to obtain the weight of each factor at this level:

𝑤𝑖 =
𝑤𝚤∑𝑛
𝑖=1 �̄�𝑙

(𝑖, 𝑗 = 1, 2, 3, · · · , 𝑛) (7)

The weight of each evaluation factor in the lowest layer of the evaluation system is derived as follows:

𝐶𝑖 𝑗 𝑘 = 𝐶𝑖𝐶 𝑗𝐶𝑘 (8)

The cathode thermal property judgment matrix can be established [Supplementary Tables 2-5]. The random
consensus index RI shown in Supplementary Table 6 is used to evaluate the consistency of the judgmentmatrix.
A secondary evaluation model was developed, as shown in Table 3.

RESULTS AND DISCUSSION
Hydrogen attack cathode performance
Theproperties of NCM cathodematerials that have not undergone delithiation remain highly stable. As shown
in Figure 3A, themass loss ofNCM811 powder exhibitsminimal changewhenheated in an inert Ar atmosphere
from 30-800 ◦C. A slight mass loss is only observed once the temperature exceeds 695 ◦C. By the end of the
experiment at 800 ◦C, the total mass loss is still just 1.5%. This phenomenon is likely a result of slight phase
transitions occurring within the cathode material lattice at elevated temperatures, leading to the release of a
limited quantity of oxygen gas [13]. The effect of hydrogen on NCM cathodes can be revealed by introducing
varying concentrations of H2 (balanced with Ar) as the reductive gas. The results, presented in Figure 3B-D,
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Figure 3. Non-isothermal decomposition behavior of cathode in various atmospheres (A) Ar, (B) 5%H2/Ar, (C) 3% H2/Ar, (D) 1% H2/Ar.

demonstrate significant changes in the thermal decomposition behavior of NCM.The onset of decomposition
reactions starts at lower temperatures (400-500 ◦C), accompanied by significant mass loss.

The comparison of Figure 3B-D shows that the cathode curves in the H2/Ar atmosphere exhibit similar char-
acteristics. The cathode decomposition is consistently dominated by two reactions, resulting in a rapid mass
loss. Additionally, a brief period of rapid mass loss occurs before the cathode mass stabilizes. With the onset
of cathode decomposition in Ar taking place above 695 ◦C, the earlier decomposition observed in the H2/Ar
atmosphere is attributed primarily to the interaction between H2 and the cathode, that is, the reducing attack.
As the temperature rises, H2 accelerates the cathode decomposition, causing greater structural damage. H2
penetrates deeper into the particle core, promoting the transformation of the layered structure into spinel and
rock-salt phases. This transformation leads to an increased release of oxygen, which may result in greater
mass loss. The three TMs in ternary cathode materials each contribute differently to the material’s structure
and properties.

Typically, the redox pairs Ni2+/3+ and/or Ni3+/4+ are responsible for most of the reversible capacity. Cobalt,
through its Co3+/4+ redox reactions, improves the layered arrangement of the structure. Additionally, man-
ganese helps stabilize part of the structure due to the electrochemical inertness of Mn4+. In other words, the
impact on the ionic chemical stability in the layered structure decreases in the following order: Co > Ni >Mn.
As a result, Ni3+/4+ and Co3+/4+ in NCMmay be reduced to Ni2+/3+ and Co2+/3+, forming NiO, Ni2O3, Co3O4
and CoO, while Mn remains in the form of LiMnO2

[32,33]. The possible chemical reactions involved for ionic
decomposition include

LiNixCoyMnzO2 (layer) →
𝑖Li2O + 𝑥NiO(rock-salt) + 𝑦LiCoO2(spinel) + 𝑧LiMnO2(spinel) + O2(g)

(9)

http://dx.doi.org/10.20517/energymater.2024.200
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3LiCoO2 (spinel) → 1.5Li2O + Co3O4 (rock-salt) + 0.25O2( g) (10)

LiCoO2 (spinel) → 0.5Li2O + CoO (rock-salt) + 0.25O2( g) (11)

H2 + 0.5O2 → H2O (12)

As hydrogen continues to flow and the temperature increases, the cathode decomposes into a rock-salt phase.
Hydrogen then further reduces the cathode to metal. This is reflected by the endothermic peaks in Figure 3.
The possible reactions involved in hydrogen attack [34–36] include

NiO + H2 → Ni + H2O (13)

Co3O4 + 4H2 → 3Co + 4H2O (14)

CoO + H2 → Co + H2O (15)

The weak differential thermogravimetry (DTG) peaks observed before the cathode mass stabilizes can be at-
tributed to the structural collapse of LiMnO2 according to:

2LiMnO2( spinel ) → Mn2O3(rock-salt) + Li2O (16)

This is due to the electrochemical inertness of Mn and its low content in NCM. As the experiments did not
include crystalline phase analysis or elemental composition characterization of the reaction products, the for-
mulas only suggest the possible presence of these products without precisely determining their content.

