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Abstract
In many probabilistic analysis problems, the homogeneous/nonhomogeneous non-Gaussian field is represented as a
mapped Gaussian field based on the Nataf translation system. We propose a new sample-based iterative procedure
to estimate the underlying Gaussian correlation for homogeneous/nonhomogeneous non-Gaussian vector or field.
The numerical procedure takes advantage that the range of feasible correlation coefficients for non-Gaussian random
variables is bounded if the translation system is adopted. The estimated underlying Gaussian correlation is then
employed for unconditional as well as conditional simulation of the non-Gaussian vector or field according to the
theory of the translation process. We then present the steps for augmenting the simulated non-Gaussian field through
the Karhunen-Loeve expansion for a refined discretized grid of the field. In addition, the steps to extend the procedure
described in the previous section to the multi-dimensional field are highlighted. The application of the proposed
algorithms is presented through numerical examples.

Keywords: Simulation, unconditional simulation, conditional simulation, homogeneous and nonhomogeneous non-
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1. INTRODUCTION
Probabilistic analysis and reliability estimation often require the unconditional and conditional simulation of
the correlated non-Gaussian vector of random variables with the prescribed marginal probability distribution
and correlation coefficients. The use of the simulated samples for uncertain propagation or reliability analysis
for civil engineering problems is well illustrated in several textbooks [1–3]. The simulation could be carried
out by modeling the random variables using the Nataf translation system (or theory of translation process or
normal to anything) [3–6], which represents the joint probability distribution of the vector of random variables
by the Gaussian copula [7] and probability transformation. The simulation can also be based on normal poly-
nomials [8–11]. A key component of the modeling is to evaluate underlying Gaussian correlation coefficients
based on the prescribed correlation coefficients for the non-Gaussian random variables [12–15]. This underlying
Gaussian correlation is governed by a double integral equation. Since the analytical solution for the underly-
ing Gaussian correlation is only available under very special circumstances, the underlying characteristics are
frequently evaluated using an iterative procedure and numerical integrationmethods. Moreover, given a corre-
lation coefficient for the non-Gaussian random variables, there is no guarantee that one can find the underlying
Gaussian correlation based on the Nataf translation system [12,13,16]. An additional problem for the modeling
that needs to be dealt with is that the nearest correlation matrix [17,18] may need to be employed since there is
no guarantee that the derived underlying Gaussian correlation matrix from the translation process is positive
semi-definite.

Besides simulating the non-Gaussian vector of randomvariables, the simulation of nonstationary/nonhomogeneous
and non-Gaussian random fields is also of importance for structural reliability estimation [19]. Two popular
methods to simulate the random field are the spectral representation method (SRM) and the method based
on the Karhunen-Loeve (KL) expansion. SRM [20–22] is based on the spectral characteristics of the random
field in the time domain, space domain, or both. The spectral characteristics of the field are defined by the
power spectral density (PSD) function obtained by using Fourier transform. SRM was extended to simulate
nonstationary/nonhomogeneous and non-Gaussian fields [5,23–26]. These studies use iterative procedures to
find the underlying Gaussian PSD function; the PSD and autocorrelation (AC) function forms a Fourier pair
(i.e., Wiener - Khintchine theorem). The sampled Gaussian field using the underlying Gaussian PSD function
can then be mapped to the non-Gaussian domain based on the theory of the translation process. SRM was
extended for conditional simulation in several studies [27–30] for stationary/nonstationary processes and fields
based on the conditional joined Gaussian distribution function.

The KL expansion is a special case of the orthogonal series expansion [31]. The orthogonal functions in KL
expansion are obtained from the eigenfunctions of a Fredholm integral equation of the second kind with the
autocovariance function as the kernel [19]. A random field is represented by the KL expansion with random
coefficients. There are many studies focused on simulating the random field based on the KL expansion with
engineering applications [19,32–36]. Since the sum of the KL expansion with random coefficients leads to the
Gaussian process, an iterative procedure was proposed [32,33] to simulate the non-Gaussian process. It includes
sampling many sets of random fields, and updating the simulated fields by modifying and shuffling random
expansion coefficients based on ranking in each iteration. The adequacy of the sampled field is judged based
on the closeness between the marginal distribution of the sampled field and its prescribed distribution. The
use of numerical integration to evaluate the underlying Gaussian correlation function for a non-Gaussian field
was considered in several studies [6,35]. They sampled the Gaussian field based on the underlying Gaussian
correlation function and mapped the sampled field to the non-Gaussian field. The disadvantages of using
different methods, including the numerical integration method, are discussed in the literature [6].

In the present study, we propose a new sample-based iterative procedure to estimate the underlying Gaus-
sian correlation or its nearest correlation matrix for a non-Gaussian vector or process. We use the estimated
underlying Gaussian correlation to simulate the non-Gaussian vector or field according to the theory of the
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translation process. We then proposed the steps for augmenting the simulated non-Gaussian field through
the KL expansion for a refined discretized grid of the field. We also outline the necessary steps for the con-
ditional simulation of the non-Gaussian field. In the following, we first describe the steps used to evaluate
the underlying Gaussian correlation for a non-Gaussian process and simulate the non-Gaussian process. We
then describe the steps to augment the simulated field using the KL expansion and the formulations for the
conditional simulation. The proposed simulation-based iterative procedure to evaluate the underlying Gaus-
sian correlation and its use to carry out unconditional and conditional simulation is illustrated through several
numerical examples.

2. EVALUATE THE UNDERLYING GAUSSIAN CORRELATION AND SIMULATION
2.1. Estimating the underlying Gaussian correlation and unconditional simulation
Consider a one-dimensional random field𝑈 (𝑥) with themarginal cumulative distribution function (CDF) rep-
resented by 𝐹𝑈 (𝑥);𝑥 (𝑢(𝑥); 𝑥) and the AC function, 𝜌𝑌

(
𝑥 𝑗 , 𝑥𝑘

)
, where 𝑥 𝑗 and 𝑥𝑘 represent two points in the field.

Its standardized version𝑌 (𝑥),𝑌 (𝑥) = (𝑈 (𝑥)−𝜇𝑈 (𝑥))/𝜎𝑈 (𝑥) , has zero-mean and unit variance, and themarginal
CDF, 𝐹𝑌 (𝑥);𝑥 (𝑦(𝑥); 𝑥) equals 𝐹𝑈 (𝑥);𝑥 (𝑢(𝑥); 𝑥). Its AC function is the same as that of𝑈 (𝑥), 𝜌𝑌

(
𝑥 𝑗 , 𝑥𝑘

)
. Note that

the distribution type 𝐹𝑌 (𝑥);𝑥 (𝑦(𝑥); 𝑥) at two different points within the field may differ and 𝜌𝑌
(
𝑥 𝑗 , 𝑥𝑘

)
can be

used to represent the AC function of a homogeneous/nonhomogeneous field. Once a sample of 𝑌 (𝑥), 𝑦(𝑥), is
obtained, its corresponding sample 𝑢(𝑥) can be calculated using 𝑢(𝑥) = 𝜇𝑈 (𝑥) + 𝜎𝑈 (𝑥)𝑦(𝑥).

