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Despite the remarkable benefits and convenience of plastics to human lives, there is increasing awareness 
about the negative environmental impacts arising from the vast amount of plastic waste. Due to the 
environmental weathering over time, fragmentation of plastics can happen, leading to microplastic (< 5 
mm) and nanoplastic (< 100 nm) generation. As a hot environmental topic in the past decade, more and 
more studies have focused on the subjects of microplastic and nanoplastic pollution, i.e., qualitative and 
quantitative methods, environmental fate and behavior, biological consequences, and potential removal 
techniques[1-5]. In addition, concerns about the relationship between antibiotic resistance and 
micro/nanoplastics have arisen with the recent one-health concept[6].

Antibiotic resistance is one of the biggest threats to global health, as the proliferation of resistance reduces 
or eliminates the utility of antibiotics, rendering some clinical infections dangerously untreatable. Therefore, 
gaining insight into mechanisms driving the dissemination and propagation of antibiotic resistance genes 
(ARGs) is essential. The use of antibiotics is usually considered to be the main driving factor for the 
development and selection of ARGs[7]. Additionally, due to the co-selection mechanisms, anthropogenic 
levels of toxic heavy metals have also been associated with the dissemination of ARGs[8]. Recent evidence 
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that microorganisms colonizing microplastics are resistant to antibiotics and that microplastics increase the 
gene exchange in aquatic ecosystems suggests that microplastics could have ramifications on disease 
transmission and treatment [Table 1]. To further illustrate the relationship between micro/nanoplastics and 
ARGs, we used the Web of Knowledge database to retrieve publications. The results were further viewed by 
CiteSpace[9]. The high-frequency keywords included microbial community disturbance, conjugative antibiotic 
resistant plasmid, occurrence removal, microplastic biofilm, and potential carrier [Figure 1], suggesting that 
researchers dominantly focused on the correlation between ARGs and microbial communities on plastics, 
the plastic-induced gene transfer, and vector roles of plastics.

Microplastics could selectively enrich ARGs. By analyzing the metagenomic data of plastic particles from 
the North Pacific Gyre, Yang et al. (2019) first reported that the abundance of total ARGs on microplastics 
was significantly greater than that in seawater[10]. Since this study, understanding the roles of microplastics 
in carrying ARGs has become an important area to explore. The ARGs on the microplastics collected from 
the oceans[11], estuaries[12], urban rivers[13], farmlands[14], wastewater treatment plants[15], and even indoor 
air[16] have been estimated. Most studies illustrated that the ARG abundance and diversity were significantly 
different from those in the surrounding environments, which was closely associated with distinct microbial 
communities on the microplastics. Additionally, the bacterial communities on microplastics may be denser, 
further enhancing the horizontal gene transfer rate of ARGs on microplastics. Several studies have 
measured the indicator gene of horizontal gene transfer on microplastics and proved this hypothesis[13].

Microplastics may also affect the ARGs in surrounding environments. For instance, Song et al. (2022) 
reported that biodegradable microplastics significantly changed the ARG compositions and broadened their 
bacterial hosts, which was due to the fact that generated water-soluble low molecular weight oligomers from 
the biodegradable microplastics may act as additional carbon sources for microbial assimilation[17]. Lu and 
Chen (2022) also found that the ARG characteristics in soils were changed after microplastic amendment, 
which was attributed to the sorbed phthalates[18]. Unfortunately, not enough studies have evaluated this 
question. Based on their natural properties, e.g., undissolved solid particles, it is not easy for microplastics to 
enter into bacteria and induce the expression of ARGs. Thus, the co-selection mechanisms may not be 
appropriate for microplastic exposure. They may not directly target the ARGs but indirectly through 
changing the communities of ARG bacterial hosts or leaching chemicals to show selective pressures.

Although microplastics and nanoplastics share similar composition and origin, the nanospecific properties 
(e.g., transport properties, bioavailability, interactions with natural colloids, and potential toxicity) 
distinguish nanoplastics from microplastics. Therefore, nanoplastics may affect the dissemination of ARGs 
via different mechanisms. Shi et al. (2020) found that the ARGs in municipal landfill leachate were enriched 
in the nanoplastic exposed group. They reported that nanoplastics could induce the production of reactive 
oxygen species (ROS), which potentially increase bacterial membrane permeability and thus facilitate the 
intra-bacterial community transfer of mobile genetic elements[19]. Similarly, Hu et al. (2022) observed that 
nanoplastics can promote the transformation of ARGs, and the enhancing mechanism was the direct 
interaction of nanoplastics with membrane lipids and the indirect effect associated with bacterial oxidative 
stress response[20]. Both processes can induce the formation of pores on the cell membrane and increase the 
membrane permeability, thus enhancing gene transformation.