To more accurately characterize the cathode decomposition process, key parameters were extracted based on
the specific features of the curves, including 𝑇𝑜1, 𝑇𝑚1, 𝑇𝑜2, 𝑇𝑚2, 𝑇𝑜3, 𝑇𝑒 , 𝑀𝐿𝑅1, 𝑀𝐿𝑅2, 𝐻1, 𝐻2 and 𝑚𝑟 . In detail,
𝑇𝑜1 represents the initial decomposition temperature of the cathode, marking the onset of the decomposition
reaction when the DTG value exceeds 0.001. 𝑀𝐿𝑅1 and 𝑇𝑚1 refer to the maximum decomposition rate and
the corresponding temperature during the cathode phase transition and decomposition. The heat released
during this process is denoted by 𝐻1. 𝑇𝑜2 indicates the starting temperature of the reduction reaction for rock-
salt phase metal oxides. 𝑀𝐿𝑅2 and 𝑇𝑚2 represent the peak reduction rate and the corresponding temperature,
with the associated heat absorption marked as 𝐻2. 𝑇𝑜3 is related to the collapse of LiMnO2. 𝑇𝑒 specifies the end
temperature of the entire reaction process where H2 interacts with the cathode, and𝑚𝑟 refers to the percentage
of cathode mass remaining.

Table 4 presents the key reaction parameters of the cathode at varying H2 contents. In 1% H2/Ar, the onset
decomposition temperature of NCM811cathode is 513 ◦C, which is 182 ◦C lower than in pure Ar. As the
hydrogen content increases, the onset temperature shifts lower, with decomposition starting at 439 ◦C in 5%
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Table 4. Key parameters of NCM 811 in various atmospheres, where the negative heat of reaction means an exothermic process

Reduction gas 𝑇𝑜1
◦C 𝑇𝑚1

◦C 𝑇𝑜2
◦C 𝑇𝑚2

◦C 𝑇𝑜3
◦C 𝑇𝑒

◦C 𝑀𝐿𝑅1 (1/K) 𝑀𝐿𝑅2 (1/K) 𝑚𝑟 (%) 𝐻1 (J/g) 𝐻2 (J/g)

5%H2/Ar 439 547 568 587 615 623 0.25 0.22 76.1 -510 161
3%H2/Ar 497 574 586 607 624 660 0.22 0.33 75.3 -452 59
1%H2/Ar 513 603 625 657 695 707 0.19 0.24 76.1 -335 37

Table 5. Key parameters of various cathodes in 5%H2/Ar

Cathode material 𝑇𝑜1
◦C 𝑇𝑚1

◦C 𝑇𝑜2
◦C 𝑇𝑚2

◦C 𝑇𝑜3
◦C 𝑇𝑒

◦C 𝑀𝐿𝑅1 (1/K) 𝑀𝐿𝑅2 (1/K) 𝑚𝑟 (%) 𝐻1 (J/g) 𝐻2 (J/g)

NCM811 439 547 568 587 615 623 0.25 0.22 76.09 -510 161
NCM622 524 587 595 610 633 659 0.31 0.34 77.56 -465 178
NCM523 555 613 619 627 650 678 0.38 0.40 76.75 -261 241
NCM111 551 606 621 627 650 680 0.40 0.33 74.84 -179 152

H2. Similarly, 𝑇𝑚1, 𝑇𝑜2, 𝑇𝑚2, 𝑇𝑜3, and 𝑇𝑒 , also occur earlier as 𝑇𝑜1 advances. The increase in 𝑀𝐿𝑅1 with higher
hydrogen contents may be due to the greater structural damage inflicted on the cathode by more H2. At
5%H2/Ar, the cathode decomposition releases 540 J/g of heat, which is also positively correlated with the
H2 content. The weaker correlation between 𝑀𝐿𝑅2 and hydrogen content might result from the random
distribution of cracks on the cathode particle surface. Additionally, the O2 released from the reduction of
rock-salt phase metal oxides may not fully escape from the particles. At higher H2 content, the formation of
rock-salt phasemetal oxides increases, leading to greater heat absorption𝐻2 in subsequent reduction reactions.

Figure 4 and Table 5 illustrate the non-isothermal decomposition behavior of various cathodes in 5%H2/Ar
curves and data. The decomposition processes of NCM622, NCM523, and NCM111 cathode materials are
similar to that of NCM811. The decomposition temperatures for NCM622, NCM523, and NCM111cathode
materials are 524, 555, and 551 ◦C, respectively, lagging that of NCM811 by 85, 116, and 112 ◦C, which indicates
a negative correlation between thermal stability and Ni content in the cathode. In this study, a non-isothermal
heating mode is employed, where reaction time and temperature are linearly related. Thus, greater temper-
ature differences correspond to longer reaction times. The differences in onset temperature and maximum
decomposition rate for NCM811, NCM622, NCM523, and NCM111 cathode materials are 108, 63, 58, and 55
◦C, respectively.