Since, in many practical applications, the data collection and data analysis for a random field is carried out at
discrete points with a given sampling interval. Let [𝑥] 𝑝 = [𝑥1, · · · , 𝑥𝑝]𝑇 represent a vector of 𝑥 of size 𝑝 × 1
at the discrete points, where the superscript 𝑇 denotes the transpose, and 𝑥 𝑗 represents the 𝑗-th element of
the vector. It is considered that the AC function of the field at [𝑥] 𝑝 can be adequately represented by the
correlation coefficient matrix ⟦𝐶𝜌𝑌⟧ with the ( 𝑗 , 𝑘)-th element equal to 𝜌𝑌

(
𝑥 𝑗 , 𝑥𝑘

)
for 𝑗 , 𝑘 = 1, · · · , 𝑝. Since

𝐹𝑌 (𝑥 𝑗 );𝑥 𝑗 (𝑦(𝑥 𝑗 ); 𝑥 𝑗 ) and ⟦𝐶𝜌𝑌⟧ can also be used to describe a vector of a non-Gaussian vector with 𝑥 as a
dummy variable (i.e., only the index is required), the proposed simulation procedure for the discretized field
in the following is also applicable to a vector of non-Gaussian random variables.

If the marginal CDF is Gaussian and ⟦𝐶𝜌𝑌⟧ is positive semi-definite, the simulation can be carried out using
the well-known procedure based on the Cholesky decomposition [37],

[𝑦] 𝑝 = ⟦𝐿⟧[𝑧] 𝑝 , (1)

where [𝑦] 𝑝 = [𝑦(𝑥1), · · · , 𝑦(𝑥𝑝)]𝑇 represents a sample of [𝑌 ] 𝑝 = [𝑌1, · · · , 𝑌𝑝]𝑇 and 𝑌 𝑗 = 𝑌 (𝑥 𝑗 ), ⟦𝐿⟧ denotes
the lower triangular matrix obtained by applying Cholesky decomposing to ⟦𝐶𝜌𝑌⟧, [𝑧] 𝑝 = [𝑧1, · · · , 𝑧𝑝]𝑇 is a
sample of [𝑍] 𝑝 of size 𝑝 × 1, and 𝑍 𝑗 and 𝑍𝑘 are standard independent normal variables for 𝑗 ≠ 𝑘 .

However, if the prescribedmarginal distribution is notGaussian, [𝑦] 𝑝 obtained fromEquation (1) is inadequate
since the samples from Equation (1) do not follow the prescribed marginal CDF. To overcome this, we note
that given the underlying Gaussian correlation, 𝜌𝐺 , the correlation coefficient𝑌 𝑗 and𝑌𝑘 , according to the Nataf
translation system, 𝑐 𝑗 𝑘 (𝜌𝐺), is given by [4,5,12,13],

𝑐 𝑗 𝑘 (𝜌𝐺) =
∫ ∞

−∞

∫ ∞

−∞
𝐹−1
𝑌 (𝑥 𝑗 );𝑥 𝑗 (Φ(𝜓 𝑗 ); 𝑥 𝑗 )𝐹−1

𝑌 (𝑥𝑘 );𝑥𝑘 (Φ(𝜓𝑘 ); 𝑥𝑘 )𝜙2(𝜓 𝑗 , 𝜓𝑘 ; 𝜌𝐺)𝑑𝜓 𝑗𝑑𝜓𝑘 (2)

where 𝜙2(𝜓 𝑗 , 𝜓𝑘 ; 𝜌𝐺) is the joint probability distribution function of two correlated standard normal variables
with correlation 𝜌𝐺 , andΦ( ) is the standard normalCDF.However, itmust be noted that given 𝐹𝑌 (𝑥);𝑥 (𝑦(𝑥); 𝑥 𝑗 )
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and 𝑐 𝑗 𝑘 (𝜌𝐺), the underlying Gaussian correlation 𝜌𝐺 may not exist [4,13,16]. As the mapping shown in Equa-
tion (2) is from the Gaussian to non-Gaussian random variables, the properties of 𝑐 𝑗 𝑘 (𝜌𝐺) and 𝜌𝐺 are as
follows [13,16,38,39]:

a)
��𝑐 𝑗 𝑘 (𝜌𝐺)�� ≤ |𝜌𝐺 |, which also indicates that 𝑐 𝑗 𝑘 (𝜌𝐺) = 0 if 𝜌𝐺 = 0;

b) 𝑐 𝑗 𝑘 (𝜌𝐺) ≥ 0(≤ 0) if 𝜌𝐺 ≥ 0(≤ 0). 𝑐 𝑗 𝑘 (𝜌𝐺) is a non-decreasing function for −1 ≤ 𝜌𝐺 ≤ 1 and is continuous
under mild conditions. 𝑐 𝑗 𝑘 (𝜌𝐺) is a strictly increasing function of 𝜌𝐺 for continuous random variables with
finite variance, and
c) The maximum and minimum values of feasible correlation coefficients �̂�𝑁𝐺, 𝑗 𝑘 and �̆�𝑁𝐺, 𝑗 𝑘 for 𝑌 𝑗 and 𝑌𝑘 are
equal to 𝑐 𝑗 𝑘 (1) and 𝑐 𝑗 𝑘 (−1), respectively;

𝑐 𝑗 𝑘 (±1) (i.e., �̂�𝑁𝐺, 𝑗 𝑘 and �̆�𝑁𝐺, 𝑗 𝑘 ) can be calculated based on 𝑚 samples of [𝑍] 𝑝 , which is included in a 𝑝 × 𝑚

matrix ⟦𝑧⟧ with its 𝑗-th column denoted as [𝑧] 𝑝, 𝑗 , 𝑗 = 1, · · · , 𝑚. Using these samples and Equation (2) results
in,

𝑐 𝑗 𝑘 (±1) = 1
𝑚

𝑚∑
𝑞=1

𝐹−1
𝑌 (𝑥 𝑗 );𝑥 𝑗 (Φ(𝑧 𝑗 ,𝑞))𝐹−1

𝑌 (𝑥𝑘 );𝑥𝑘 (Φ(±𝑧𝑘,𝑞)) (3)

