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Carbon dioxide (CO2) is an abundant, non-toxic, and sustainable C1 resource that has garnered significant 
attention from chemists due to its potential for efficient conversion into various high-value chemicals[1,2]. In 
recent decades, researchers have developed various methodologies to convert CO2 into a range of carboxylic 
acids[3-5]. However, the inherent thermodynamic stability and kinetic inertness of CO2 necessitate harsh 
reaction conditions for its conversion. Furthermore, the non-polar nature of CO2 limits its coordination 
capability with transition metals, presenting a challenge for synthesizing chiral carboxylic acids through 
transition metal-catalyzed asymmetric carbon-carbon bond formation with CO2. While there have been 
advancements in catalytic asymmetric transformations with CO2, most efforts have concentrated on 
constructing carboxylic acids with central chirality[6-8]. In contrast, the catalytic asymmetric synthesis of 
axially chiral carboxylic acids with CO2 has received less attention, with only one successful example of 
nickel-catalyzed asymmetric reductive carboxylation of racemic aza-biaryl triflates with CO2 reported by 
Chen et al.[9].
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Figure 1. Synergistic photoredox/palladium catalysis for enantioconvergent carboxylation of heterobiaryl (pseudo)halides with CO2.

In recent years, there has been growing interest in the synergistic catalytic system that combines 
photocatalysis with transition metal catalysis[10,11]. This dual catalytic approach offers a unique blend of 
advantages from both systems, disrupting conventional metal catalysis reaction pathways and enhancing the 
flexibility in controlling catalytic metal oxidation states by incorporating photocatalytic generated species. 
As a result, novel reactivity pathways are introduced. Moreover, the synergistic catalysis of photocatalysis 
and metal catalysis enables a more accurate regulation of reaction reactivity and selectivity. Among these, 
photoredox/palladium dual catalysis has also been recently adopted in the challenging reductive 
carboxylations of organohalides with CO2 under mild conditions[12-14]. Following this logic, recently, Liu 
et al. have developed a novel tandem asymmetric carboxylation and in situ esterification reaction of aryl/
heteroaryl halides and pseudohalides with CO2 and alkyl bromides using a synergistic photoredox/
palladium catalytic system through a dynamic kinetic asymmetric transformation process [Figure 1][15]. 
Using 2,4,5,6-tetrakis(carbazol-9-yl)isophthalonitrile (4CzIPN) as the photocatalyst, palladium(II) 
acetylacetonate [Pd(acac)2] as the palladium catalyst precursor, (R)-(4,4’,6,6’-tetramethoxy-1,1’-biphenyl-
2,2’-diyl)bis(bis(3,5-bis(trifluoromethyl)phenyl)phosphine) [(R)-BTFM-Garphos] (L*) as the chiral ligand, 
N,N-diisopropylethylamine (DIPEA) as the reducing agent, cesium carbonate as the base, lithium 
bis(trifluoromethanesulfonyl)imide and 4 Å molecular sieves as reaction additives, N, N-dimethylacetamide 
as the solvent, under an atmospheric CO2 environment with 455 nm blue light irradiation at 16 °C for 24 h, 
the model reaction gave the corresponding ester product with 89% yield and 96% enantiomeric excess (ee). 
Under the optimized conditions, various heterobiaryl, including isoquinoline and quinazoline, bromides or 
triflates with different functional groups such as ester, cyano, chloride, and ketone substituents were well 
tolerated. Additionally, when the naphthalene ring was replaced with a 6-methylphenyl group, the reaction 
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Figure 2. A possible catalytic cycle.

also proceeded with good yield and enantioselectivity.

Controlled experiments were carried out to gain a deeper understanding of the impact of the synergistic 
photoredox/palladium catalytic system on the reaction. The 1:1 ratio between the palladium catalyst (Pd/L*) 
and the photocatalyst (4CzIPN) resulted in the highest product yield and ee, suggesting that the synergistic 
effect was optimal at this catalyst ratio. Kinetic studies revealed that the ee value of the recovered starting 
material remained relatively low, suggesting that in the presence of Pd/L*, the carboxylation reaction 
undergoes a non-ideal kinetic resolution process. Lastly, the authors noted that the rapid in situ trapping of 
chiral carboxylate intermediates by alkyl bromide is crucial for successfully producing conformationally 
stable axially chiral esters, as the carboxylate undergoes racemization gradually under standard conditions. 
Based on the experimental results and previous literature reports[16,17], the authors propose a potential 
catalytic cycle [Figure 2]. Initially, the Pd(II)/L* complex is reduced to Pd(0)/L*, which then coordinates with 
the racemic heterobiaryl bromide 1a and undergoes oxidative addition to form palladacyclic species A and 
A’. Previous studies have indicated that the divalent palladacyclic species A or A’ do not undergo 
carboxylation with CO2 due to the high reaction barrier[18]. Therefore, they undergo a photocatalytic single-
electron reduction process, forming the monovalent aryl palladium species ArPd(I)L* (B and B’), which 
coordinate and migrate insert with CO2 to form intermediate C. The palladium carboxylate C is captured in 
situ by alkyl bromide via a rapid SN2 reaction to yield the corresponding axially chiral ester 2a. Finally, the 
released Pd(I)L* species is reduced to Pd(0)L*, completing the entire catalytic cycle.
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In summary, this work by Liu et al. provides an effective synergistic photoredox/palladium approach for the 
enantioconvergent carboxylation-alkylation of racemic aryl/heteroaryl halides and pseudohalides with CO2 
and alkyl bromides, yielding a variety of axially chiral esters in good to high yields with excellent 
enantioselectivities[15]. This process features mild reaction conditions and wide substrate compatibility. The 
combined use of photoredox and palladium catalysts in this research not only advances the field of axially 
chiral carboxylic acids but also contributes to the efficient utilization of CO2 in asymmetric transformations.
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