This trend suggests a diminishing gap in both temperature and time, resulting in a reduction of oxygen release.
This reduction is attributed to the instability of high-valence TM ions under hydrogen attack and elevated
temperatures. Such instability leads to the reduction of these ions and the release of oxygen from the lattice to
maintain charge neutrality. Notably, Ni ions exhibit the fastest reduction rate, indicating their significant influ-
ence on the thermal stability of the cathode [37,38]. For a fixed lithium content, oxygen in the local coordination
structure becomes less stable with increased Ni, particularly in higher oxidation states.

Consequently, materials with higher Ni content exhibit lower thermal decomposition temperatures and greater
oxygen release. The differences between 𝑇𝑚2 and 𝑇𝑜2 for the four types of cathodes are 19, 15, 8, and 6 ◦C,
respectively. This indicates that a decrease in Ni content reduces the amount of reducible rock-salt metal
oxides. Consequently, this leads to a more rapid end of the reduction reaction. The mass loss peaks for Mn
become more distinct with increasing Mn content in the cathode. The Mn mass loss peaks are 0.058, 0.090,
and 0.081 for NCM622, NCM523, and NCM111, respectively, suggesting the enhanced reduction ofMn byH2.
The TGA results in Supplementary Figure 2 for the corresponding oxides of LiNi0.95Al0.05O2 (NCA), LiCoO2
(LCO) and LiMn2O4 (LMO) further support this observation. Under hydrogen attack, NCA shows mass loss
at temperatures below 400 ◦C, whereas LMO remains the stable structure till about 700 ◦C.

In addition to the analysis of the cathode composition, the decomposition reactions influenced by environ-
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Figure 4. Non-isothermal decomposition behavior of various cathodes in 5%H2/Ar (A) NCM 622, (B) NCM 523, (C) NCM 111.

Table 6. Key parameters of NCM 811 cathodes at various gas flow and heating rates in 5%H2/Ar

Heating rate (◦C/min) Flow rate (mL/min) 𝑇𝑜1
◦C 𝑇𝑚1

◦C 𝑇𝑜2
◦C 𝑇𝑚2

◦C 𝑇𝑜3
◦C 𝑇𝑒

◦C 𝑀𝐿𝑅1 (1/K) 𝑀𝐿𝑅2 (1/K) 𝑚𝑟 (%) 𝐻1 (J/g) 𝐻2 (J/g)

10 50 519 567 576 591 633 674 0.27 0.30 78.7 -518 251
10 150 424 532 553 579 606 647 0.24 0.24 70.8 - -
30 100 484 617 645 672 703 713 0.18 0.17 76.6 -501 136
60 100 534 684 726 749 800 800 0.14 0.12 76.3 -443 54
10 100 439 547 568 587 615 623 0.25 0.22 76.1 -510 161

mental changes are also investigated. The flow rate of 5%H2/Ar was adjusted to 50 and 150 mL/min, while
maintaining a constant heating rate of 10 ◦C/min. Data presented in Figure 5 and Table 6 reveal that the flow
rate of H2 affects the reaction similarly to its content. At a flow rate of 50 mL/min, the onset temperature of
the decomposition reaction is 80 ◦C lower than at 100 mL/min. Conversely, at a flow rate of 150 mL/min, the
onset temperature rises to 424 ◦C, which is 15 ◦C higher than expected. The flow of H2/Ar not only reacts with
the cathode but also provides a purging effect. At 50 mL/min, the exothermic heat released (𝐻1) is -518.37 J/g,
likely due to reduced convective heat transfer between the material and the gas at lower flow rates. However,
at 150 mL/min, the heat generated from the reaction could not be effectively captured. This can be attributed
to the high flow rate, which rapidly purges the heat released from the reaction, resulting in heat loss.

The onset temperatures of the reaction were 484 and 534 ◦C at heating rates of 30 and 60 ◦C/min, respectively.
This indicates that the onset temperature increases with a higher heating rate, which can be explained by
reaction kinetics. According to the Arrhenius Law, the reaction rate constant 𝐾 is related to the temperature
𝑇 and the activation energy 𝐸𝑎 [39], as given in

𝑘 = 𝐴𝑒−
𝐸𝑎
𝑅𝑇 (17)

An increased heating rate may prevent the molecules in the sample from achieving the requisite reaction rate,
as they may not acquire sufficient energy in time. Consequently, the decomposition reaction commences at a
higher temperature. Despite the rapid rise in temperature, the molecules may still lack the necessary energy to
overcome the activation barrier for decomposition. This phenomenon further elevates the onset temperature.