Once �̂�𝑁𝐺, 𝑗 𝑘 and �̆�𝑁𝐺, 𝑗 𝑘 are calculated, they can be used to modify ⟦𝐶𝜌𝑌⟧ to satisfy the maximum and mini-
mum requirements. This results in the modified symmetric matrix ⟦𝐶∗

𝜌𝑌⟧ with its diagonal equal to one and
its ( 𝑗 , 𝑘)-th element 𝜌∗𝑌

(
𝑥 𝑗 , 𝑥𝑘

)
, for 𝑗 ≠ 𝑘 , is given by,

𝜌∗𝑌
(
𝑥 𝑗 , 𝑥𝑘

)
=

{
𝑚𝑖𝑛

(
𝜌𝑌

(
𝑥 𝑗 , 𝑥𝑘

)
, �̂�𝑁𝐺, 𝑗 𝑘

)
, if 𝜌𝑌

(
𝑥 𝑗 , 𝑥𝑘

)
≥ 0

𝑚𝑎𝑥
(
𝜌𝑌

(
𝑥 𝑗 , 𝑥𝑘

)
, �̆�𝑁𝐺, 𝑗 𝑘

)
, if 𝜌𝑌

(
𝑥 𝑗 , 𝑥𝑘

)
≤ 0

. (4)

For those elements in ⟦𝐶𝜌𝑌⟧ whose elements are greater than �̂�𝑁𝐺, 𝑗 𝑘 or smaller than �̆�𝑁𝐺, 𝑗 𝑘 , the underlying
Gaussian correlation coefficients equal 1 and −1, respectively. For the elements in ⟦𝐶∗

𝜌𝑌⟧ that are not equal to
�̂�𝑁𝐺, 𝑗 𝑘 or �̆�𝑁𝐺, 𝑗 𝑘 , the underlyingGaussian correlation coefficient 𝜌𝐺, 𝑗 𝑘 for the non-Gaussian random variables
𝑌 𝑗 and𝑌𝑘 , for 𝑗 < 𝑘 , with prescribed 𝜌∗𝑌

(
𝑥 𝑗 , 𝑥𝑘

)
can be evaluated by solving 𝑐 𝑗 𝑘 (𝜌𝐺, 𝑗 𝑘 ) − 𝜌∗𝑌

(
𝑥 𝑗 , 𝑥𝑘

)
= 0, where

𝑐 𝑗 𝑘 (𝜌𝐺, 𝑗 𝑘 ) is evaluated by using samples and Equation (2)

𝑐 𝑗 𝑘 (𝜌𝐺, 𝑗 𝑘 ) =
1
𝑚

𝑚∑
𝑞=1

𝐹−1
𝑌 (𝑥 𝑗 );𝑥 𝑗 (Φ(𝑧 𝑗 ,𝑞))𝐹−1

𝑌 (𝑥𝑘 );𝑥𝑘 (Φ(𝜌𝐺, 𝑗 𝑘 𝑧 𝑗 ,𝑞 +
√

1 − 𝜌2
𝐺, 𝑗 𝑘 𝑧𝑘,𝑞) (5)

We note that 𝜌𝐺, 𝑗 𝑘 is equal to 1 and −1 for cases where 𝜌∗𝑌
(
𝑥 𝑗 , 𝑥𝑘

)
equals �̂�𝑁𝐺, 𝑗 𝑘 and �̆�𝑁𝐺, 𝑗 𝑘 , respectively.

For other cases, an iterative numerical root-finding method such as the bisection method and the Newton-
Raphson method can be used since 𝜌𝐺, 𝑗 𝑘 is bounded by 𝜌∗𝑌 (𝑥 𝑗 , 𝑥𝑘 ) ≤ 𝜌𝐺, 𝑗 𝑘 ≤ 1 for 𝜌∗𝑌 (𝑥 𝑗 , 𝑥𝑘 ) > 0 and by
−1 ≤ 𝜌𝐺, 𝑗 𝑘 ≤ 𝜌∗𝑌 (𝑥 𝑗 , 𝑥𝑘 ) for 𝜌∗𝑌 (𝑥 𝑗 , 𝑥𝑘 ) < 0. For the presented study, we implemented the bisection method
to find 𝜌𝐺, 𝑗 𝑘 . We also formulate the problem of finding 𝜌𝐺, 𝑗 𝑘 as an optimization problem,

Minimize
(
𝑐 𝑗 𝑘

(
𝜌𝐺, 𝑗 𝑘

)
− 𝜌∗𝑌

(
𝑥 𝑗 , 𝑥𝑘

) )2
Subjected to 𝜌∗𝑌

(
𝑥 𝑗 , 𝑥𝑘

)
≤ 𝜌𝐺, 𝑗 𝑘 ≤ 1, if 𝜌∗𝑌

(
𝑥 𝑗 , 𝑥𝑘

)
> 0

or − 1 ≤ 𝜌𝐺, 𝑗 𝑘 ≤ 𝜌∗𝑌
(
𝑥 𝑗 , 𝑥𝑘

)
, if 𝜌∗𝑌

(
𝑥 𝑗 , 𝑥𝑘

)
< 0

(6)

A verification that the underlying Gaussian correlation matrix ⟦𝐶𝐺⟧ with the off-diagonal element equal to
𝜌𝐺, 𝑗 𝑘 is a positive semi-definite matrix is to be carried out. If this condition is not satisfied, an algorithm for
computing its corresponding nearest correlation matrix ⟦�̃�𝐺⟧ [17,18] is employed to obtain a proper correlation
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coefficient matrix. Once the underlying Gaussian correlationmatrix ⟦𝐶𝐺⟧ (or ⟦�̃�𝐺⟧) is available, the Gaussian
field can be simulated, and the sampled field can be mapped to the non-Gaussian field through the probability
distribution transformation. If ⟦�̃�𝐺⟧ is used for simulation, the corresponding correlation matrix ⟦�̃�∗

𝜌𝑌⟧ for
the non-Gaussian field can be evaluated using the samples in the non-Gaussian field. Note that ⟦�̃�∗

𝜌𝑌⟧ may
differ from ⟦𝐶𝜌𝑌⟧ because of the side effect of using the translation process and the nearest correlation matrix.