Despite the growing literature on the effects of micro/nanoplastics on ARGs, most studies only observed the 
correlation between microbial communities and ARG profiles, which is not the underlying reason plastics 
could selectively recruit ARGs. For microplastics, we may hypothesize that the microplastics can selectively 
recruit microorganisms growing on microplastics, which contributes to the distinct ARG profiles on 
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Table 1. The studies related to micro/nano-plastics and ARGs

MP type Design Methods Main results Reference

Plastic 
particles

Filed-collected 
samples

Metagenomics • Higher levels of ARGs were observed on plastics, and a correlation 
between ARGs and bacterial communities was observed

[10]

HDPE In situ incubation HT-qPCR • A total of 82 ARGs, 12 MGEs, and 63 bacterial pathogens were detected in 
the plastisphere, and the correlation between ARGs and bacterial 
communities was observed

[21]

PE, PP Ex situ microcosm 
with landfill leachate

qPCR • MPs exhibited selective enrichment for ARGs in a ratio of 5.7-103 folds 
• Closer and more stable ARGs-bacterial taxa relations on MP surface 
affected the ARG transmission

[22]

PS, PP, PE, 
PET, PVC

Field-collected 
samples

qPCR • ARG absolute abundance showed: biofilms on plastics > sediment > water 
• Firmicutes showed significant correlations with sul1 and tetA on PE

[23]

PE, PP Field-collected 
samples

qPCR • MPs selectively enriched antibiotic resistant genes with distinct ARG 
profiles, and a correlation between ARG profile and bacterial composition 
was obtained

[13]

PE Ex situ microcosm 
with water samples 

qPCR • MPs can enrich antibiotics, ARGs and microbes from the surrounding 
water

[12]

PVC Sewage microcosm HT-qPCR • PVC MPs could enrich bacteria and resistance genes from surrounding 
sewage

[24]

PE, PVC Sewage microcosm HT-qPCR • MPs led to the increase of the total copies of ARGs and mobile genetic 
elements (MGEs) in the sewage 
• Multidrug ARGs and MGEs were enriched on plastisphere

[25]

PHA, PET In situ incubation Metagenomics • Plastic type significantly influenced the ARG composition in the biofilms, 
and the abundance of multidrug resistance genes on PET was relatively 
higher 
• A good-fit correlation between ARG profile and bacterial composition was 
obtained

[11]

Aged PS MPs Incubation with 
goldfish 

Metagenomic • Microplastics promote the occurrence of ARGs in the intestine [26]

PE, PP, PS, 
recycled PE

Ex situ microcosm 
with wastewater

qPCR • PP have the highest adsorption capacity of ARGs among all microplastics 
• Exposure to microplastics enhances horizontal gene transfer of ARGs

[15]

PS N/MPs Ex situ microcosm 
with landfill leachate

qPCR • ARGs were enriched more in the 200–500 nm MP group 
• The potential ARG-carrying bacteria increased in the N/MP exposed 
groups

[19]

PS N/MPS Incubation with 
earthworms

Metagenomics • Microplastics (MPs) impact the occurrence of ARGs in earthworm guts [27]

PA, PET, PLA Indoor collected MPs qPCR • Relative abundance of ARGs on MPs was higher, and a correlation 
between ARGs and bacterial communities was observed

[16]

PS NPs Incubation with 
Enchytraeus crypticus

HT-PCR • NPs enhanced the toxicity of tetracycline and promoted ARGs enrichment 
• NPs + TC caused more serious ARGs enrichment in E. crypticus than in 
soils

[28]

PS N/MPs E. coli incubation • PS particles with sizes ≤ 100 nm impacted the transformation of ARGs 
• PS particles interfered with plasmid replication inside E. coli, thus 
decreasing the bacterial transformation and affecting the dissemination of 
ARGs

[20]

PE Ex situ incubation qPCR • PE MPs significantly increased the fold changes in the abundances of tetC, 
tetG, and tetW 
• Free ammonia contributed the most to the changes in host bacteria, which 
probably changed the fate of ARGs

[29]

PVC In situ incubation qPCR • PVC MPs benefited the propagation of intI1 and tetE in the AGS system 
• PVC MPs positively correlated with some Accumulibacter clades and 
ARGs

[30]

PS NPs In situ incubation qPCR • The thermal hydrolysis process reduced ARG propagation that can be 
encouraged by PS NPs

[31]

PET Incubation with mice HT-qPCR • MPs could exacerbate the effects of SMX on gut microbiota and ARG 
profile 
• SMX and MPs exposure significantly increased the relative abundances of 
ARGs

[32]

PE, PP, PS, 
PET, PCL

In situ incubation qPCR • Sociometric and environmental factors were the main drivers shaping the 
distribution characteristics of ARGs and MGEs 
• PP and HDPE particles are preferred substrates for obtaining diffuse ARGs

[33]

ARG: antibiotic resistance gene; MPs: microplastics; NPs: nanoplastics; HDPE: high-density polyethylene; PA: polyamide; PET: polyethylene 
terephthalate; PLA: polylactic acid; PE: polyethylene; PP: polypropylene; PS: polystyrene; PCL: polycaprolactone; PHA: polyhydroxyalkanoates; 
qPCR: quantitative polymerase chain reaction; HT-qPCR: high-throughput quantitative polymerase chain reaction.
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Figure 1. The co-occurrence of keywords and citation related to micro/nano-plastics and ARGs.

microplastics. The closer physical distance of microorganisms would induce the horizontal gene transfer. 
Thus, further studies should focus on why the microplastics have the ability to show selective recruitment 
and whether the levels of gene exchanges on microplastics are higher. For nanoplastics, their attack on the 
cell wall may be more important for gene exchanges. More attention should focus on how 
micro/nanoplastics mediate the ARG transformation.
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