Conversely, maximum weight loss rates (𝑀𝐿𝑅1, 𝑀𝐿𝑅2) were negatively correlated with the heating rate. At
30 ◦C/min, 𝑀𝐿𝑅1, 𝑀𝐿𝑅2 values were 0.18 and 0.17, respectively. At 60 ◦C/min, these values decreased to
0.14 and 0.12. This trend suggests that the rapid heating rate may inhibit complete decomposition, leading to
fewer rock-salt phase products and consequently affecting the reduction rate. As a result, the exothermic heat
𝐻1 also diminishes.

During the battery charging process, Li+ ions are removed from the cathode layers and embedded into the
anode layers. The degree of delithiation corresponds to the battery SOC. Figure 6 and Table 7 illustrate the
decomposition behavior and key parameters of NCM811 at different SOCs under hydrogen attack in non-
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Figure 5. Non-isothermal decomposition behavior of gas flow and heating rate in 5%H2/Ar (A) 50 mL/min,10 ◦C/min, (B) 150 mL/min,
10 ◦C/min, (C) 30 ◦C/min, 100 mL/min, (D) 60 ◦C/min, 100 mL/min.

isothermal conditions (Heating rate:10 ◦C/min, gas flow: 100 mL/min). Compared to a cathode that has not
undergone charging or discharging, a distinct mass loss occurs before the exothermic peak of the cathode’s
decomposition. This relates to a localized mass loss peak in the DTG curves (marked in red in the figure).
This mass loss, observed before 100 ◦C, may be due to side reactions involving the electrolyte during charging,
such as the oxidation of electrolyte components and the degradation of LiPF6. These reactions lead to the
formation of a dense cathode-electrolyte interface (CEI) film on the cathode surface, covering the secondary
particles so thoroughly that the original structure of the primary particles is nearly indistinguishable.

The CEI film - mainly composed of Li2CO3, LiF, and other compounds - forms on the cathode surface during
cycling. Before hydrogen attacks the cathode, the CEI will undergo thermal decomposition, releasing gases
such as CO2 and CO, leading to an initial mass loss [40,41]. For the NCM811 cathode analyzed here, excluding
the Li, Ni, Co, andMn elements, the oxygen content is approximately 33.5 wt%. Upon complete decomposition
of the cathode and the release of oxygen, the remaining mass should be greater than 66.5%. However, for the
cathode at 100% SOC, the remaining mass after decomposition is 59.4%, indicating the presence of the CEI
film. Once the CEI film decomposes, the cathode is directly exposed to H2. As the cathode is attacked by
both hydrogen and high temperature, further decomposition occurs. The 𝑇𝑜1 for the 100% SOC, 50% SOC,
and 0% SOC cathodes are 162, 178, and 307 ◦C, respectively. Correspondingly, in H2/Ar, the maximumweight
loss rates (𝑀𝐿𝑅1) for the 100% SOC, 50% SOC, and 0% SOC cathodes are 0.31, 0.18, and 0.06, respectively.
These results show that the cathode decomposes more easily with higher SOC, likely due to cation mixing and
lithium vacancy formation.

Since Ni2+ (0.069 nm) and Li+ (0.076 nm) have a similar ionic radius, Ni2+ canmigrate from the TM layer to ad-
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Figure 6. Non-isothermal decomposition behavior of NCM811 various SOCs (A) 0% SOC 5%H2/Ar, (B) 50% SOC 5%H2/Ar, (C) 100%
SOC 5%H2/Ar, (D) 100% SOC Ar.

Table 7. Key parameters of various SOC NCM 811 cathodes under 5%H2/Ar and Ar

SOC (%) Reduction gas 𝑇𝑜1
◦C 𝑇𝑚1

◦C 𝑇𝑜2
◦C 𝑇𝑚2

◦C 𝑇𝑜3
◦C 𝑇𝑒

◦C 𝑀𝐿𝑅1 (1/K) 𝑀𝐿𝑅2 (1/K) 𝑚𝑟 (%) 𝐻1 (J/g)

0% 5%H2/Ar 307 380 399 509 657 915 0.06 0.18 73.1 -358.5
50% 5%H2/Ar 178 237 271 376 415 950 0.18 0.08 66.7 -396.2
100% 5%H2/Ar 162 239 312 377 495 950 0.31 0.31 59.4 -651.0
100% Ar 216 248 278 332 627 854 0.16 0.11 79.0 -

jacent lithium vacancies after Li+ detachment, leading to cation mixing. This phenomenon significantly affects
the performance, structure, and thermal stability of the cathode [42]. At high SOC, the excess lithium vacan-
cies are thermodynamically unstable, driving the cathode decomposition to restore equilibrium [43]. Moreover,
hydrogen attack and elevated temperatures accelerate the decomposition process, reducing the onset temper-
ature of charged cathodes compared to those that remain untreated. As SOC increases, the exothermic heat
of the decomposition reaction also rises, indicating a higher risk of thermal runaway in batteries with higher
SOC.