Based on the above description, the proposed simulation procedure in the present study for the non-Gaussian
vector or field is summarized as follows:

1. Sample the 𝑝 × 𝑚 matrix ⟦𝑍⟧ with its 𝑗-th column [𝑧] 𝑝, 𝑗 denoting the 𝑗-th sample of [𝑍] 𝑝 ;
2. Evaluate 𝑐 𝑗 𝑘 (±1) (i.e., �̂�𝑁𝐺, 𝑗 𝑘 and �̆�𝑁𝐺, 𝑗 𝑘 ) using Equation (3), and calculate 𝜌∗𝑌

(
𝑥 𝑗 , 𝑥𝑘

)
using Equation (4);

3. Calculate the underlying Gaussian correlation coefficients 𝜌𝐺, 𝑗 𝑘 by solving 𝑐 𝑗 𝑘 (𝜌𝐺, 𝑗 𝑘 ) − 𝜌∗𝑌
(
𝑥 𝑗 , 𝑥𝑘

)
= 0 for

𝑗 = 1, · · · , 𝑝, and 𝑘 = 𝑗 +1, · · · , 𝑝, noting that 𝜌𝐺, 𝑗 𝑘 equals 1 and −1 for 𝜌∗𝑌
(
𝑥 𝑗 , 𝑥𝑘

)
equal to �̂�𝑁𝐺, 𝑗 𝑘 and �̆�𝑁𝐺, 𝑗 𝑘 ,

respectively;
4. Form the underlying Gaussian correlation matrix ⟦𝐶𝐺⟧ and verify it is positive semi-definite. If this condi-
tion is not satisfied, compute the nearest correlation matrix ⟦�̃�𝐺⟧ [18].
5. Apply Cholesky decomposition [40] to ⟦𝐶𝐺⟧ (or ⟦�̃�𝐺⟧ if ⟦𝐶𝐺⟧ is not positive semi-definite) to obtain the
lower diagonal matrix ⟦𝐿⟧, and calculate ⟦Ψ⟧ = ⟦𝐿⟧⟦𝑧⟧. Apply 𝐹−1

𝑌 (𝑥 𝑗 );𝑥 𝑗 (Φ(𝜓 𝑗 ,𝑞)) to each element of ⟦Ψ⟧
to obtain ⟦𝑦⟧ with its 𝑗-th column representing the 𝑗-th sample of the field. The samples ⟦𝑦⟧ can be used to
obtain 𝑢(𝑥) based on 𝑢(𝑥) = 𝜇𝑈 (𝑥) + 𝜎𝑈 (𝑥)𝑦(𝑥). If ⟦�̃�𝐺⟧ is used for simulation, ⟦𝑦⟧ can be used to evaluate
⟦�̃�∗

𝜌𝑌⟧ for comparison purposes.

A flowchart showing the above steps are presented in Figure 1, where the panel for conditional simulation is to
be discussed in the following sections. The procedure can be applied to the homogeneous/nonhomogeneous
non-Gaussian process as well as a vector of the non-Gaussian random variables, as mentioned earlier.

2.2. Sampling of the simulated field by using the KL expansion
In the previous section, it is considered that the marginal CDF and the correlation function are prescribed
for the nonhomogeneous non-Gaussian field. Moreover, ⟦𝐶𝜌𝑌⟧ (or ⟦�̃�∗

𝜌𝑌⟧ ) for the field at selected discrete
points [𝑥] 𝑝 is established, and the underlying Gaussian correlation matrix ⟦𝐶𝐺⟧ (or its corresponding nearest
correlation matrix ⟦�̃�𝐺⟧) is obtained at [𝑥] 𝑝 . For simplicity and without loss of generality, unless otherwise
indicated, the notations ⟦𝐶𝐺⟧ and ⟦𝐶𝜌𝑌⟧ are replaced by ⟦�̃�𝐺⟧ and ⟦�̃�∗

𝜌𝑌⟧ in the following.

The use of ⟦�̃�∗
𝜌𝑌⟧ and KL expansion to simulate the non-Gaussian field by using an iterative procedure was

presented in several studies [32,33]. Since ⟦�̃�𝐺⟧ is already available, it can be used with the KL expansion to sim-
ulate the Gaussian field and map the simulated field to the non-Gaussian field through probability distribution
transformation [35]. The application of the KL expansion has been considered in the literature [41].

For completeness and in order to provide the background for the conditional simulation based on the KL
expansion, the use of the KL expansion is summarized below. In general, the random field (Gaussian or non-
Gaussian) 𝑌 (𝑥) can be expressed in the KL expansion [19,32],

𝑦(𝑥) =
∞∑
𝑞=1

√
𝜆𝑞 𝑓𝑞 (𝑥)𝑤𝑞 , (7)

where 𝑤𝑞 represents independent zero-mean and unit variance random variables. For practical applications,
the eigenvalue 𝜆𝑞 , and the eigenfunction 𝑓𝑞 (𝑥, 𝑗 ) can be determined by solving Fredholm integral equation of
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Figure 1. Flowchart of the proposed simulation procedure: the left panel represents the unconditional simulation, and the right panel shows
the steps for the conditional simulation of the field.

the second kind [42] over the domain of the field 𝜔 ,∫
Ω
𝜌(𝑥 𝑗 , 𝑥𝑘 ) 𝑓𝑞 (𝑥 𝑗 )𝑑𝑥 𝑗 = 𝜆𝑞 𝑓𝑞 (𝑥𝑘 ), (8)

By considering that the series shown in Equation (7) is truncated to the first few terms, an approximation to
𝑦(𝑥) is obtained.

By taking advantage of the availability of ⟦�̃�𝐺⟧, the practical implementation of simulating the Gaussian im-
plementation by using the KL expansion can be written as [43],

[𝜓] 𝑝 =
𝑝∑

𝑞=1

√
𝜆𝑞 [𝜃] 𝑝,𝑞𝑤𝑞 , (9)

where [𝜓] 𝑝 represents a sample of the Gaussian field at [𝑥] 𝑝 with unit variance and correlation coefficient
⟦�̃�𝐺⟧, the eigenvalue 𝜆𝑞 and eigenvector [𝜃] 𝑝,𝑞 are obtained by using the eigendecomposition or Cholesky
decomposition and singular value decomposition to ⟦�̃�𝐺⟧. For efficiency, Equation (9) can be truncated to
the first 𝑁 terms with 𝑁 ≪ 𝑝 by retaining the first 𝑁 terms with significant eigenvalues resulting in,

[𝜓] 𝑝 ≈
𝑁∑
𝑞=1

√
𝜆𝑞 [𝜃] 𝑝,𝑞𝑊𝑞 , (10)

By applying 𝐹−1
𝑌 (𝑥 𝑗 );𝑥 𝑗 (Φ(𝜓 𝑗 )), a sample of the non-Gaussian random field [𝑦] 𝑝 is obtained, where 𝜓 𝑗 𝑗 =