Analysis of Pearson correlation coefficient
The thermal decomposition behavior of hydrogen-attacked cathode materials is influenced by several factors,
including cathode composition, degree of delithiation, hydrogen content, gas flow rate, and heating rate. De-
composition experiments were also conducted on NCM622, NCM523, and NCM111 under varying condi-
tions, resulting in a dataset comprising 55 entries. To enhance the accuracy of data predictions, relevant fea-
tures and variables were selected from the dataset, and Pearson correlation analysis was employed to elucidate
the relationships between these parameters.
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The Pearson correlation coefficient is a statistical measure that quantifies the linear relationship between two
real-valued variables. Introduced as the first formal metric for correlation, it remains the most commonly
applied method today. This coefficient is particularly useful for evaluating the linear association between two
normally distributed continuous variables [44] and can be expressed as:

𝑟 =
𝑐𝑜𝑣𝑥,𝑦

𝜎𝑥 · 𝜎𝑦
=

∑ (𝑥𝑖 − 𝑥) (𝑦𝑖 − �̄�)√∑ (𝑥𝑖 − 𝑥)2
√∑ (𝑦𝑖 − �̄�)2 (18)

where 𝑐𝑜𝑣𝑥,𝑦 represents the covariance between variables x and y, while 𝜎𝑥 and 𝜎𝑦 refer to the standard devia-
tions of x and y, respectively. The terms 𝑥 and �̄� represent the mean values of each variable. A coefficient value
approaching 1.0 signifies a strong positive correlation, whereas a value near -1.0 indicates a strong negative
correlation.

Additionally, to assess whether the correlation coefficient is statistically significant, the 𝑡-score and 𝑃-value are
computed for further evaluation:

𝑡 =
𝑟
√
𝑛 − 2

√
1 − 𝑟2

(19)

where 𝑛 represents the sample size, with degrees of freedom equal to 𝑛-2, and 𝑟 is the Pearson correlation coef-
ficient. Subsequently, the 𝑃-value is determined as the two-sided 𝑃-value corresponding to the 𝑡-distribution
with 𝑛-2 degrees of freedom. Typically, a 𝑃-value of less than 0.05 is considered statistically significant, while
a value below 0.001 is regarded as highly significant by most researchers.

Figure 7 presents the half Pearson correlation coefficient (r) matrix, with each row corresponding to a variable
in the dataset and each column representing the same variables as the rows. The values in each cell indicate
the correlation coefficient between the two associated variables. The lithium content in the cathode exhibits
strong correlations with 𝑇𝑜1, 𝑇𝑚1, 𝑇𝑜2, and 𝑇𝑚2, with coefficients of 0.79, 0.85, 0.85, and 0.78, respectively. This
indicates that a lower removal of lithium from the cathode corresponds to higher initiation temperatures for
decomposition, which subsequently influences the temperatures of ensuing reactions. The positive correlation
between lithium content and the remainingmass also highlights that cathodes with higher SOC retain lessmass
at the conclusion of the reaction. Additionally, the correlation coefficient of 0.48 between lithium content and
𝐻1 suggests that cathodes with higher Ni content face a greater risk of thermal runaway.

It is worth noting that the strong correlationmay not be apparent in the correlation coefficient plot. This is likely
due to the limited variation in the 𝑇𝑜1 across different hydrogen contents. However, the correlation coefficient
between hydrogen content and heat absorption during the reduction reaction is 0.42, while 𝑀𝐿𝑅2 correlates
with 𝐻2 at 0.64. These values reinforce the earlier observation that increased hydrogen content accelerates
mass loss and enhances heat absorption during the reduction process. Furthermore, the key parameters in
the thermal decomposition of the cathode exhibit very high intercorrelations. Specifically, the correlation
coefficients of 𝑇𝑜1 with 𝑇𝑚1, 𝑇𝑜2, 𝑇𝑚2, and 𝑇𝑜3 are 0.97, 0.94, 0.92, and 0.85, respectively, clearly indicating that
hydrogen attack significantly influences the sequential reactions involved in cathode decomposition.

Evaluation of machine learning prediction
The experimental data and Pearson correlation analysis reveal a distinct correlation among the properties
of cathode materials, experimental conditions, and key parameters during the hydrogen attack. This finding
suggests the feasibility of developing a machine learning model to predict the thermal decomposition behavior

http://dx.doi.org/10.20517/energymater.2024.200


Zhou et al. Zhou et al. Energy Mater. 2025, 5, 500077 I http://dx.doi.org/10.20517/energymater.2024.200 Page 15 of 22

Figure 7. Pearson correlation coefficient (r) among any two variables in the dataset.

of cathode materials. By using this data-driven approach, the model can analyze and forecast crucial factors
such as reaction temperature, mass loss rate, and thermal effects under various reaction conditions. The seven
input variables for the model include the atomic ratios of Li, Co, Ni, and Mn, as well as H2 content, gas flow
rate, and heating rate. The model aims to predict 11 output variables: 𝑇𝑜1, 𝑇𝑚1, 𝑇𝑜2, 𝑇𝑚2, 𝑇𝑜3, 𝑇𝑒 , 𝑀𝐿𝑅1, 𝑀𝐿𝑅2,
𝐻1, 𝐻2, and 𝑚𝑟 .

The optimal hyperparameters for themodels were identified using LOOCV and then applied to retrain the pre-
diction model. For the ANN model, hyperparameters were determined through trial-and-error optimization
on the training set. This selection reflects a careful balance to enhance model performance. The tanh activa-
tion function was chosen for its effectiveness in handling nonlinear problems, while also mitigating gradient
vanishing issues to maintain model stability. A regularization coefficient (alpha) of 0.01 was used to penalize
weights moderately, reducing overfitting and improving generalization. The hidden layer architecture, with
neurons configured in a five-layer structure (16, 32, 64, 64, 32), was designed to capture high-dimensional data
features and process complex information. An initial learning rate of 0.01 allows themodel to converge quickly
during early training, while also ensuring stability in later stages. With amaximum of 300 iterations, the model
has sufficient opportunities to reach optimal convergence. The optimizer, stochastic gradient descent (SGD),
is well-suited for large datasets and helps avoid local minima. Finally, the convergence tolerance was set to
1e−06, ensuring that training stops once high accuracy is achieved. This hyperparameter configuration strikes
a balance between training efficiency and generalization, enabling the model to deliver stable performance
even under complex experimental conditions.

Supplementary Figure 3 illustrates the R2 𝑣𝑠. loss curve, revealing that the R2 for the training set converges to
0.75, while the mean square error (MSE) approaches 0, confirming the stability of the training process and the
absence of overfitting. The predicted 𝑣𝑠. actual values for the test set are shown in Figure 8, demonstrating
good prediction performance. The point distribution is close to the diagonal, with most data points situated
in the region where the error is less than 20%, indicating accurate predictions. The R2 for the test set is 0.73,
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Figure 8. Predicted value 𝑣𝑠. true value in the test set using the developed ANN model.

signifying that the model explains 73% of the variance in unseen data and exhibits excellent generalization
ability. The R2 values for each output parameter in the test set are provided in Supplementary Table 7. For the
majority of temperature predictions, R2 exceeds 0.8. Furthermore, themodel’s performance remains consistent
across various data ranges, reflecting its robustness. However, some numerical predictions for 𝐻1 show bias,
likely due to significant exothermic effects from different environmental factors on the cathode with limited
parameter samples.

Support vector machine (SVM) is also a robust supervised learning algorithm widely utilized in classifica-
tion and regression tasks. Its fundamental principle involves identifying the optimal hyperplane in high-
dimensional space to effectively separate different classes of data points. SVM demonstrates strong perfor-
mance in managing high-dimensional data and exhibits notable advantages in small-sample learning and re-
silience to noise. Given the limited sample size of the dataset in this study and the presence of multiple output
parameters, the suitability of the SVMmodel is evident. Therefore, this research develops the SVMmodel for
data prediction, leveraging its strengths in complex data environments [45,46].

In this SVM model, C = 10 indicates a stronger penalty that reduces misclassification while maintaining the
model’s generalization ability. The parameter coef0 = 0.0 ensures that the linear and nonlinear combinations
of independent variables remain unbiased in the polynomial kernel function. Additionally, gamma = 0.1 con-
trols the influence range of the data points, with a lower gamma value effectively preventing overfitting and
enhancing the model’s robustness in high-dimensional space. The choice of kernel = “poly” selects a poly-
nomial kernel, which accommodates the complex structures of nonlinear features, significantly improving
classification accuracy. This well-considered combination of hyperparameters ensures the model’s efficiency
and precision when addressing complex data.

As illustrated in Figure 9, a comprehensive performance evaluation of the established SVMmodel by compar-
ing predicted and actual values in the test set is established. The distribution of data points indicates that the
prediction performance of the SVM model is average; although most points are near the diagonal, significant
errors remain. R2 for each output parameter in the test set is presented in Supplementary Table 8. The average
R2 for the training set is 0.81, signifying that the model explains approximately 81% of the variance, demon-
strating a good fit. However, the average R2 for the test set decreases to 0.64, suggesting that the model faces
challenges with generalization, possibly due to overfitting. Furthermore, the average MSE for the training set
is 0.015, indicating a small prediction error on the training data. In contrast, the average MSE for the test set
rises to 0.033, reflecting increased prediction error on unseen data, which reinforces the conclusion regarding
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Figure 9. Predicted value 𝑣𝑠. true value in the test set using the developed SVMmodel.