1, · · · , 𝑝, denotes the 𝑗-th element of [𝜓] 𝑝 . Note that the type of approximation given in Equation (9) forms
the basis for sparse sampling or compressive sensing [44].
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2.3. Conditional simulation
Consider that the field to be simulated 𝑌 (𝑥) [𝑖.𝑒.,𝑈 (𝑥)] is constrained by the observed values 𝑦(𝑥) at 𝑥 = 𝑥𝑘
where 𝑘 takes the index in Ω𝑐 = [𝑘1, 𝑘2, · · · , 𝑘𝑛𝑐]. To carry out the conditional simulation of the field 𝑦(𝑥)
at 𝑥 𝑗 for 𝑗 = 1, · · · , 𝑝 but 𝑗 ∉ Ω𝑐 , we note that the underlying Gaussian correlation matrix ⟦�̃�𝐺⟧ the field
at [𝑥] 𝑝 can be obtained based on the procedure shown in the flowchart depicted in Figure 1. Therefore, we
could take advantage of the availability of ⟦�̃�𝐺⟧ to carry out conditional simulation for the nonhomogeneous
non-Gaussian field. This could be done by first mapping the conditioning 𝑦(𝑥𝑘 ), for 𝑘 ∈ Ω𝑐 , to the Gaussian
space using,

𝜓(𝑥) = Φ
(
𝐹𝑦(𝑥);𝑥 (𝑦(𝑥); 𝑥)

)
, for 𝑥 = 𝑥𝑘 and 𝑘 ∈ Ω𝑐, (11)

Let [𝜓𝛼] denote the vector of size 𝑛𝑐 × 1 for all the mapped conditioning in the Gaussian field. Similarly, let
[𝜓𝛽] denote the vector of size (𝑝−𝑛𝑐) ×1 containing the values of the (zero-mean and unit variance) Gaussian
field for the remaining positions in the field 𝑥 𝑗 for 𝑗 within 1 to 𝑝 but 𝑗 ∉ Ω𝑐 . The unknown values of the
vector [𝜓𝛽] conditioned on [𝜓𝛼] are governed by the following joint Gaussian distribution [37],

𝑁
( [
𝜇𝛽 |𝛼

]
= ⟦𝐶𝛽𝛼⟧⟦𝐶−1

𝛼𝛼⟧ [𝜓𝛼] , ⟦Σ𝛽 |𝛼⟧ = ⟦𝐶𝛽𝛽⟧ − ⟦𝐶𝛽𝛼⟧⟦𝐶−1
𝛼𝛼⟧⟦𝐶𝛼𝛽⟧

)
(12)

where 𝑁 ( , ) denotes the multi-dimensional normal distribution with [𝜇𝛽 |𝛼] and ⟦Σ𝛽 |𝛼⟧ represent the mean
vector and covariance matrix, and C with subscript denotes submatrices that form the correlation coefficient
matrix of the vector of [[𝜓𝛼]𝑇 , [𝜓𝛽]𝑇 ]𝑇 , ⟦

𝐶𝛼𝛼 𝐶𝛼𝛽

𝐶𝛽𝛼 𝐶𝛽𝛽

⟧
(13)

This matrix can be constructed by rearranging ⟦�̃�𝐺⟧ of the field represented at discretized points of the field
at 𝑗 = 1, · · · , 𝑝.

By generating𝑚 conditional samples of [𝜓𝛽] based on Equation (12) [see also Equation (1)], transforming each
sampled value to 𝑦(𝑥) by using 𝐹−1

𝑌 (𝑥);𝑥 (Φ(𝜓)), and calculating 𝑢(𝑥) = 𝜇𝑈 (𝑥) + 𝜎𝑈 (𝑥)𝑦(𝑥), samples of the non-
Gaussian fields are obtained, which complements the conditioning value to describe the conditional random
field. This conditional simulation algorithm for the nonhomogeneous non-Gaussian field is very simple to use
[Figure 1] as the conditional Gaussian simulation by using Equation (12) is straightforward.

We also note that a method [34] was developed to carry out the conditional simulation of the Gaussian field
based on the KL expansion. It can be shown that their method for the underlying Gaussian random field at 𝑝
discretized points [𝑥] 𝑝 , [�̃�] 𝑝 , [i.e., analog to Equation (7) vs. Equation (9)] for the given ⟦�̃�𝐺⟧ can be written
as,

[�̃�] 𝑝 =
𝑝∑

𝑞=1

√
𝜂𝑞 [ℎ] 𝑝,𝑞

©«�̃�𝑞 +
𝑝∑
𝑗=1

𝑆𝑞, 𝑗𝑢 𝑗
ª®¬ , (14)

where the eigenvalue 𝜆𝑞 and eigenvector [ℎ] 𝑝,𝑞 are obtained by applying the eigendecomposition. In Equa-
tion (14), �̃�𝑞 denotes the 𝑞-th element of the conditional mean [�̃�]𝑞 of the size 𝑝 × 1 that is given by,

[�̃�] 𝑝 = ⟦√𝜂⟧⟦𝐺⟧𝑇
(
⟦𝐺⟧⟦√𝜂⟧2⟦𝐺⟧𝑇

)−1
[𝜓𝛼] , (15)
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and 𝑆𝑞, 𝑗 denotes the (𝑞, 𝑗)-the element of the matrix ⟦𝑆⟧ of the size 𝑝 × 𝑝 that is given by,

⟦𝑆⟧ = ⟦𝐼⟧ − ⟦√𝜂⟧⟦𝐺⟧𝑇
(
⟦𝐺⟧⟦√𝜂⟧2⟦𝐺⟧𝑇

)−1
⟦𝐺⟧⟦√𝜂⟧. (16)

where ⟦𝐼⟧ is the 𝑝 × 𝑝 identity matrix, ⟦𝐺⟧ is an 𝑛𝑐 × 𝑝 submatrix of ⟦ℎ⟧, in which the 𝑗-th column of ⟦𝐺⟧
is formed by the 𝑘-th elements of the 𝑗-th column of ⟦ℎ⟧ with the index 𝑘 ∈ Ω𝑐 .

Once �̃�(𝑥) or [�̃�] 𝑝 is sampled, the conditional field 𝑦(𝑥) or [𝑦] 𝑝 is obtained by using 𝐹−1
𝑌 (𝑥 𝑗 );𝑥 𝑗 (Φ(�̃� 𝑗 )). The

flowchart for the conditional simulation is included in Figure 1, whether the conditional Gaussian model
shown in Equation (12) or by using the KL expansion model shown in Equation (14) is considered. The use
of Equation (12) requires the simulation of the correlated Gaussian random variables, which can be done by
applying the Cholesky decomposition [Equation (1)]. The use of Equation (14) requires the evaluation of
eigenvalues and eigenvectors if they are unavailable. In both cases, the use of probability transformation is
required, and the steps are straightforward, as shown in Figure 1.