Table 8. Comparison of ANN and SVMmodel performance

Model ANN SVM

Model setting

Parameter Value Parameter Value
hidden_layer_size (16, 32, 64, 64, 32) C 10
activation function, solver tanh, Sgd coef0 0.0
max_iter, tol 300, 1e−6 gamma 0.1
learning_rate_init 0.01 kernel poly

Accuracy

R2 for training set 0.75 0.81
R2 for test set 0.73 0.64
MSE for training set 0.022 0.015
MSE for test set 0.030 0.033

the model’s limited generalization ability. This issue may arise from the presence of overlapping sample inputs
within the dataset [47].

Table 8 summarizes the performance of the ANN and SVM models. The R2 of the ANN model on the test
set is 0.73, significantly exceeding the SVM model’s value of 0.64. This indicates that the ANN captures the
intrinsic patterns in the data more effectively and demonstrates superior generalization ability. Additionally,
the MSE for the ANN on the test set is 0.03, markedly lower than the SVM’s MSE of 0.033, reflecting a smaller
prediction error in the ANN. This superior performance can be attributed to the use of the tanh activation
function in the ANN, which effectively captures nonlinear relationships and enhances the model’s expressive
capability. Furthermore, the deep architecture of the ANN, with layers structured as (16, 32, 64, 64, 32), enables
it to learn multi-level feature representations, thereby adapting well to complex high-dimensional data. In
contrast, the SVM’s reliance on fixed parameter settings limits its generalization ability, particularly in small
sample scenarios. Consequently, the ANN model efficiently uncovers underlying data patterns, resulting in
enhanced predictive performance. This study’s high-dimensional input and output parameters make ANNs
ideally suited for modeling complex thermal decomposition processes, excelling at capturing intricate multi-
parameter relationships. However, ANN performance is limited by dataset size; a larger dataset would yield
more accurate predictions. In contrast, SVMs, while suitable for smaller datasets and simpler problems, are less
effective at modeling such complex, high-dimensional interactions. The choice of ANNs represents a trade-off
between their superior capabilities for handling multi-parameter systems and the need for a larger dataset.

AHP quantitative scoring framework for cathode
Researchers are required to input the elemental composition of the cathodematerial alongwith its atomic ratios
and provide relevant environmental parameters. These inputs will then be processed through an ANN model
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Table 9. Cathode thermal performance judgment results of NCM 811

Sample Acronym Experimental value Assessed value Total weight Score Total score

NCM811

T1 439 100 0.2873 28.73

100

T2 568 100 0.1427 14.27
T3 615 100 0.0894 8.94
T4 547 100 0.0503 5.03
T5 587 100 0.0319 3.19
T6 623 100 0.0216 2.16
M1 0.25 100 0.074 7.4
M2 0.227 100 0.0408 4.08
M3 76.09 100 0.0225 2.25
H1 510.53 100 0.2053 20.53
H2 161.41 100 0.0342 3.42

to attain accurate predictions. Ultimately, the analytic hierarchy process (AHP) method enables a systematic
evaluation and quantitative scoring of the thermophysical parameters of cathode materials, thereby offering a
robust scientific basis for assessing their safety.

In this study, all experiments were conducted using the NCM811 battery cathode material with a heating rate
of 10 ◦C/min under an atmosphere of 5%H2/Ar at a flow rate of 100 mL/min. By adjusting variables such as
elemental atomic ratio, H2 content, gas flow rate, and heating rate, a series of experimental conditions were
tested. The 11 key parameters obtained from the NCM811 material were used as a reference to evaluate the
thermal decomposition risk of othermaterials. A higher score indicates a greater risk of thermal decomposition
for the battery cathode material under the tested conditions. In this work, the evaluation result of the thermal
properties of NCM811 battery cathodes under 5%H2/Ar exposure is presented in Table 9.

T1, the initial thermal decomposition temperature of the battery cathode material, plays a critical role in influ-
encing T2-T6. Due to its significant impact on the overall thermal decomposition process, it has been assigned
the highest weight of 0.2873 in the scoring system. Additionally, the heat generated during the thermal decom-
position of battery cathode materials after exposure to hydrogen and elevated temperatures is closely related
to the heat release during battery thermal runaway, especially when the scale of the study is expanded. As
a result, this factor is also recognized as another key parameter influencing the thermal risk of the battery
material, which is assigned a weight of 0.2053. During thermal decomposition, heat is released, while heat is
absorbed during the reduction phase. As a result, H1 is given a higher weight of 0.074 due to its greater role
in heat generation, whereas H2 is assigned a weight of 0.048 in the thermal risk assessment.