2.4. Discussion on the extension to the multidimensional random field
In this section, we highlight steps to extend the procedure described in the previous section to the 𝑛-dimensional
case. Consider the case of simulating the 𝑛-dimensional zero-mean and unit variance random field that is de-
fined over the domain of x, with the value represented by 𝑦(x), where 𝑥 = [𝑥1, · · · , 𝑥𝑛]. The field is defined
by the prescribed marginal CDF, 𝐹𝑦(𝑥);𝑥 (𝑦(𝑥); 𝑥), and the correlation coefficient function. Similar to the one-
dimensional field case, it is considered that the field is to be simulated at a set of discrete points that are denoted
as 𝑥𝑁 = [𝑥1, 𝑗1 , · · · , 𝑥𝑛, 𝑗𝑛 ], where [ 𝑗] = [ 𝑗1, · · · , 𝑗𝑛], 𝑗𝑘 = 1, · · · , 𝑝𝑘 , 𝑝𝑘 denotes the total number of points along
the 𝑥𝑘-axis, and 𝑁 represents the total number of points (i.e., combinations of 𝑗𝑘 , 𝑘 = 1, · · · , 𝑛, which equals∏𝑛

𝑘=1 𝑝𝑘 ) within the 𝑛-dimensional field to be considered. The correlation coefficient matrix for the random
field represented at the discretized points is to be calculated based on the prescribed correlation coefficient
function. In other words, we treat a multi-dimensional field by vectorizing it into a long one-dimensional vec-
tor, and the procedure described in the previous sections can be directly applied. Perhaps, the manipulation
of the 𝑛 indices in [j] for the points in the 𝑛-dimensional space could be tedious. A systematic ordering of the
index could facilitate the computer program task.

Since the extension to themulti-dimensional field is straightforward, no further consideration for the 𝑛-dimensional
case is made.

3. ILLUSTRATIVE EXAMPLES
3.1. Examples of using the proposed procedure to evaluate underlying Gaussian correlation and
unconditional simulation
Several numerical examples are presented by considering the homogeneous/nonhomogeneous processes with
weakly and strongly non-Gaussian processes to illustrate the applicability of the proposed procedures depicted
in Figure 1.

The examples in this subsection were considered in the literature [32,35]. The assumed marginal distributions
and the AC function for the homogeneous non-Gaussian cases (i.e., Cases 1 to 8) are listed in Table 1. The
use of the beta distribution described in the table leads to a weakly non-Gaussian field, while the use of the
lognormal distribution described in the table results in a strongly non-Gaussian field.

First, for each of the considered homogeneous cases, the application of the proposed procedure shown in
Figure 1 is employed. For the analysis, samples of the independent standard normally distributed random
variables are simulated for a sample size 𝑚 = 50, 000. This sample size is used throughout the numerical
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Table 1. Definition of the cases (see [35])

Case

Prescribed autocorrelation function for
homogeneous and nonhomogeneous cases
Cases 1 to 4 are homogeneous
Cases 4 to 8 are nonhomogeneous

Distribution type and notes

Beta distribution Lognormal distribution

1 𝐶𝜌1 (𝑥 𝑗 , 𝑥𝑘 ) = exp ( − |𝑥 𝑗 − 𝑥𝑘 |) 𝐹 (𝑦) = Γ(𝑝)Γ(𝑞)
Γ(𝑝+𝑞)

∫ 𝑢

0 𝑧𝑝−1 (1 − 𝑧)𝑞−1𝑑𝑧

𝑝 = 4, 𝑞 = 2.
For the Cases 1 to 4,
𝑢 = (𝑦 + 3.74)/(1.87 + 3.74).
The field is defined for 𝑥 within 0
to 2 and discretized using Δ𝑥 = 0.02.
For the Cases 5 to 8,
𝑢 = (𝑦 − 𝑦min) /(𝑦max − 𝑦min),
𝑦min = 𝜇𝑏

(
𝑥 𝑗

)
− 𝜎𝑏

(
𝑥 𝑗

) √ 𝑝 (𝑝+𝑞+1)
𝑞 ,

𝑦max = 𝜇𝑏
(
𝑥 𝑗

)
+ 𝜎𝑏

(
𝑥 𝑗

) √ 𝑞 (𝑝+𝑞+1)
𝑝 .

The mean 𝜇𝑏
(
𝑥 𝑗

)
= 0 and the standard

deviation 𝜎𝑏
(
𝑥 𝑗

)
could be obtained based

on the autocovariance function. The field is
defined for 𝑥 within 0 to 1 and discretized
using Δ𝑥 = 0.01.

𝐹 (𝑦) = 𝐹
(
𝑙𝑛(𝑦−𝛿)−𝛼

𝛽

)
,

𝛽 = 1.
For the Cases 1 to 4,
𝛼 = −0.7707 and 𝛿 = −0.7628.
The field is defined for 𝑥 within 0 to 2 and
discretized using Δ𝑥 = 0.02.
For the Cases 5 to 8, 𝛼(𝑥 𝑗 ) and 𝛿 (𝑥 𝑗 )
could be obtained by solving the equations
below,
𝜇𝑙

(
𝑥 𝑗

)
= 𝛿

(
𝑥 𝑗

)
+ exp

[
𝛼
(
𝑥 𝑗

)
+ 𝛽2

2

]
,

𝜎2
𝑙

(
𝑥 𝑗

)
=
[
exp

(
𝛽2

)
− 1

]
× exp

[
2𝛼

(
𝑥 𝑗

)
+ 𝛽2 ] .

The mean 𝜇𝑙
(
𝑥 𝑗

)
= 0 and the variance

𝜎2
𝑙

(
𝑥 𝑗

)
could be obtained based on the

autocovariance function. The field is
defined for 𝑥 within 0 to 1 and
discretized using Δ𝑥 = 0.01.

2 𝐶𝜌2 (𝑥 𝑗 , 𝑥𝑘 ) = exp ( − |𝑥 𝑗 − 𝑥𝑘 |2)

3
𝐶𝜌3

(
𝑥 𝑗 , 𝑥𝑘

)
= exp

(
−
��𝑥 𝑗 − 𝑥𝑘

��)
× cos

(
4𝜋

(
𝑥 𝑗 − 𝑥𝑘

) )
4

𝐶𝜌4
(
𝑥 𝑗 , 𝑥𝑘

)
= exp

(
−
��𝑥 𝑗 − 𝑥𝑘

��2)
× cos

(
4𝜋

(
𝑥 𝑗 − 𝑥𝑘

) )
5 𝐶𝜌5

(
𝑥 𝑗 , 𝑥𝑘

)
= min

(
𝑥 𝑗 , 𝑥𝑘

)
6

𝐶𝜌6 (𝑥 𝑗 , 𝑥𝑘 ) = 4(min(𝑥 𝑗 , 𝑥𝑘 )

− 𝑥 𝑗 𝑥𝑘 )

7
𝐶𝜌7 (𝑥 𝑗 , 𝑥𝑘 ) = min(𝑥 𝑗 , 𝑥𝑘 )

× cos(4𝜋 (𝑥 𝑗 − 𝑥𝑘 ))

8 𝐶𝜌8 (𝑥 𝑗 , 𝑥𝑘 )

analysis in the present study. The selection of 𝑚 = 50, 000 is based on a sensitivity analysis, indicating that
the use of 𝑚 = 10, 000 to 100, 000 is adequate for most considered cases. An increased 𝑚 results in an in-
creased computing time. The selection is also based on balancing the accuracy and computing time. These
samples are used to evaluate the bounds �̂�𝑁𝐺, 𝑗 𝑘 and �̆�𝑁𝐺, 𝑗 𝑘 . Based on the bounds shown in Equations (3)
and (4), ⟦𝐶∗

𝜌𝑌⟧ is obtained, and the corresponding underlying Gaussian matrix ⟦𝐶𝐺⟧ is determined by using
the bisection method and verified using the optimization approach formulated in Equation (6). In all cases,
the obtained 𝜌𝐺, 𝑗 𝑘 values by both approaches are practically identical. Since the same conclusion is observed
for the remaining numerical examples, only the bisection method is used to calculate 𝜌𝐺, 𝑗 𝑘 for the remaining
numerical examples. Note that the use of the bisection method leads to an error (i.e., the last bracketed inter-
val) of less than approximately 1/2𝑛𝐼 , where 𝑛𝐼 is the number of iterations. Therefore, an iteration of 7, 10, 13,
and 17 leads to the absolute value of the error less than about 1 × 10−2, 1 × 10−3, 1 × 10−4, and 1 × 10−5. 𝑛𝐼
less than 16 is used for all the computations. Moreover, a verification that ⟦𝐶𝐺⟧ is positive semi-definite is
carried out. ⟦𝐶𝐺⟧ is replaced by its corresponding nearest correlation matrix [18] ⟦�̃�𝐺⟧ if such a condition is
not satisfied. Finally, the non-Gaussian field is simulated following the steps shown in Figure 1, and the AC
function of simulated samples is calculated. The target AC function and the AC functions based on ⟦𝐶∗

𝜌𝑌⟧ and
⟦𝐶𝐺⟧ are presented in Figure 2 and Figure 3. For cases, when ⟦�̃�𝐺⟧ and ⟦�̃�∗

𝜌𝑌⟧ are calculated, they are shown
in Figure 2 and Figure 3.

The results presented in Figure 2 and Figure 3 indicate that the underlying Gaussian AC functions are close
to the target AC functions. The closeness is because the use of the beta distribution presented in Table 1 as
the marginal distribution leads to only weakly non-Gaussian fields for the considered cases. The weakly non-
Gaussian behavior was noted in the literature [35]. For Cases 2 and 4 (for the considered grid system), it is
observed that ⟦𝐶𝐺⟧ cannot be decomposed by the Cholesky decomposition. Therefore, its nearest correlation
matrix ⟦�̃�𝐺⟧ is calculated and used as the basis to simulate the non-Gaussian field. The corresponding ⟦�̃�∗

𝜌𝑌⟧
is calculated from the simulated non-Gaussian field. The plots shown in Figure 2 indicate that the differences
between ⟦𝐶𝐺⟧ and ⟦�̃�𝐺⟧ and between ⟦𝐶𝜌𝑌⟧ and ⟦�̃�∗

𝜌𝑌⟧ are very small. A further inspection of the numerical
results indicates that the absolute value of the difference between the elements in ⟦𝐶𝐺⟧ and its corresponding
element in ⟦�̃�𝐺⟧ is much less than 0.01.
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Figure 2. Comparison of the prescribed AC function, estimated AC function based on samples, and underlying Gaussian AC function for
Cases 1 to 8 by considering that the marginal distribution is the beta distribution shown in Table 1. The plots for Cases 5 to 8, considered
𝑥𝑘 = 0.5. AC: Autocorrelation.

The plots for Cases 5 to 8 shown in Figure 2 are those calculated for 𝑥 𝑗 = 0.5 and by varying 𝑥𝑘 within 0 to
1. Since Cases 5 to 8 are nonhomogeneous, the surfaces for their prescribed AC functions and for ⟦�̃�∗

𝜌𝑌⟧ are
presented in Figure 3, indicating that the latter mimics the former well. In addition, a quantitative comparison
of the difference between the prescribed AC function and that based on ⟦�̃�∗

𝜌𝑌⟧ is presented in Figure 3. The
differences are caused by the use of the limited samples (i.e., a sample size of 50000) as well as the use of the
nearest correlation matrix. In all cases, the small differences presented in the figure confirm the adequacy of
the procedure depicted in Figure 1.

By repeating the analysis that is carried out for the results presented in Figure 2 and Figure 3 but replacing
the beta distribution with the lognormal distribution shown in Table 1, the obtained results are shown in
Figure 4 and Figure 5. As pointed out in the study [35], the use of this lognormal distribution results strongly
non-Gaussian field. This strongly non-Gaussian behavior is reflected in the calculated underlying Gaussian
AC functions.

The plots presented in Figure 4 for Cases 3, 4, 7, and 8 indicate that there are segments where 𝜌𝐺, 𝑗 𝑘 equals
−1. This is because the calculated 𝜌𝑌 (𝑥 𝑗 , 𝑥𝑘 ) is less than �̆�𝑁𝐺, 𝑗 𝑘 [see Equation (4)]. For these cases, ⟦𝐶∗

𝜌𝑌⟧ and
⟦𝐶𝐺⟧ are calculated. Since an assessment indicates that ⟦𝐶𝐺⟧ does not form a proper correlation coefficient
matrix, its corresponding nearest correlation matrix ⟦�̃�𝐺⟧ is then calculated by using the algorithm given
in the study [18]. The non-Gaussian field is then simulated based on ⟦�̃�𝐺⟧ using the procedure described in

http://dx.doi.org/10.20517/dpr.2022.01


Xiao et al. Dis Prev Res 2022;1:5 I http://dx.doi.org/10.20517/dpr.2022.01 Page 11 of 17

Figure 3. Comparison of the prescribed AC function, estimated AC function based on samples, and their differences for Cases 5 to 8. The
considered marginal distribution is the beta distribution shown in Table 1. AC: Autocorrelation.