The evaluation results of the thermal properties of cathodes with varying atomic ratios under 5%H2/Ar ex-
posure are presented in Supplementary Tables 9-11. These results are derived from experimental data and
normalized calculations, using NCM811 (raw material) as the based parameter. The respective scores, which
represent the influence of each cathode on overall thermal properties, are shown in Figure 10 as 100, 97.06,
91.71, and 86.46. The total thermal risk score for the battery cathode material, along with the scores for each
primary impact factor, is clearly outlined. Specifically, among all four materials, NCM811 exhibits the highest
T and H scores (64.57 and 11.48, respectively). This indicates that the NCM811 battery cathode material is
more prone to thermal decomposition and releases more heat than the others, which also matches the previ-
ous analysis of the experimental data. In contrast, the M score increases with higher Co and Mn content in
the cathode material. This may be attributed to the stabilizing role of Mn, which facilitates a phase transition
from layered structure to spinel structure at the onset of the decomposition reaction. This transition leads to
a rapid collapse of the material’s crystal structure, resulting in an accelerated reaction rate. In summary, the
thermal risk levels of the cathodes are ranked as follows: NCM811 > NCM622 > NCM523 > NCM111. This
calculation method provides a more intuitive comparison of the thermal performances of different cathodes.
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Figure 10. The result of cathode thermal risk with various elemental compositions.

Figure 11. User interface of cathodes thermal degradation prediction & risk evaluation system (BCTR) (Available from: http://cathode.fire
labxy.com/).

To enhance accessibility and usability for researchers and industry practitioners, we have developed an open-
access online software platform named the Lithium-ion Battery Cathodes Thermal Degradation Prediction
& Risk Evaluation System (BCTR). This tool, powered by an advanced ANN model, is designed to facilitate
rapid and accurate predictions of cathode thermophysical properties and degradation behaviors under inert
argon atmospheres. The software is available at http://cathode.firelabxy.com/. Figure 11 showcases the user
interface of the BCTR system, where users can input the elemental composition of LIB cathodes and key
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environmental parameters (e.g., hydrogen content, gas flow rate, and heating rate). Based on these inputs,
the system automatically calculates critical thermophysical properties, predicts DTG curves, and provides a
comprehensive risk assessment score for the thermal degradation of the selected cathode material. The BCTR
system delivers results through intuitive visualizations, offering clear and actionable insights. Continuous
updates will enhance the AI model by incorporating more TGA data, improving accuracy and broadening
its applicability. By bridging cutting-edge machine learning with user-friendly design, BCTR represents a
significant step forward in enabling the efficient evaluation of thermal safety and performance for LIB cathodes.

CONCLUSIONS
This study investigates the hydrogen attack process on ternary cathode materials and the associated factors.
During the reaction, 11 key parameters were extracted: 𝑇𝑜1, 𝑇𝑚1, 𝑇𝑜2, 𝑇𝑚2, 𝑇𝑜3, 𝑇𝑒 , 𝑀𝐿𝑅1, 𝑀𝐿𝑅2, 𝐻1, 𝐻2, and
𝑚𝑟 . The findings indicate that, under hydrogen attack, NCM cathode materials undergo an earlier transfor-
mation from the layered structure to spinel and rock salt phases, accompanied by exothermic reactions. The
atomic ratios of Li, Ni, Co and Mn have varying effects on the thermal stability of NCM. Specifically, the
decomposition of NCM811 after complete delithiation occurs at 162 ◦C, which is 323 ◦C lower than the raw
cathode. Additionally, higher content of H2 accelerates the fragmentation of the cathode particles.

Pearson correlation analysis reveals the relationships among the parameters more clearly. Notably, lithium
content exhibits a strong correlation (0.79) with the cathode’s decomposition, while most of key temperature
parameters have correlation coefficients exceeding 0.9. The correlation data establishes a solid basis for de-
veloping an ANN model for predictive analysis. After identifying the optimal hyperparameters, the model
demonstrated robust predictive performance, achieving an R2 value of 0.75 for the training set and 0.73 for the
test set. Finally, thermal performance assessment (AHP) method was developed to quantitatively evaluate the
thermal properties of cathode materials by weighting the key parameters.

Building on these findings, future research should focus on gathering larger, more diverse datasets to enhance
model robustness and generalization. Exploring advanced machine learning algorithms, such as ensemble
methods or deep learning frameworks, could further enhance predictive accuracy. Incorporating higher-
dimensional parameters, includingmicrostructural data (e.g., scanning electronmicroscopy images, elemental
mapping, and crystallographic phase analysis), would provide deeper insights into degradation mechanisms.
Additionally, integratingmachine learningmodels with physical or thermodynamic simulations holds promise
for incorporating domain-specific knowledge and refining predictions. These advancements will expand the
scope of cathode material evaluation and foster innovation in next-generation battery technologies.
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