Figure 1 and ⟦�̃�∗
𝜌𝑌⟧ is evaluated based on the simulated fields.

The plots presented in Figure 4 for Cases 3, 4, 7, and 8 show that ⟦�̃�∗
𝜌𝑌⟧ can deviate from their target. The

differences illustrate the well-known limitation of using the Nataf translation system to represent the non-
Gaussian field [12–14,16,35] rather than the numerical procedure used in the present study.

Figure 5 shows the surface of the target AC functions and the surface of the underlying Gaussian AC functions.
In the same figure, the differences between the surface of the target AC function and the surface of ⟦�̃�∗

𝜌𝑌⟧ are
also depicted. The large differences between the prescribed AC function and that based on ⟦�̃�∗

𝜌𝑌⟧ for some
regions of the field can be explained based on the arguments used to explain the results presented in Figure 4.

3.2. Examples using the KL expansion to simulate nonGaussian field
In this subsection, we consider again all cases shown in Table 1 but use the KL expansion to augment the
simulated field. For the analysis, we take advantage of the availability of ⟦𝐶𝐺⟧ and ⟦𝐶𝜌𝑌⟧ (if they are not
proper correlation matrices, we use their corresponding nearest correlation matrices ⟦�̃�𝐺⟧ and ⟦�̃�∗

𝜌𝑌⟧ ), that
is discussed in the previous section.

First, the eigendecomposition is applied to ⟦�̃�𝐺⟧ (or ⟦𝐶𝐺⟧ if it is a proper correlation matrix) for each of
Cases 1 to 8. By sorting the eigenvalues in descending order, we sum up the eigenvalues of the first 𝑗 terms and

http://dx.doi.org/10.20517/dpr.2022.01
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Figure 4. Comparison of the prescribed AC function, estimated AC function based on samples, and underlying Gaussian AC function
for Cases 1 to 8 by considering that the marginal distribution is the lognormal distribution shown in Table 1. The plots for Cases 5 to 8,
considered 𝑥𝑘 = 0.5. AC: Autocorrelation.

normalize themwith respect to the sum of all the eigenvalues. The normalized value, denoted as 𝑅 𝑗/𝑇 is plotted
in Figure 6 for each case, indicating that 𝑅 𝑗/𝑇 is greater than about 0.95. This indicates that the consideration
of the first 21 terms of the KL expansion [see Equation (10)] could provide adequate representations of the
considered random fields.

We use the obtained ⟦�̃�𝐺⟧, considering 𝑁 = 21, applying Equation (10) and employing the probability trans-
formation mapping to simulate the non-Gaussian random field at points with the separation between two
adjacent points 𝛿𝑥 = 0.1 for Cases 1 to 4, and with 𝛿𝑥 = 0.05 for Cases 5 to 8. An illustration of five samples
for each case is depicted in Figure 7. By generating 50,000 samples for each case, the calculated correlation
coefficient is presented in Figure 8 and compared with ⟦�̃�∗

𝜌𝑌⟧ that is obtained in the previous section (i.e.,
based on the procedure shown on the left panel in Figure 1). The comparison indicates that the correlation
obtained from the samples agrees well with ⟦�̃�∗

𝜌𝑌⟧ .

3.3. Examples of conditional simulation
For illustrating the conditional simulation, we consider Cases 1 and 5. By assuming that the marginal distri-
bution is the beta or lognormal distribution shown in Table 1, we sample a field at 𝑝 = 101 points for the
considered case. We select 5 points from the sampled field as the conditioning points that are shown in Fig-
ure 9. We then apply the procedure described in Figure 1 to sample the random fields conditionally. Five
samples for each considered case are presented in Figure 9 by using Equation (12). As shown in the figure, the

http://dx.doi.org/10.20517/dpr.2022.01
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Figure 5. Comparison of the prescribed AC function, estimated AC function based on samples, and their differences for Cases 5 to 8. The
considered marginal distribution is the lognormal distribution shown in Table 1. AC: Autocorrelation.

Figure 6. Value of 𝑅 𝑗/𝑇 for the considered cases showing the contribution of the eigenvalues from the first 𝑗 terms.
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Page 14 of 17 Xiao et al. Dis Prev Res 2022;1:5 I http://dx.doi.org/10.20517/dpr.2022.01

Figure 7. Typical samples obtained by applying the KL expansions and probability transformation mapping for each of the cases listed in
Table 1. The first two rows are obtained by considering the beta distribution presented in Table 1 and the last two rows are obtained by
considering the lognormal distribution presented in Table 1. KL: Karhunen-Loeve.

Figure 8. Comparison of the calculated correlation coefficient from the sampled random field to ⟦�̃�∗
𝜌𝑌 ⟧ obtained from the sampled random

field based on the proposed procedure depicted on the left panel shown in Figure 1. The first two rows are obtained by considering the beta
distribution presented in Table 1 and the last two rows are obtained by considering the lognormal distribution presented in Table 1.
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sampled random fields are constrained by the conditioning points.

Figure 9. Five conditionally sampled fields for Cases 1 and 5. The large dots represent the conditioning points and the lines represent the
sampled fields.

4. CONCLUSIONS
A sample-based numerical procedure to estimate the underlying Gaussian correlation for a homogeneous/
nonhomogeneous non-Gaussian field is proposed in the present study. The estimation is based on the Nataf
translation framework and takes advantage that the range of feasible correlation coefficients for non-Gaussian
random variables by using the translation is bounded. Numerical examples show that the proposed estimation
procedure is effective and can be used directly to identify whether the underlying Gaussian correlation that
leads to exactly matching the prescribed correlation can be found. It is shown that by taking into account
the bounds, the underlying Gaussian correlation can be easily found by using the simple bisection method
or optimization algorithm. From the numerical example, it was noted that ⟦𝐶𝐺⟧ may not be a positive semi-
definite matrix (as noted by other researchers). In such a case, its corresponding nearest correlation matrix
⟦�̃�𝐺⟧ is used; a detailed inspection of the numerical results indicates that the absolute value of the differences
between the elements in ⟦𝐶𝐺⟧ and its corresponding element in ⟦�̃�𝐺⟧ is much less than 0.01.

We also present the steps to augment the simulated non-Gaussian field for a refined discretized grid of the
random field by applying the KL expansion and using samples obtained for a much more coarse grid system.
The procedure is illustrated through numerical examples.

It was shown that the conditional simulation could easily be carried out within the established simulation
framework, and the extension of the procedure to the multi-dimensional random field case is straightforward.
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